
Apologizing Versus Asking Permission:
Optimistic Concurrency Control for Abstract
Data Types

MAURICE HERLIHY
Carnegie Mellon University

An optimistic concurrency control technique is one that allows transactions to execute without
synchronization, relying on commit-time validation to ensure serializability. Several new optimistic
concurrency control techniques for objects in decentralized distributed systems are described here,
their correctness and optimality properties are proved, and the circumstances under which each is
likely to be useful are characterized.

Unlike many methods that classify operations only as Reads or Writes, these techniques syste-
matically exploit type-specific properties of objects to validate more interleavings. Necessary and
sufficient validation conditions can be derived directly from an object’s data type specification. These
techniques are also modular: they can be applied selectively on a per-object (or even per-operation)
basis in conjunction with standard pessimistic techniques such as two-phase locking, permitting
optimistic methods to be introduced exactly where they will be most effective.

These techniques can be used to reduce the algorithmic complexity of achieving high levels of
concurrency, since certain scheduling decisions that are NP-complete for pessimistic schedulers can
be validated after the fact in time, independent of the level of concurrency. These techniques can
also enhance the availability of replicated data, circumventing certain tradeoffs between concurrency
and availability imposed by comparable pessimistic techniques.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs-
abstract data types, data types and structures; D.4.3 [Operating Systems]: File Systems
Management-distributed file systems; D.4.5. [Operating Systems]: Reliability-fault-tolerance;
H.2.4 [Database Management]: Systems--distributed systems; transaction processing

General Terms: Algorithms, Reliability

Additional Key Words and Phrases: Abstract data types, optimistic concurrency control, replication

This research was sponsored by the Department of Defense Advanced Research Projects Agency,
ARPA Order 4976, monitored by the Air Force Avionics Laboratory under contract F33615-84-K-
1520.
The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government.
A preliminary version of this paper appeared in the Proceedings of the 5th ACM SZGACT-SZGOPS
Symposium on Principles of Distributed Computing (Aug. 1986), pp. 206-217.
Author’s current address: Digital Equipment Corporation, Cambridge Research Lab., 1 Kendall
Square, Building 700, Cambridge, MA 02139.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1990 ACM 0362-5915/90/0300-0096 $01.50

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990, Pages 96-124

http://crossmark.crossref.org/dialog/?doi=10.1145%2F77643.77647&domain=pdf&date_stamp=1990-03-01

Apologizing Versus Asking Permission - 97

1. INTRODUCTION

Optimistic concurrency control is based on the premise that it is sometimes
easier to apologize than to ask permission. Transactions execute without syn-
chronization, but before a transaction is allowed to commit, it is validated to
ensure that it preserves atomicity. If validation succeeds, the transaction com-
mits; otherwise the transaction is aborted and restarted. This paper proposes
new optimistic concurrency control techniques for objects in distributed systems,
proves their correctness and optimality properties, and characterizes the circum-
stances under which each is likely to be useful.

In conventional optimistic techniques, operations are classified simply as Reads
or Writes, and transactions are validated by analyzing Read/Write conflicts
between concurrent transactions. These techniques are intended primarily for
applications where most concurrent accesses to data are Reads; they are poorly
suited for general-purpose applications such as banking or reservations where
concurrent Write operations occur frequently at “hot spots” such as counters,
account balances, or queues. A novel aspect of the techniques proposed here is
that they validate more interleavings by systematically exploiting type-specific
properties of objects to recognize when concurrent Write operations need not
conflict. An object’s validation conditions can be derived directly from its data
type specification, and the derivation technique is applicable to objects of arbi-
trary type. These techniques are optimal in the sense that no method using the
same information can validate more interleavings.

Any optimistic scheme, however clever, is cost effective only if validation
succeeds sufficiently often. Numerous studies have shown that the success rate
of validation depends critically on the nature and frequency of transaction
conflict. In administratively decentralized distributed systems, it is reasonable to
expect that different subsystems will have different patterns of conflict and that
those patterns may change over time. For example, consider a distributed system
that supports transactions that span databases maintained by different compa-
nies, say, reserving an airline seat and transferring funds to pay for the ticket.
Such transactions are possible only if the bank and the airline have agreed to
use compatible concurrency control mechanisms. Under these circumstances,
however, an optimistic technique is unlikely to be chosen as the system-wide
standard. Even if the airline’s transaction mix favors optimistic techniques, the
bank’s may not, and neither institution has any control over the other’s trans-
action mix. These observations suggest that optimistic techniques are more likely
to be useful if they can be applied locally, perhaps allowing the airline to use
optimistic techniques within its own database while the bank uses pessimistic
techniques. (See Lausen [29] and Boral and Gold [7] for similar arguments).
Even for pessimistic techniques, however, the compatibility of distinct mecha-
nisms is a nontrivial question. For example, two-phase locking [13] and multi-
version timestamping [34] cannot be used together in a single system, because
they may serialize transactions in incompatible orders. A novel aspect of the
techniques proposed here is that they are compatible with a large class of standard
pessimistic techniques, including two-phase locking; thus they can be applied
selectively on a per-object (or even per-operation) basis exactly where they are
most cost effective.

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

98 l Maurice Herlihy

The techniques proposed in this paper permit a substantial reduction in the
algorithmic complexity of achieving high levels of concurrency. In general, if a
pessimistic scheduler takes full advantage of available information, then each
scheduling decision may require time NP-complete in the number of concurrent
transactions. By contrast, an optimistic scheduler can validate each such decision
in time independent of the level of concurrency, suggesting that optimistic
techniques are a promising approach to implementing highly concurrent atomic
objects.

These techniques can also be used to enhance the availability of quorum-
consensus replication [20]. Under pessimistic techniques, restrictions on
availability and concurrency are not independent; weakening restrictions on
concurrency may require strengthening restrictions on the availability [21]. The
optimistic techniques proposed here circumvent this tradeoff: enhancing valida-
tion to accept more interleavings has no effect on availability, suggesting that
optimistic techniques are also promising for highly concurrent replicated objects.

This paper is organized as follows. Section 2 surveys some related work, and
Section 3 describes our model of computation. Section 4 describes several forms
of conflict-based validation, a simple validation technique based on predefined
conflicts. Section 5 describes state-based validation, a more complex scheme that
validates additional interleavings by exploiting knowledge about the object’s
state. Section 6 examines how optimistic techniques affect the availability of
replicated objects, and Section 7 closes with a discussion.

2. RELATED WORK

Perhaps the earliest concurrency control scheme to use validation is that of
Thomas [41]. Kung and Robinson [27] have proposed a centralized optimistic
method based on Read/Write conflicts. Ceri and Owicki [9] have extended Kung
and Robinson’s method to permit validation in distributed systems. Reimer [35]
presented an optimistic scheme that uses validation to solve the “phantom record”
problem. Lausen [29] has proposed a centralized optimistic scheme integrating
two-phase locking with Kung and Robinson’s scheme and has also shown that
several general formulations of the validation problem are NP complete [30].
Boral and Gold [7] presented a scheme that permits a system to adapt to changing
loads by shifting dynamically between pessimistic and optimistic techniques.
Agrawal et al. [2] have proposed a multiversion technique in which update
transactions are validated against one another, but Read-only transactions need
not be validated. Harder [19] makes a useful distinction between backward
validation, in which each transaction checks that its own results have not been
invalidated by concurrent transactions, and forward validation, in which each
transaction checks that its own effects will not invalidate any concurrent trans-
action’s results. The distributed validation protocol used in this paper generalizes
Kung and Robinson’s centralized transaction numbering scheme, and it is simpler
and requires fewer messages than that of Ceri and Owicki [9].

IMS Fast Path [16] uses an optimistic technique for shared counters. Like the
more general techniques proposed in this paper, this technique mixes pessimistic
and optimistic techniques and exploits type-specific properties of counters
ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

Apologizing Versus Asking Permission - 99

to make validation more effective. This approach is discussed further in Sec-
tion 5.3.

Numerous studies have compared the performance of pessimistic and optimistic
techniques [l, 4,8,14,31,40]. These studies have yielded a variety of conclusions.
Agrawal et al. [3] have analyzed a queuing model that encompasses many of
these earlier studies, showing how the effectiveness of optimistic techniques
depends in complex ways on a number of simulation parameters, including the
database size, the distribution of transaction lengths, the resources available, and
others. We interpret these results as suggesting that traditional optimistic tech-
niques are not well suited to large, administratively decentralized distributed
systems, where such parameters may be difficult to predict and subject to local
variance. Instead, we suggest that optimistic techniques are most likely to be
useful if they can be applied to individual objects (or subsystems) rather than
monolithically to the entire system.

Pessimistic concurrency control techniques that exploit type-specific properties
of objects include those proposed by Korth [26], Bernstein, et al. [6], Schwarz
and Spector [37]. Weihl [42-441, Shasha and Goodman [39], and Herlihy [22,
24, 231.

Weihl [43, 441 has developed analytic techniques for characterizing when
atomicity mechanisms are compatible. The techniques proposed here satisfy
hybrid atomicity and are compatible with a wide variety of pessimistic techniques,
including two-phase locking [13, 26, 321, as well as schemes that combine locking
with timestamps [lo, 11, 21, 241.

3. MODEL

3.1. Objects and Histories

The basic containers for data are called objects. Each object has a type, which
defines a set of possible values and a set of primitive operations that provide the
only means to create and manipulate objects of that type. For example, a bank
account might be represented by an object of type Account whose value is a
nonnegative dollar amount, initially zero. The Account data type provides credit
and debit operations. Credit increments the account balance:

Credit = Operation(sum: Dollar).

Debit attempts to decrement the balance:

Debit = Operation(sum: Dollar) Signals (Over).

If the amount to be debited exceeds the balance, the invocation signals an
exception, leaving the balance unchanged. For brevity, a debit that returns
normally is referred to as a debit; otherwise it is an overdraft.

In the absence of failures and concurrency, a computation is modeled as a
history, which is a finite sequence of operations. Histories are denoted by lower-
case letters (g, h). An operation is written as x op(args*)/term(res*), where x is
an object name, op is an operation name, args* denotes a sequence of argument
values, term is a termination condition, and res* is a sequence of results.
The operation name and argument values constitute the invocation, and the

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

100 l Maurice Herlihy

termination condition and result values constitute the response. We use “Ok” for
normal responses. The object name is often omitted when it is clear from the
context. For example,

a Credit($5)/0k()
a Credit($G)/Ok()
a Debit($lO)/Ok()
a Debit($Z)/Over()

is a history for an Account a.
Each object has a serial specification, which defines a set of legal histories for

that object. For example, the specification for an Account object consists of
histories in which the balance covers any debit and fails to cover any overdrafts.
An object subhistory, h] x (h at x), of a history h is the subsequence of operations
in h whose object names are x. A history h involving multiple objects is legal if
each object subhistory h] x lies within the serial specification for X.

3.2 Transactions and Schedules

Distributed systems are subject to two kinds of faults: sites may crash, and
communication links may be interrupted. A widely accepted approach to ensuring
consistency in the presence of crashes and network partitions is to make the
activities that manage the data atomic, Atomicity encompasses two properties:
serializability and recoverability. Serializability [33] means that the execution of
one activity never appears to overlap (or contain) the execution of another, while
recouerability means that the overall effect of an activity is all or nothing: it
either succeeds completely, or it has no effect. Atomic activities are called
transactions. A transaction’s effects become permanent when it commits, its
effects are discarded if it aborts, and a transaction that has not committed or
aborted is actiue. Well-known atomic commitment protocols (e.g., [12, 181) can
be used to ensure the recoverability of distributed transactions.

In the presence of failure and concurrency, an object’s state is given by a
schedule, which is a sequence of steps of the form: (x op(args*)/term(res*)P),
(x commit P), or (x abort P), where x is an object name, op, args*, term, and
res” are as before, and P is a transaction name. Schedules are denoted by upper-
case letters (G, H). A subschedule of H is a subsequence of steps of H. If H
is a schedule and x an object name, H] x is the subschedule of H consisting of
steps whose ,object names are x. If P is a transaction and S a set of transactions,
H] P and H] S are defined analogously. The object name is often omitted when
it is clear from the context.

For example, the following is a schedule for an Account a:

a Credit($5)/0k() P
a Credit($G)/Ok() Q
a Commit P
a Debit($lO)/Ok() Q
a Commit Q

Here, P and Q are transaction identifiers. The ordering of operations in a schedule
reflects the order in which the object returned responses, not necessarily the
order in which it received invocations. When a transaction commits or aborts,
ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

Apologizing Versus Asking Permission l 101

news of the event propagates asynchronously through the system. A schedule’s
commit and abort steps represent the arrival of such news at an object (or a
component of that object if it is replicated). A schedule is well formed if no
transaction executes an operation after it commits and no transaction both
commits and aborts. All schedules are assumed to be well formed.

(Serial) histories and (concurrent) schedules are related by the notion of
atom&y. Let > denote a total order on committed and active transactions, and
let H be a schedule. The serialization of H in the order > is the history h
constructed by reordering the operations in H so that if Q > P, then the
subsequence of operations associated with P precedes the subsequence of opera-
tions associated with Q. H is serializable in the order > if h is legal. H is
serializable if it is serializable in some order. H is atomic if the subschedule
associated with committed transactions is serializable.

H is not necessarily atomic just because each H (x is atomic. A property P is a
local atomicity property [44] if H is atomic provided that each H] x is atomic and
satisfies P. The techniques proposed in this paper are based on a local atomicity
property called hybrid atomicity [44]. As each transaction commits, it is issued a
logical timestamp [281. Each object must ensure that transactions are serializable
in commit timestamp order. Our techniques are thus compatible with pessimistic
methods such as two-phase locking [13, 21, 26, 321 and others [lo, 111 in which
transactions are serializable in the same order. Because hybrid atomicity is a
local atomicity property, we henceforth focus our attention on the behavior of
individual objects.

3.3 Two Validation Protocols

Internally, an object is implemented by two components: a permanent state that
records the effects of committed transactions, and a set of intentions that record
each active transaction’s tentative changes. When a transaction commits, its
intentions are applied to the permanent state. For example, a bank account’s
permanent state is the current balance, and its intentions records each active
transaction’s net credit or debit.

This section describes two protocols for validating distributed transactions.
Both protocols ensure that transactions are validated in commit timestamp order
and that committing transactions’ intentions are applied to an object’s permanent
state in the same order. Both protocols are described as modifications to the
standard two-phase commitment protocol [18]; it should be clear how to integrate
them with multiphase nonblocking protocols [121.

The first validation protocol assigns commit timestamps at the start of the
commitment protocol’s first phase. To validate Q:

(1) The coordinator generates a commit timestamp ts(Q) from its logical clock,
which is sent with the prepare message to each site. Each site keeps track of
tmax, the latest logical timestamp assigned to any transaction validated at
that site. If ts(Q) < tmax, the site replies failure. Otherwise, the site validates
the transaction locally, using techniques described below. If validation fails,
it replies failure; otherwise it records the transaction’s intentions on nonvol-
atile storage and replies success.

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

102 * Maurice Herlihy

(2) The coordinator commits the transaction only if all sites report success. If
the transaction commits, each site updates tmax and applies the transaction’s
intentions.

This protocol ensures that transactions are validated in timestamp order by
aborting transactions that try to commit out of order. This protocol could be
modified to permit a site to request that the protocol be restarted with a later
timestamp, as in protocols proposed by Jacobson [25] and by Sinha et al. [39].

In the following alternative protocol, transactions’ commit timestamps are
chosen in the second phase.

(1) The coordinator sends a prepare message to each site. Each site validates the
transaction locally, using techniques described below. If validation fails, it
replies failure. Otherwise it records the transaction’s intentions on nonvola-
tile storage and replies success.

(2) If all sites report success, the coordinator commits the transaction and
chooses a commit timestamp, which it distributes with the commit message.
If the transaction commits, each site applies the transaction’s intentions.

The second protocol has the advantage that it does not abort transactions with
out-of-order validation requests. Concurrent attempts at validation can cause
incipient deadlocks, which are broken by timeouts. The major disadvantage of
this protocol occurs in systems that mix pessimistic and optimistic techniques
(see Section 4.5). The first protocol permits a transaction to release (pessimistic)
read locks at the end of the prepare phase, while the second protocol requires
that read locks be held for the duration of the protocol.

Both protocols permit only one transaction at a time to validate at any
particular object. This restriction can be relaxed by the following optimization.
Two transactions are noninterfering if neither transaction’s intentions includes
an operation that conflicts with an operation in the other’s, where our notion of
conflict is defined in the next section. Noninterfering transactions may pre-
pare concurrently, but care must be taken to apply their intentions in
commit timestamp order. Our correctness arguments below do not address this
optimization.

The local validation techniques discussed in the remainder of this section work
with either protocol. We assume only that each object validates and commits
transactions in commit timestamp order; if (Commit P) precedes (Commit Q)
in H] X, then ts(P) precedes ts(Q).

4. CONFLICT-BASED VALIDATION

This section introduces conflict-based validation, an optimistic concurrency con-
trol mechanism for which validation is based on predefined conflicts between
pairs of operations. This approach is the optimistic analog of locking mechanisms,
which use similar predefined conflicts to introduce delays.

We consider two distinct local validation techniques [191: backward validation
ensures that the transaction’s results have not been invalidated by the effects of
a recently committed transaction, while forward validation ensures that the
transaction’s effects will not invalidate the results of any active transaction.

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

Apologizing Versus Asking Permission - 103

4.1 Definitions and Lemmas

We begin with a definition of serial dependency, the property that underlies our
notion of conflict. Let h be a history, g a subhistory (i.e., subsequence) of h, and
C a binary relation between operations.

Definition 1. g is a C-closed subhistory of h if whenever g contains an operation
4 of h it also contains every earlier operation p such that (q, p) E C.

Definition 2. A subhistory g of h is a C-view of h for q if g is C-closed, and if
it includes every p in h such that (9, p) E C.

Informally, C is a serial dependency relation if, whenever an operation is legal
for a C-view, it is legal for the complete history. More precisely, let a dot denote
concatenation:

Definition 3. C is a serial dependency relation if for all operations q, and all
legal histories g and h such that g is a C-view of h for q, g . q is legal 4 h . q is
legal.

A serial dependency relation C is minimal if no C’ C C is also a serial
dependency relation. The notion of serial dependency arises in a variety of
contexts, including algorithms for managing replicated data [ZO, 211, and algo-
rithms for pessimistic concurrency control, both locking [24] and multiversion
timestamping [221.

We now outline some ways to construct serial dependency relations from the
serial specifications for objects and give some examples of serial dependency
relations for particular types of objects. One way of defining a dependency relation
for an object is to say that an operation depends on any earlier operations that
might invalidate it. More precisely,

Definition 4. Operation p invalidates operation q if there exist histories
h, and h2 such that h,. p . h2 and h, . ha . q are legal, but h, . p . h, . q
is not. Define the relation iualidated-by to contain all pairs (p, q) such that q
invalidates p.

The invalidated-by relation is a serial dependency relation [24], although it
need not be minimal.

“Failure to commute” is also a serial dependency relation [24], where we use
Weihl’s notion of commutativity [42, 441:

Definition 5. Two histories h and h’ are equivalent if they cannot be distin-
guished by any future computation: h . g is legal if and only if h . g is legal for
all histories g. Two operations p and q commute if for all histories h, whenever
h . p and h . q are both legal, then h . p . q and h . q . p legal and equivalent.
Define the relation failure-to-commute to contain all pairs (p, q) such that q and
p do not commute.

Like inualiduted-by, failure-to-commute is not necessarily a minimal serial
dependency relation.

For the Account data type, invalidated-by yields the serial dependency relation
shown in Table I, and the failure-to-communte relation yields the symmetric
closure of this relation. Here, an entry indicates that the row operation depends

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

104 - Maurice Herlihy

Table I. Serial Dependency Relation for Account

Credit(n)/Ok Debit(n)/Ok Debit(n)/Over

Credit(m)/Ok
Debit(m)/Ok
Debit(m)/
Over

true
true

on the column operation when the indicated condition holds. This particular
serial dependency relation is minimal. It takes into account operation names and
termination conditions, but not argument or result values. Debits do not depend
on prior credits, because the debit cannot be invalidated by increasing the balance.
Overdrafts do depend on prior credits, however, because the exception can be
invalidated by increasing the balance.

Now consider a FIFO queue in which Deq blocks when the queue is empty.
For this data type, invalidated-by and failure-to-commute yield distinct serial
dependency relations, shown in Tables II and III. In the first relation, an Enq
operation cannot be invalidated by any other operations, but a Deq operation
can be invalidated either by an Enq of a different value or by a Deq of the same
value. In the second relation, Enq operations with distinct arguments fail to
commute, as do Deq operations with the same argument.

We make extensive use of the following lemmas and definitions when reasoning
about serial dependency relations. The following lemma states that any sequence
of operations can be inserted into the middle of a history provided no later
operation depends on any inserted operation.

LEMMA 6. If C is a serial dependency relation, f, g, and h histories such that
f . g and f . h are legal, and there is no q in h and p in g such that (q, p) E C,
then f . g . h is legal.

PROOF. The proof is by induction on the length of h. If h is empty, the result
is immediate. Otherwise, let h = h’ . q. By assumption, f . h is a C-view of
f . g . h’ for q. Moreover, f . g . h’ is legal by the induction hypothesis, and
f~h’~qislegalbyassumption,thusf~g~h’~q=f~g~hislegalbyDefi-
nition 3. 0

Let g and h be legal histories and q an operation.

Definition 7. g is a false C-view of h for q if g is a C-view of h for q, g . q is
legal, but h . q is not.

By Definition 3, C is a dependency relation if and only if it has no false views.
The following lemma states that if C is not a serial dependency relation, it has

a false view missing exactly one operation of h.

LEMMA 8. If C is not a serial dependency relation, then there exist legal
histories g and h and an operation q such that g is a false C-view of h for q missing
exactly one operation.
ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

Apologizing Versus Asking Permission - 105

Table II. First Serial Dependency Relation
for Queue

Enq(u’)/Ok Deq/Ok(u’)

EnduYOk
DeqlWu) U#U’ v=v)

Table III. Second Serial Dependency Relation
for Queue

Enq(u’)/Ok Deq/Ok(u’)

Enq(u)lOk U#U’
DedOkb) u=v’

PROOF. Since C is not a serial dependency relation, there exists a false
C-view g of h for some operation q. Suppose g is missing k operations of h. Con-
sider the sequence of histories (hi) i = 0, . . . , k), where ho = g, hk = h, and hi+1
is constructed by inserting in hi its earliest “missing” operation, that is, the
earliest operation in h but not in hi.

Suppose there exists an i such that hi is legal but h;+l is not. Let go . p . g, . r
be the shortest illegal prefix of hi+l, where p is the operation inserted in h; to
produce h;+l, and r is an operation. The schedule go . g, . r is legal as a prefix of
hi, go . p . gl is legal by assumption, but go . p . gl . r is illegal. Because hi is a
C-closed subschedule of hi+.l, go . g, is a false C-view of go . p . g, for r, proving
the lemma.

Otherwise, suppose all the hi are legal. Because ho . q = g . q is legal and
h, . q = H . q is not, there must exist an i such that hi . q is legal but hi+, . q
is not. This hi is a false C-view of hi+, for q missing one operation, proving
the lemma. Cl

4.2 Forward Validation

Forward validation ensures that a committing transaction cannot invalidate any
active transactions. When a transaction executes an operation at an object, the
object grants an optimistic lock for that operation. That object will validate a
transaction Q if and only if there is no other active transaction that holds an
optimistic lock for an operation that conflicts with an operation in the intentions
list for Q. A transaction’s optimistic locks are released when it commits or aborts.

Formally, each object is modeled by an automaton that accepts certain sched-
ules. The automaton’s state is defined using the following primitive domains:
TRANS is the set of transaction identifiers and OP is the set of operations. The
derived domain HISToRYis the set of sequences of operations. x + Y denotes the
set of partial maps from x to Y. A forward validation atuomaton has the following
state components:

Perm: HISTORY
Intent: TRANS + HISTORY
O-Lock: OP + B=R*NS

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

106 * Maurice Herlihy

Perm is a history that represents the object’s committed state, initially empty.’
Intent(Q) is the history of operations executed by transaction Q, initially none.
A transaction’s view is constructed by appending its intentions to the object’s
committed state; that is, the history View(Q) is defined to be Perm . Intent(Q).
O-Lock(q) is the set of active transactions that hold an optimistic lock for
operation q, initially none.

Each transition has a precondition and a postcondition. For brevity, we assume
that all input schedules are well formed. (Well formedness could be checked
explicitly by adding more state components and preconditions.) In postcondi-
tions, primed component names denote new values, and unprimed names denote
old values. For transaction Q to execute operation q,

Pre: View(Q) + q is legal.
Post: Intent’(Q) = Intent(Q) . q

O-Lock’(q) = O-Lock(q) u (Q).

A transaction may execute an operation only if it appears to be legal. Once the
execution is complete, the operation is appended to the transaction’s intentions
and the transaction is given an optimistic lock for the operation.

Validation is governed by an optimistic conflict relation OC C OP X OP. Let Q
be the validating transaction.

Pre: For all q in Intent(Q), (p, q) E OC - O-Lock(p) - {Q] = 0.
Post: Perm’ = Perm . Intent(Q)

For all q in Intent(Q), O-Lock’(q) = O-Lock(q) - {Q).

A transaction may commit only if no other transaction holds an optimistic lock
for a conflicting operation. Afterwards, the transaction’s intentions list is applied
to the permanent state, and the optimistic locks are released. When a transaction
aborts, its optimistic locks are released.

Forward validation ensures that no active transaction can be invalidated by
the commit of another transaction. Moreover, no active transaction ever sees an
inconsistent state:

LEMMA 9. For any forward validation automaton whose optimistic conflict
relation is a serial dependency relation, View(Q) is legal for all active Q.

PROOF. The argument proceeds by induction on the number of transactions
that have committed, showing that View(Q) remains legal when another
transaction P commits. By the induction hypothesis, View(P) = Perm’ =
Perm . Intent(P) is legal, as is View(Q) = Perm . Intent(Q). The validation
condition for P implies that there is no q in Intent(Q) and p in Intent(P)
such that (q, p) E OC. Because OC is a serial dependency relation, View(Q) =
Perm . Intent(Q) and View’(Q) = Perm . Intent(P) . Intent(Q) satisfy the
conditions of Lemma 6, hence View’(Q) is legal. Cl

The correctness theorem for forward validation is a direct consequence of
Lemma 9:

’ In practice, an object’s committed state would be represented by a more compact and efficient data
structure, such as an account balance.

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

Apologizing Versus Asking Permission l 107

THEOREM 10. A forward validation automaton whose optimistic conflict rela-
tion is a serial dependency relation will accept only hybrid atomic schedules.

PROOF. Recall that a schedule is hybrid atomic if the result of serializing
committed transactions in commit timestamp order is a legal history. By con-
struction, the automaton’s Perm component is exactly this serialization, and
Lemma 9 implies that each commit carries Perm from one legal history to
another. Cl

Serial dependency is a necessary as well as sufficient condition on the
automaton’s optimistic conflict relation:

THEOREM 11. Any forward validation automaton whose optimistic conflict
relation is not a serial dependency relation will accept some schedule that is not
hybrid atomic.

PROOF. Since OC is not a serial dependency relation, there exist by
Lemma 8 an operation q and legal histories h and g such that g is a false
OC-view of h for q missing exactly one operation p. Let g = gl . g2 and h =
g, . p . g,. Suppose transaction R executes gl and commits, leaving Perm = g,.
P executes p, and Q executes g, . q. Now P attempts to commit. Since gl . g2 is
an OC-view of h for q, no optimistic lock held by Q conflicts with p; hence P will
be validated. When Q commits, it is trivially validated, leaving as the final value
of Perm the illegal history g, . p . g2 . q = h . q. 0

4.3 Backward Validation

Backward validation ensures that the committing transaction has not been
invalidated by the recent commit of another transaction. Each object keeps track
of Last(q), the most recent commit timestamp for a transaction that executed
the operation q. For each active transaction Q, each object also keeps track of
First(Q, q), the logical time when Q first executed q. Here, too, validation is
governed by an optimistic conflict relation OC. An object will validate Q if and
only if Last(p) < First(Q, q) for all q in Intent(Q) and all p such that (q, p) E
OC. This condition ensures that Q has not been invalidated by a transaction
that committed since Q executed q.

Let TIMESTAMP be a totally ordered set of timestamps with minimal and
maximal elements --03 and ~0. In a backward validation automaton, the O-Lock
component is replaced by

Clock: TIMESTAMP
First: TRANS X OP -TIMESTAMP
Last: Op +TIMESTAMP.

The Clock component models a system of logical clocks, initially set to an
arbitrary value. Last(q) and First(Q, q) are initialized to --to and ~0. The
precondition for Q to execute q is unchanged. The postcondition is slightly
different: the clock is advanced and First(Q, q) is updated if necessary.

Pre: View(Q) . q is legal.
Post: Clock’ > Clock

First’(Q, q) = min(First(Q, q), Clock)

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

108 - Maurice Herlihy

For Q to commit,

Pre: For all q in Intent(Q), (q, p) E OC - First(Q, q) > Last(p).
Post: Clock’ > Clock

Perm’ = Perm . Intent(Q)
For all q in Intent(Q), Last‘(q) = Clock.

The precondition states that a transaction may commit only if no recently
committed transaction has executed a conflicting operation. Afterwards, the Last
timestamp is updated for each operation executed by that transaction.

An active transaction is defined to be valid if the precondition for its commit
is satisfied. Backward validation ensures that all valid transactions view consis-
tent states, although invalid transactions may not.

LEMMA 12. If the optimistic conflict relation is a serial dependency relation,
then View(Q) is legal for any valid Q.

PROOF. As before, we argue by induction on the number of committed
transactions. The base case is trivial, so it is enough to show that if the commit
of P does not invalidate Q, then View(Q) remains legal. If Q remains valid, there
is no q in Intent(Q) and p in Intent(P) such that (q, p) E OC. By the induc-
tion hypothesis, View(P) = Perm . Intent(P) and View(Q) = Perm . Intent(Q)
are both legal; therefore View’(Q) = Perm . Intent(P) . Intent(Q) is legal by
Lemma 6. 0

The basic correctness theorem for backward validation is a direct consequence
of Lemma 12:

THEOREM 13. Any backward validation automaton whose optimistic conflict
relation is a serial dependency relation will accept only hybrid atomic schedules.

PROOF. Perm is the serialization in commit timestamp order of the schedule
accepted by the automaton, and Lemma 12 implies that each commit carries
Perm from one legal history to another. Since the accepted schedule is serializable
in commit timestamp order, it is hybrid atomic. 0

Serial dependency is also a necessary condition for backward validation:

THEOREM 14. Any backward validation automaton whose optimistic conflict
relation is not a serial dependency relation will accept a schedule that is not hybrid
atomic.

PROOF. By the same scenario constructed for Theorem 11. 0

4.4 Discussion

The Account data type illustrates how a type-specific definition of conflict
improves validation. Under conventional schemes employing Read/Write con-
flicts, both Credit and Debit would be classified as a combination of Read and
Write operations; hence any transaction to access the account would either
invalidate or be invalidated by any concurrent transaction. Here, there are fewer
conflicts: a credit can invalidate an overdraft, and a debit can invalidate another
debit, but no other operations conflict.

It is difficult to judge whether forward or backward validation is preferable for
conflict-based validation. The run-time costs of both techniques are comparable.
ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

Apologizing Versus Asking Permission l 109

Table IV. Invocation/Invocation Conflict
Relation for Account

Credit Debit

Credit
Debit true true

An advantage of forward validation is that if all objects employ forward validation,
then no transaction can observe a nonserializable state as a result of synchroni-
zation conflicts.’ Also, asymmetric conflicts can sometimes be resolved by post-
poning rather than by denying validation. For example, if a transaction that
credited an Account discovers that an active transaction has attempted an
overdraft, the crediting transaction might choose to postpone validation until the
other has had a chance to commit. The principal drawback of forward validation
is its extreme optimism: while backward validation restarts active transactions
in favor of committed transactions, forward validation restarts active transactions
in favor of other active transactions, which themselves may never commit.

Because validation occurs after the invocations’ results are known, validation
can readily exploit information about operations’ results. In many pessimistic
schemes, a lock is acquired before invoking an operation; thus conflicts must be
defined between invocations, not between complete operations. More recently,
however, pessimistic schemes have been proposed in which a transaction requests
a lock after tentatively executing the operation [24, 441. These schemes incor-
porate a kind of “operation-level” optimism; if the lock cannot be granted, that
operation (but not the whole transaction) must be rolled back. The advantages
of exploiting result information can be illustrated by comparing the operation/
operation conflict relation for Account in Table I and the invocation/invocation
conflict relation in Table IV. Invocation locks for credit and debit must conflict,
but conflict-based validation will permit a credit to occur concurrently with a
debit (but not an overdraft), a useful distinction if most debits are expected to
be successful.

Optimistic schemes can also exploit knowledge about the order in which
transactions commit. For example, under backward validation, a transaction that
executed an overdraft will be allowed to commit before (but not after) a concur-
rent transaction that executed a conflicting credit, while pessimistic locking
would have introduced a delay.

4.5 Mixing Pessimistic and Optimistic Methods

Because hybrid atomicity is a local atomicity property, the optimistic techniques
proposed so far are compatible with hybrid atomic pessimistic schemes (such as
two-phase locking), implying that objects employing optimistic and pessimistic
techniques can be used together in a single system. This section shows that
optimistic and pessimistic techniques can also be combined within a single object.
For example, consider an Account whose balance is expected to cover all debits,
but for which concurrent debits are frequent. Optimistic techniques are well

*In a distributed system, an orphan transaction [33] whose optimistic locks have been released
prematurely by a site crash may observe nonserializable states before aborting.

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

110 l Maurice Herlihy

suited for resolving the infrequent conflicts between credits and debits, but poorly
suited for the more frequent conflicts between debits. A mixed scheme could
exploit the strengths of each method by using pessimistic techniques to prevent
“high-risk” conflicts, reserving optimistic methods to detect “low-risk” conflicts.

Mixed conflict-based validation is implemented as follows. After a transaction
executes an operation, but before it updates its intentions list, it requests a
pessimistic lock for that operation. Pessimistic locks are related by a pessimistic
conflict relation PC. If any other transaction holds a conflicting pessimistic lock,
where conflict is defined by PC, then the lock is refused, the operation is
discarded, and the caller waits and retries the operation when the lock is released.
When the lock is granted, the intentions list is updated, and the response is
returned to the caller. A transaction’s pessimistic locks are released when it
commits or aborts. When the transaction commits, validation proceeds as before.

Unlike optimistic conflict relations, pessimistic relations must be symmetric,
since the order in which transactions eventually commit is unknown when
pessimistic conflicts are detected. Define an object’s conflict relation to be the
union of its optimistic and pessimistic conflict relations. The fundamental
constraint governing an object’s optimistic and pessimistic conflict relations is
the following: the conflict relation must be a serial dependency relation. An
empty pessimistic relation yields the conflict-based validation scheme of Section
4, and an empty optimistic relation yields a type-specific two-phase locking
scheme similar to that of [24]. Numerous possibilities lie between these two
extremes; the appropriate balance between pessimism and optimism depends on
the expected frequency of each conflict.

The mixed protocol is modeled by adding the following state component to
both the forward and backward validation automata:

P-Lock: OP+ STUNS.

P-Lock(q) is the set of transactions that hold pessimistic locks for 9. Initially,
all such sets are empty. The precondition for Q to execute 9 has an additional
clause:

If (q,p) E PC or (p, q) E PC, then P-Lock(p) - {Q) = 0.

Note that lock conflicts are determined by the symmetric closure of PC. After-
wards, the transaction is granted a pessimistic lock for the operation.

P-Lock’(q) = P-Lock(q) u (PI.

A transaction’s pessimistic locks are released when it commits or aborts.
Pessimistic conflicts prevent concurrent transactions from executing conflict-

ing operations:

LEMMA 15. For a mixed (forward or backward) automaton, if Q and P are
concurrent active transactions, and q is an operation in Intent(Q), then there is
no p in Intent(P) such that (q, p) E PC.

PROOF. The precondition for Q to execute q ensures that the property holds
initially, and it prevents any other transaction from violating the property while
Q is active. Cl
ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

Apologizing Versus Asking Permission * 111

LEMMA 16. For any mixed forward validation automaton whose conflict relation
is a serial dependency relation, View(Q) is legal for all active Q.

PROOF. As before, it is enough to show that View(Q) remains legal after the
commit of a distinct transaction P. By the induction hypothesis, View(P) =
Perm . Intent(P) and View(Q) = Perm . Intent(Q) are legal. There is no q in
Intent(Q) and p in Intent(P) such that (9, p) E OC (Lemma 9) or (9, p) E PC
(Lemma 15). Because PC U OC is a serial dependency relation, View’(Q) =
Perm . Intent(P) . Intent(Q) is legal by Lemma 6. 0

LEMMA 17. For any mixed backward validation automaton whose conflict
relation is a serial dependency relation, View(Q) is legal for all valid Q.

PROOF. If P commits without invalidating Q, there is no q in Intent(Q) and
p in Intent(P) such that (4, p) E OC (Lemma 12) or (q, p) E PC (Lemma 15);
therefore View’(Q) is legal by Lemma 6. 0

The proofs of the remaining correctness and optimality results are omitted for
brevity, since they are almost identical to their analogs in the previous section.

THEOREM 18. All schedules accepted by a mixed forward or backward validation
automaton will be hybrid atomic if and only if the automaton’s conflict relation is
a serial dependency relation.

5. STATE-BASED VALIDATION

Although conflict-based validation accepts more interleavings than other opti-
mistic schemes, it will nevertheless restart certain transactions unnecessarily.
For example, one debiting transaction need not be invalidated by another if the
balance covers both debits. The optimality proofs given above imply that no
scheme, optimistic or pessimistic, can permit concurrent debits simply on the
basis of conflicts between pairs of operations. Instead, the accuracy of validation
can be enhanced only by taking objects’ states into account. Such state-based
validation may be more expensive than conflict-based validation, since it may
(at worst) amount to reexecuting part of the transaction. Nevertheless, state-
based validation may be cost effective in special cases where predefined conflicts
are too restrictive and where validation conditions can be evaluated efficiently.

5.1 Model

A state-based validation automaton has the following state components:

Perm: HISTORY
Intent: TRANS + HISTORY.

The pre- and postconditions for Q to execute q are the following:

Pre: true.
Post: Intent’(Q) = Intent(Q) . q.

The precondition states that a transaction is free to execute any operation; illegal
operations will be detected at validation. In practice, however, it would be prudent
to permit Q to execute q only if View(Q) . q is legal.

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

112 ’ Maurice Herlihy

Using backward validation, Q commits as follows:

Pre: View(Q) is legal.
Post: Perm’ = View(Q).

While using forward validation,

Pre: For all active P distinct from Q, Perm . Intent(Q) . Intent(P) is legal.
Post: Perm’ = View(Q).

These formulations reveal an important practical asymmetry between forward
and backward state-based validation: forward validation is linear in the number
of concurrent transactions, while backward validation is constant. Consequently,
we do not further consider state-based forward validation.

5.2 An Example

The cost of conflict-based validation is largely type independent, but the cost of
state-based validation depends on type-specific properties: how compactly inten-
tions can be represented and how efficiently they can be validated. The following
idealized implementation of an Account provides an “existence proof” that state-
based validation can be efficient for certain data types. Informally, the key idea
is the following. Consider a transaction whose only operation is to debit k dollars.
That transaction has “observed” that the account balance is at least k, and it can
be validated as long as that observation remains valid. Similarly, a transaction
that unsuccessfully tries to debit k dollars has observed that the account balance
is less than k. For longer transactions that execute a sequence of credits,
successful debits, and unsuccessful debits, these conditions can be encoded into
two quantities: an observed upper bound on the account balance and an observed
lower bound. These bounds are adjusted with each operation, and the transaction
can be validated as long as the final committed balance lies between them.

More precisely, an Account is modeled as an automaton with the following
components:

Bal: INT

Low: TRANS + INTEGER
High: TRANS + INTEGER
Change: TRANS + INTEGER.

Bal is the account’s permanent state, represented here as a balance. Low(Q) is
the observed lower bound on the current balance (initially zero), High(Q) is the
observed upper bound (initially a~), and Change(Q) is the transaction’s net change
to the balance (initially zero).

Account operations have the following pre- and postconditions. For Q to
execute Debit(k)/Ok(),

Pre: Bal + Change(Q) 2 k.
Post: Change’(Q) = Change(Q) - k

Low’(Q) = max(Low(Q), k - Change(Q)).

The precondition states that the debit returns successfully only if the balance
appears to cover the debit. The postcondition states that Q records its cumulative
ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

Apologizing Versus Asking Permission - 113

change and adjusts its observed lower bound. For Debit(k)/Overdraft(),

Pre: Bal + Change(Q) < k
Post: High’(Q) = min(High(Q), k - Change(Q)),

and for Credit(h)/Ok(),

Pre: true
Post: Change’(Q) = Change(Q) + lz.

Q will be validated if and only if the current committed balance lies between the
observed upper and lower bounds:

Low(Q) I Bal c High(Q).

After Q commits, its changes are applied to the balance:

Bal’ = Bal + Change(Q).

In this particular example, the run-time cost of validation is comparable to the
cost of conflict-based validation.

Reuter [36] has proposed a pessimistic concurrency control algorithm for
counters that is based on similar principles: transactions may execute concur-
rently as long as they do not invalidate one another’s observed upper and lower
bounds. Reuter’s algorithm supports a slightly different mix of operations than
ours, and it imposes additional restrictions: transactions are not allowed to
execute certain operations more than once.

5.3 Discussion

This section compares the computational complexity of optimistic and pessimistic
state-based concurrency control.

A schedule is on-line hybrid atomic if any active transaction can commit at any
time without violating hybrid atomicity. A pessimistic hybrid atomic scheduler,
by definition, accepts only on-line hybrid atomic schedules. A hybrid serialization
of a schedule is a history constructed by committing some set of active transac-
tions and serializing the result in commit order. A schedule is on-line hybrid
atomic if and only if all its hybrid serializations are legal.

THEOREM 19. In general, recognizing that a schedule is not on-line hybrid
atomic is NP-complete in the number of active transactions.

PROOF. Recognizing that H is not on-line hybrid atomic is equivalent to
recognizing that it has an illegal hybrid serialization. This problem is in NP
because it suffices to “guess” a history and to verify in polynomial time that it is
an illegal hybrid serialization of H.3 To see that the problem is NP-complete for
certain data types, let us augment the Account data type with the following
operation:

isEqual(k: Dollar) returns(bool)

3 We assume here that for any data type of practical interest, one can check the legality of a single
hybrid serialization in time polynomial in the number of active transactions. Without this assumption,
the problem become NP-hard rather than NP-complete.

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

114 - Maurice Herlihy

This operation returns true if and only if the current balance is k. Let A =
I&, . . . , i,,) be an arbitrary set of positive integers, and let H be the following
(on-line hybrid atomic) schedule:

Credit(i,)/Ok()Q1

Credit(i,)/Ok()Q,,

Deciding whether H . (isEqual(k)/Ok(false)Q) is not on-line hybrid atomic
is equivalent to deciding whether there exists A ’ C A such that the sum
of the values in A ’ is exactly k. This subset sum problem is known to be
NP-complete [15]. 0

Deciding on-line hybrid atomicity is not intractable for every data type; one
can sometimes exploit the type’s algebraic structure to reduce the number of
histories whose legality must be checked. One might also be able to derive state-
based techniques for efficiently recognizing certain subsets of the on-line hybrid
atomic schedules. Nevertheless, Theorem 19 implies that pessimistic state-
based techniques cannot fully exploit all the concurrency permitted by hybrid
atomicity.4

Optimistic state-based techniques have very different properties. A scheduling
decision that is computationally intractable for a pessimistic scheduler can be
validated after the fact in constant time. To validate Q, it suffices to check the
legality of the single history Perm . Intent(Q), a cost independent of the number
of concurrent transactions. These observations support Gawlick’s [161 empirical
claim that optimistic state-based techniques are well-suited for certain hot spots,
objects that are accessed frequently by concurrent transactions. A common
example of such an object is a nonnegative “quantity on hand” counter that can
be incremented, decremented, and read. Conflict-based techniques, whether
optimistic or pessimistic, permit too little concurrency because decrementing
operations, like debits, must conflict. State-based techniques do permit adequate
concurrency, but pessimistic techniques may be too expensive, since each trans-
action’s cost increases with the level of concurrency, which is assumed to be high.
If real conflicts are rare, optimistic state-based techniques seem to be the most
promising, since each transaction’s cost remains constant.

6. REPLICATED OBJECTS

A replicated object is a typed data object whose state is stored redundantly at
multiple locations to enhance availability. A replication method is an algorithm
for managing the object’s distributed components so that its functional behavior
is equivalent to that of a single-site object, a property known as one-copy
serializability [5]. This section describes several ways to integrate optimistic
techniques with quorum consensus replication [17, 201. We first show that
conflict-based schemes extend naturally to replicated data, imposing the same
restrictions on availability as their pessimistic counterparts. Optimistic state-
based schemes, however, impose weaker restrictions on availability than their

4 Unless, of course, P = NP.

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

Apologizing Versus Asking Permission - 115

pessimistic counterparts, implying that one can achieve a wider range of availa-
bility tradeoffs if one is willing to accept the risk that validation will fail.

6.1 Model

Replicated objects are implemented by two kinds of sites: repositories and front-
ends. Repositories provide long-term storage for the object’s state, while front-
ends carry out operations. A transaction applies an operation to a replicated
object by sending an invocation to one of the object’s front-ends. The front-end
reads data from some collection of repositories, carries out a local computation,
sends updates to some collection of repositories, and returns the response to the
calling transaction. The transaction must locate an available front-end for the
object, and the front-end must in turn locate enough available repositories to
carry out the operation. Front-ends can be replicated to an arbitrary extent,
perhaps placing one at each site, implying that the availability of the replicated
object is dominated by the availability of its repositories.

A quorum for an operation is any set of repositories whose cooperation suffices
to execute that operation. It is convenient to divide a quorum into two parts:
a front-end executing an operation reads from an initial quorum and writes to a
final quorum. (Either the initial or final quorum may be empty.) A quorum
assignment associates each operation with a set of valid initial and final quorums.
An object’s quorum assignment determines the availability of its operations; thus
the constraints governing quorum assignment are the basic constraints governing
the availability realizable by a replication method.

Quorum assignments are constrained by a quorum intersection relation: certain
initial and final quorums are required to have nonempty intersections. For
example, any quorum assignment for a replicated file [17] must ensure that each
initial Read quorum intersects each final Write quorum; otherwise it would be
impossible to guarantee that each value read is the value most recently written.
If two operations are related by the quorum intersection relation, then their
levels of availability can be traded off: if one operation’s quorums are made
smaller (rendering it more available), then the other’s quorums must be made
correspondingly larger (rendering it less available).

6.2 Conflict-Based Validation

At each repository, the operations of committed transactions are recorded in a
log, which is a sequence of entries, where an entry is the timestamped record of
an operation. For example, Table V is a schematic representation of an Account
replicated among three repositories. For readability, a “missing” entry is marked
by a blank. The account has been credited three times, although no repository
has an entry for all three.

A log is a map from a finite set of timestamps to operations. Two logs L and
M are coherent if they agree for every timestamp where they are both defined.
The merge operation U is defined on pairs of coherent logs by:

(L U M)(t) = if L(t) is defined then L(t) else M(t).

Every log corresponds to a history in the obvious way. For brevity, we sometimes
refer to a log L in place of its history; for example, “L is legal” instead of “the

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

116 - Maurice Herlihy

Rl

Table V. A Replicated Account

R2 R3

1:00 Credit ($5)/0k() LOO Credit ($5)/0k()
1:15 Credit ($lO)/Ok() 1:15 Credit ($lO)/Ok()

1:30 Credit ($15)/0k() 1:30 Credit ($15)/0k()

history represented by L is legal.” The log whose single entry is q with timestamp
t is denoted by [t + q].

A replicated forward validation automaton has the following state components.
Let REPOS be the set of repositories, and QUORUM = 2~~~03 the set of possible
quorums.

Perm: REPOS + LOG
Intent: REPOS + (TRANS + LOG)

O-Lock: REPOS + (OP + 2=9
Clock: TIMESTAMP.

Let R be a repository, Q a transaction, and p an operation. Intent(R, Q) is the
log of entries for Q recorded at R, initially none. 0-Lock(R, q) is the set of
transactions holding optimistic locks for q at R, initially none. As before, Clociz
models a system of logical clocks. A transaction’s view at R, written View(R, Q),
is Perm(R) . Intent(R, Q). If S is a set of repositories, and Q a transaction, let
Intent(S, Q) denote UREs Intent(R, Q), and similarly for View(S, Q) and Perm(S).

The automaton’s transition relation is defined using the following sets:

(1) an optimistic conflict relation OC;
(2) Initial: OP + 2q”oR”M assigns initial quorums to operations;
(3) Final: OP + ~QUORUM assigns final quorums to operations.

Initial and Final define a quorum intersection relation Q as follows: (q, p) E Q
if every initial quorum for q intersects every final quorum for p.

We have defined initial quorums and optimistic locks in terms of complete
operations, not just invocations. How can a front-end executing a Debit predict
whether it should acquire locks for a debit or an overdraft? An optimistic strategy
is to guess that the debit attempt will succeed, requesting locks for a debit. If the
balance is insufficient,, the front-end releases its locks and restarts the operation
(but not the entire transaction), guessing this time that the debit attempt will
fail. A pessimistic strategy is to acquire locks for both operations, perhaps
releasing the superfluous lock when the response becomes known. (Similar
considerations arise if an operation’s choice of initial quorums depend on its
anticipated result.)

For Q to execute operation q, there must exist an initial quorum IQ in Initial(q)
and a final quorum FQ in Final(q) such that

Pre: View(ZQ, Q) . q is legal.
Post: Clock’ > Clock

For all R in ZQ, 0-Lock’(R, q) = 0-Lock(R, q) U (Q)
For all R in FQ,

Perm’(R) = Perm(R) U Perm(ZQ)
Intent’(R, Q) = Intent(R, Q) U Intent(ZQ, Q) U [Clock + q].

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

Apologizing Versus Asking Permission - 117

A transaction may execute an operation only if it appears to be legal from the
view assembled from an initial quorum. Once the execution is complete, the clock
is advanced, the operation is appended to the transaction’s view, the view is
merged with the logs at a final quorum of repositories, and the transaction
acquires an optimistic lock for the operation at every repository in the initial
quorum.

Validation proceeds as follows. Let IQ (FQ) be the set of repositories that
participated in an initial (final) quorum for transaction Q.

Pre: For all R in FQ and q in Intent(R, Q), (p, q) E OC =+ 0-Lock(R, p) - (Q)
= 0.

Post: Clock’ > Clock
For all R in FQ, Perm’(R) = Perm(R) . Intent(R, Q)
For all R in IQ, O-Lock’(R) = O-Lock(R) - (Q).

Each repository in any of the transaction’s final quorums checks that no other
transaction holds a conflicting optimistic lock. If validation succeeds, the clock
is advanced, the transaction’s intentions are appended to the permanent state,
and all locks are released. Note that validation is performed locally at each
repository.

The following is a necessary and sufficient correctness condition: the intersec-
tion of the optimistic conflict relation OC with the quorum intersection relation
Q must be a serial dependency relation. (In practice, OC and Q would probably
be the same relation.) This requirement ensures that any conflict between two
operations will be detected at some repository in the intersection of their quorums,
causing validation to fail. This restriction on availability is identical to that
imposed by consensus locking [21], a conflict-based pessimistic replication
method.

Let RFV be a replicated forward validation automaton with C = OC fl Q. If
C is a serial dependency relation, then every schedule accepted by RFV is also
accepted by a forward validation automaton FV with optimistic conflict relation
C. Since FV accepts only hybrid atomic schedules (Theorem lo), the same is true
of RFV.

We use the following technical lemmas.

LEMMA 20. If C is an arbitrary relation between operations, the result of
merging C-closed sublogs of a particular log is itself a C-closed sublog.

LEMMA 21. Suppose RFV and FV have accepted the same schedule. If Q is
an active transaction and S a set of repositories, then View(S, Q) (in RFV) is a
C-closed subhistory of View(Q) (in FV).

PROOF. By induction on the length of the accepted schedule. The result is
immediate when both automata have accepted the empty schedule. We assume
the property holds, and show that it is preserved whenever both automata accept
an additional step.

Suppose both automata accept (4 Q), where RFV chooses initial and final
quorums IQ and FQ. If S n FQ = 0, then View’(S, Q) = View(S, Q), which
remains closed in View’(Q) = View(Q) . 9. Otherwise, View’(S, Q) = View(S, Q)
U View(lQ, 4) U [Clock + 41. View(S, Q) and View(lQ, Q) are each C-closed by

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

118 . Maurice Herlihy

the induction hypothesis, and View(lQ, Q) U [Clock --) q] is closed by construc-
tion, thus View’(S, Q) is C-closed by Lemma 20.

Suppose both automata accept (p P), for P distinct from Q, where
RFV chooses initial and final quorums IQ and FQ. If S n FQ = 0, then
View’(S, Q) = View(S, Q), which remains closed in View’(Q) = View(Q). Other-
wise, View’(S, Q) = View(S, Q) U Perm(lQ). View(S, Q) and View(lQ, P) are
each C-closed by the induction hypothesis, and Perm(lQ) is C-closed as a
prefix of View(lQ, P), thus View’(S, Q) is C-closed by Lemma 20.

Suppose both automata accept (commit P), for P distinct from Q. View’(S,
Q) = Perm(S) . Intent(S, P) . Intent(S, Q) and View’(Q) = Perm . Intent(P)
. Intent(Q) . View’(S, Q) fails to be C-closed only if Intent(S, Q) includes a q
and Intent(P) a p such that (q, p) E C and p is not in Intent(S, P), violating the
validation condition for P in RFV. Cl

Because C is a subset of the quorum intersection relation Q, the following
statements can be made:

COROLLARY 22. If Q is an active transaction and IQ is in Initial(q), then
View(IQ, Q) is a C-uiew of View(Q) for q.

THEOREM 23. If C is a serial dependency relation, then every schedule accepted
by RFV is accepted by FV.

PROOF. By induction on the length of the schedule. The result is immediate
for schedules of length zero, so we assume the result for schedules of length n
and show that any additional step accepted by RFV is accepted by FV.

Suppose RFV accepts (q Q) with initial and final quorums IQ and FQ. View(IQ,
Q) is a C-view of View(Q) for q (Lemma 21), View(lQ, Q) . q is legal (precondition
for accepting (q Q)), and C is a serial dependency relation (by assumption), thus
View(Q) . q is legal, and FV accepts (q Q).

Suppose RFV accepts (Commit Q). FV fails to accept (Commit Q) only if
Q has executed an operation q and some active P has executed p such that
(p, q) E C. If this condition holds, P in RFV has an optimistic lock for p at an
initial quorum for p, but this initial quorum for p intersects the final quorum for
q, which violates the validation condition for Q in RFV.

Since a forward validation automaton can be treated as a replicated forward
validation automaton with a single repository, the optimality proof of
Theorem 11 applies directly.

For backward validation, each repository keeps track of First(Q, q), the logical
time when Q first executed q at that repository, and Last(q), the commit
timestamp of the most recent transaction to execute q at that repository. A
transaction Q is validated if and only if, for each operation q of Q and each
operation p of P such that (q, p) E OC fl Q, Last(p) < First(Q, q) at each
repository in the transaction’s initial quorums. The automaton is correct if and
only if OC n Q is a serial dependency relation. The correctness argument is
similar to that of Theorem 23 and is omitted. 0

6.3 State-Based Validation

While conflict-based backward validation can be done at repositories, state-based
backward validation must be done at front-ends, because the state information
ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

Apologizing Versus Asking Permission l 119

Table VI. State-Based Validation: An Example

Rl R2 R3

1:00 Debit ($lO)/Over() R 1:00 Debit ($lO)/Over() R 1:00 Debit ($lO)/Over() R
1:15 Credit ($5)/0k() P

1:30 Credit ($5)/0k() Q

at any individual repository may be incomplete. For example, consider an Account
replicated among three repositories, where Credit has a quorum of one and Debit
a quorum of three (see Table VI). Operations executed by active transactions are
tagged with transaction names.

Clearly, these transactions cannot be validated in the order P, Q, and R,
because the combination of the two $5 credits would invalidate the $10 overdraft.
No individual repository, however, is guaranteed to observe all credits; thus no
validation scheme performed at the repositories can permit concurrent credits
and debits.

Instead, state-based validation must take place at front-ends. Each transac-
tion’s intentions are accumulated at a front-end. To validate the transaction, the
front-end constructs a view by merging the logs from an initial quorum for the
transaction and appending the intentions. If the updated view is legal, the
transaction is validated, and the view is sent to a final quorum for the transaction,
where it is merged with the resident logs. The volume of message traffic need for
validation can be reduced if each front-end caches earlier views, requesting only
the most recent updates.

A replicated state-based automaton has the following state components:

Perm: REPOS + LOG
Intent: TRANS + LOG
Clock: TIMESTAMP.

As in the previous section, the state transition relation is defined in terms of
initial, Final, and their induced quorum intersection relation Q.

For transaction Q to execute operation q, there must exist an initial quorum
IQ in Initial(q) and a final quorum FQ in Final(q) such that

Pre: true
Post: Clock’ > Clock

Intent’(Q) = Intent(Q) U [Clock += q].

Let IQ and FQ be initial and final quorums for the transaction. For Q to commit,

Pre: View(lQ, Q) is legal.
Post: Clock’ > Clock

For all R in FQ, Perm’(R) = Perm(R) U View(lQ, Q).

Let RSV be a replicated state-based validation automaton with quorum intersec-
tion relation C. If C is a serial dependency relation, we show that every schedule
accepted by RSV is also accepted by a state-based validation automaton SV.

LEMMA 24. Suppose RSV and SV have accepted the same schedule. If Q is an
active transaction and S a set of repositories, then Perm(S) (in RSV) is a C-closed
subhistory of Perm (in SV).

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

120 l Maurice Herlihy

PROOF. By induction on the iength of the accepted schedule. It is enough to
check that the property is preserved as transactions commit.

Suppose transaction Q is validated by both automata, where IQ (FQ) is the
union of initial (final) quorums for operations of Q in RSV. If S r) FQ = 0, then
Perm’(S) = Perm(S), which remains closed in Perm’ = Perm . Intent(Q).
Otherwise, Perm’(S) = (Perm(S) U PermU&)) + Intent(Q). Perm(S) and
Perm(IQ) are C-closed by the induction hypothesis, their merger is closed by
Lemma 20; hence Perm’(S) is closed because IQ encompasses an initial quorum
for every operation in Intent(Q). 0

COROLLARY 25. If Q is an active transaction and IQ is in Initial(q), then
View(IQ, Q) is a C-view of View(Q) for q.

THEOREM 26. If C is a serial dependency relation, then every schedule accepted
by RS V is accepted by S V.

PROOF. By induction on the length of the schedule. The result is immediate
for schedules of length zero, so we show that any additional step accepted by
RSV is accepted by SV. Because the precondition for accepting an operation step
is trivial, it suffices to show that any transaction validated by RSV is validated
by SV.

Suppose RSV validates Q with initial and final quorums IQ and FQ. We
argue by induction on the length of Intent(Q). The result is immediate if Q
executed no operations; so assume the result for intentions of length n, and let
Intent(Q) = h . q, where h has length n. Because IQ encompasses an initial
quorum for q, Corollary 25 implies that Perm(IQ) . h is a C-view of Perm . h
for q. View(lQ, Q) = Perm(IQ) . h . q is legal by assumption, Perm . h is
legal by the induction hypothesis, and C is a serial dependency relation; hence
Perm . h . q = View(Q) is legal, and SV validates Q. 0

6.4 Discussion

Replicated state-based validation provides a way to circumvent certain tradeoffs
between concurrency and availability imposed by pessimistic state-based meth-
ods. The pessimistic analog of a replicated state-based validation automaton is a
consensus scheduling automaton [21], which places the following constraints on
availability. Let Concur be any prefix-closed set of on-line hybrid atomic sched-
ules. If C is a binary relation on operations, the notions of C-closed and C-view
can be extended to schedules and subschedules in the obvious way.

Definition 27. Let G be a C-view of H for q. C is an atomic dependency
relation for Concur if G + (q Q) is in Concur implies H . (q Q) is in Concur.

The basic restriction governing quorum assignments for consensus scheduling
is the following:

THEOREM 28. If the quorum intersection relation is an atomic dependency
relation for Concur, then every schedule accepted by a consensus scheduling
automaton is in Concur. Moreover, if C is not an atomic dependency relation for
Concur, there exists a consensus scheduling automaton with C as its quorum
intersection relation that accepts a schedule not in Concur.
ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990

Apologizing Versus Asking Permission 121

Table VII. State-Based Validation:
Quorum Assignments for Five-Site

Account

Credit (0, 1) co,3 (0, 3)
Debit (5,1) (4,2) (3, 3)

Although the definitions of serial and atomic dependency are formally quite
similar, there are important differences. Every atomic dependency relation
for a data type is also a serial dependency relation, since it must ensure
hybrid atomicity even when all operations are executed serially by a single
transaction. The converse, however, is false: not all serial dependency relations
are atomic dependency relations. For example, let Hybrid(Account) be the set
of on-line hybrid atomic schedules for Account, and let C be the symmetric
closure of the serial dependency relation shown in Table I. C is not an atomic
dependency relation for Hybrid(Account). To see why, let p be the operation
Credit($Ei)/OK(), and H the following schedule:

Debit($lO)/Overdraft() R
Credit($5)/0k() Q

Let G be the subschedule of H that omits the last step. G is a C-view of H for p,
G . (p P) is on-line hybrid atomic, but H . (p P) is not, because an illegal
serialization results if the transactions commit in the order P, Q, and R.

It follows that a consensus scheduling requires initial and final Credit quorums
to intersect, while state-based validation does not. This difference affects the
availability tradeoff permitted by each technique. A state-based validation HC-
count replicated among n identical sites permits In/21 different ways to assign
quorums to operations: for each m > n/2, any m repositories constitute an initial
Debit quorum, and any n - m + 1 sites constitute a final Debit or final Credit
quorum. Quorum assignments when n = 5 are shown in Table VII, where an
entry of the form (i, j) indicates that the operation has initial (final) quorums
consisting of any i (j) repositories. By contrast, the corresponding (pessimistic)
consensus scheduling automaton permits only one quorum assignment: all initial
and final quorums require a majority of repositories. In short, after-the-fact
conflict detection places fewer constraints on availability than dynamic conflict
avoidance.

7. CONCLUSIONS

We have suggested two reasons why conventional optimistic techniques seem
poorly suited for decentralized distributed systems. First, such techniques are
typically designed for database applications in which most concurrent operations
are reads, an implausible assumption for many nondatabase applications. Second,
such techniques are typically monolithic, applying to all the data encompassed
within a system, an undesirable property in an administratively decentralized
distributed system. This paper has proposed new techniques to address these
limitations:

(1) Conflict-based validation systematically exploits type-specific properties
to provide more effective validation than conventional techniques employing a

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

122 - Maurice Herlihy

simple model of read/write conflicts. The problem of identifying a correct and
minimal set of conflicts for an object is shown to be equivalent to the algebraic
problem of identifying a minimal serial dependency relation for the data type.

(2) The optimistic techniques proposed here are modular, permitting individ-
ual objects to choose independently from optimistic, pessimistic, or mixed tech-
niques. Optimistic techniques can be used to resolve “low-risk” conflicts, while
standard pessimistic techniques can be used to resolve “high-risk” conflicts.

(3) Besides permitting more accurate validation, the notion of serial depen-
dency also provides an “upper bound” on the concurrency realizable by conflict-
based validation. An application that needs additional concurrency must use a
validation technique that takes the object’s state into account. State-based
validation is a general technique that can validate any interleaving permitted by
a pessimistic method, although its run-time cost is type dependent.

(4) State-based validation substantially reduces the algorithmic complexity of
achieving high levels of concurrency. Pessimistic scheduling decisions that are
NP-complete in the number of concurrent transactions can be validated after
the fact in constant time.

(5) Conflict-based validation can be extended to replicated objects in a
straightforward way, placing the same restrictions on availability as comparable
pessimistic techniques. State-based validation, however, places fewer constraints
on availability than comparable pessimistic techniques.

These results suggest that optimistic concurrency control may yet have a place
in general-purpose distributed systems.

ACKNOWLEDGMENTS

I am grateful to Dean Daniels, Dan Duchamp, Ellen Siegel, Doug Tygar, Bill
Weihl, and the referees for their careful readings of earlier drafts of this paper.

REFERENCES

1. AGRAWAL, R. Concurrency control and recovery in multiprocessor database machines: Design
and performance evaluation. Ph.D. thesis, University of Wisconsin, Madison, 1983.

2. AGRAWAL, D., BERNSTEIN, A. J., GUPTA, P., AND SENGUPTA, S. Distributed optimistic concur-
rency control with reduced rollback. Distributed Syst. 2, 1 (1987).

3. AGRAWAL, R., CAREY, M. J., AND LIVNY, M. Models for studying concurrency control perfor-
mance: Alternatives and implications. In Proceedings of the International Conference on Manuge-
ment of Data (Austin, Tex., May 1985). ACM, New York, 1985, pp. 108-121.

4. BADAL, D. Z. Concurrency control overhead or closer look at blocking vs. non-blocking concur-
rency control mechanisms. In Proceedings of the 5th Berkeley Workshop, 1981, pp. 55-103.

5. BERNSTEIN, P. A., AND GOODMAN, N. The failure and recovery problem for replicated data-
bases. In Proceedings of the 2nd Annual Symposium on Principles of Distributed Computing, 1983.

6. BERNSTEIN, P. A., GOODMAN, N., AND LAI, M. Y. Two-part proof schema for database
concurrency control. In Proceedings of the 5th Berkeley Workshop on Distributed Data Manage-
ment and Computer Networks, 1981.

7. BORAL, H., AND GOLD, I. Towards a self-adapting centralized concurrency control algorithm.
In SZGMOD 84. ACM, New York, 1984, pp. 18-31.

8. CAREY, M. Modeling and evaluation of database concurrency control algorithms. Ph.D. disser-
tation, University of California, Berkeley, 1983.

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

Apologizing Versus Asking Permission * 123

9. CERI, S., AND OWICKI, S. On the use of optimistic methods for concurrency control in distributed
databases. In Proceedings of the 6th Berkeley Workshop, of the 1982, pp. 117-130.

10. CHAN, A., Fox, S., LIN, W. T., NORI, A., AND RIES, D. The implementation of an integrated
concurrency control and recovery scheme. In Proceedings of the 2982 SIGMOD Conference. ACM,
New York, 1982.

11. DUBOURDIEU, D. J. Implementation of distributed transactions. In Proceedings of the I982
Berkeley Workshop on Distributed Data Management and Computer Networks, 1982, pp. 81-94.

12. DWORK, C., AND SKEEN, M. D. The inherent cost of nonblocking commitment. In Proceedings
of the 2nd Annual Symposium on Principles of Distributed Computing (Aug. 1983). ACM, New
York, 1983, pp. l-11.

13. ESWARAN, K. P., GRAY, J. N., LORIE, R. A., AND TRAIGER, I. L. The notion of consistency and
predicate locks in a database system. Commun. ACM 19, 11 (Nov. 19761, 624-633.

14. FRANASZEK, P., AND ROBINSON, J. T. Limitations of concurrency in transaction processing.
ACM Trans. Database Syst. 10, 1 (March 1985), l-28.

15. GAREY, M. R., AND JOHNSON, D. S. Computers and Intractability, A Guide to the Theory of NP-
Completeness. Freeman, San Francisco, 1979.

16. GAWLICK, D. Processing “not spots” in high performance systems. In Proceedings COMPCON
‘85, 1985.

17. GIFFORD, D. K. Weighted voting for replicated data. In Proceedings of the 7th ACM Symposium
on Operating Systems Principles (Dec. 1979). ACM, New York, 1979.

18. GRAY, J. Notes on database operating systems. Lecture Notes in Computer Science 60. Springer-
Verlag, Berlin, 1978, pp. 393-481.

19. HARDER, T. Observations on optimistic concurrency control schemes. Znf. Syst. 9 (June 1984),
111-120.

20. HERLIHY, M. A quorum-consensus replication method for abstract data types. ACM Trans.
Comput. Syst. 4, 1 (Feb. 1986), 32-53.

21. HERLIHY, M. P. Availability vs. concurrency: Atomicity mechanisms for replicated data. ACM
Trans. Comput. Syst. 4, 3 (Aug. 1987), 249-274.

22. HERLIHY, M. P. Extending multiversion timestamping protocols to exploit type information.
IEEE Trans. Comput. C-35,4 (April 1987), 443-449.

23. HERLIHY, M. P., LYNCH, N. A., MERRITT, M., AND WEIHL, W. E. On the correctness of orphan
elimination algorithms. In Proceedings of the 27th Symposium on Fault-Tolerant Computer
Systems (FTCS) (July 1987).

24. HERLIHY, M. P., AND WEIHL, W. E. Hybrid concurrency control for abstract data types. In
Proceedings of the 7th ACM-SZGMOD-SZGACT Symposium on Principles of Database Systems
(PODS) (March 1988), pp. 201-210.

25. JACOBSON, D. M. A protocol for optimistic transactions on abstract data types. Tech. Rep. TR
83-12-04, Department of Computer Science, University of Washington, Seattle, 1984.

26. KORTH, H. F. Locking primitives in a database system. J. ACM 30, 1 (Jan. 1983), 55-79.
27. KUNG, H. T., AND ROBINSON, J. T. On optimistic methods for concurrency control. ACM

Trans. Database Syst. 6, 2 (June 1981), 213-226.
28. LAMPORT, L. Time, clocks, and the ordering of events in a distributed system. Commun. ACM

21,7 (July 1978), 558-565.
29. LAUSEN, G. Concurrency control in data base systems: A step towards the integration of

optimistic methods and locking. In Proceedings of ACM ‘82. ACM, New York, 1982.
30. LAUSEN, G. Formal aspects of optimistic concurrency control in a multiversion data base

system. Inform. Syst. 8, 4 (1983), 291-301.
31. MENASCE, D. A., AND NAKANISHI, N. Optimistic versus pessimistic concurrency control mech-

anisms in data base management systems. Inform. Syst. 7, 1 (1982), 13-27.
32. MOSS, J. E. B. Nested transactions: An approach to reliable distributed computing. Tech. Rep.

MIT/LCS/TR-260, Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, April 1981.

33. PAPADIMITRIOU, C. H. The serializability of concurrent database updates. J. ACM 26, 4 (Oct.
1979), 631-653.

34. REED, D. I’. Implementing atomic actions on decentralized data. ACM Trans. Comput. Syst. 1,
1 (Feb. 1983), 3-23.

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990.

124 l Maurice Herlihy

35. REIMER, M. Solving the phantom problem by predictive optimistic concurrency control. In
Proceedings of the 9th IFIP Symposium on Very Large Data Bases (1983).

36. REUTER, A. Concurrency on high-traffic data elements. In ACM Symposium on Principles of
Database Systems. ACM, New York, 1982, pp. 83-92.

37. SCHWARZ, P. M., AND SPECTOR, Z. Synchronizing shared abstract types. ACM Trans. Comput.
Syst. 2, 3 (Aug. 1984), 223-250.

38. SHASHA, D., AND GOODMAN, N. Concurrent search structure algorithms. ACM Tram. Database
Syst. 13, 1 (March 1988), 53-90.

39. SINHA, M., NANDIKAR, P. D., AND MEHNDIRATTA, S. L. Timestamp-based certification for
transactions in distributed database systems. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (Austin, Tex., May 1985). ACM, New York, 1985, pp. 402-
413.

40. TAY, Y. C., GOODMAN, N., AND SURI, R. Performance evaluation of locking in databases:
A survey. Tech. Rep. TR-17-84, Harvard Aiken Laboratory, Cambridge, Mass., 1984.

41. THOMAS, R. H. A majority consensus approach to concurrency control for multiple copy
databases. ACM Trans. Database Syst. 4,2 (June, 1979), 180-209.

42. WEIHL, W. E. Commutativity-based concurrency control for abstract data types. In Proceedings
of the 21st Annual Hawaii International Conference on System Sciences (Jan. 1988), pp. 205-214.

43. WEIHL, W. E. Local atomicity properties: Modular concurrency control for abstract data types.
ACM Trans. Program. Lang. Syst. 11, 2 (April 1989), 249-282.

44. WEIHL, W. E. Specification and implementation of atomic data types. Tech. Rep. TR-314,
M.I.T. Lab Computer Science, Cambridge, Mar. 1984.

Received October 1987; revised April and October 1988; accepted August 1988

ACM Transactions on Database Systems, Vol. 15, No. 1, March 1990

