
Discovering All Most Specific Sentences

DIMITRIOS GUNOPULOS
Computer Science and Engineering Department, University of California,
Riverside
RONI KHARDON
EECS Department, Tufts University, Medford, MA
HEIKKI MANNILA
Department of Computer Science, University of Helsinki, Helsinki, Finland
SANJEEV SALUJA
LSI Logic, Milpitas, CA
HANNU TOIVONEN
Department of Computer Science, University of Helsinki, Helsinki, Finland
and
RAM SEWAK SHARMA
Computer Science and Engineering Department, University of California,
Riverside

Data mining can be viewed, in many instances, as the task of computing a representation of a theory
of a model or a database, in particular by finding a set of maximally specific sentences satisfying
some property. We prove some hardness results that rule out simple approaches to solving the
problem.

The a priori algorithm is an algorithm that has been successfully applied to many instances
of the problem. We analyze this algorithm, and prove that is optimal when the maximally specific
sentences are “small”. We also point out its limitations.

The work of D. Gunopulos was partially supported by National Science Foundation (NSF) CAREER
Award 9984729, NSF grants IIS-9907477 and ITR 0220148, and the Department of Defense (DoD).
The reseach of R. Khardon was supported by Office of Naval Research (ONR) grant N00014-95-1-
0550 and ARO grant DAAL03-92-G-0115.
Authors’ addresses: D. Gunopulos and R. Sewak Sharma, Computer Science and Engineering
Department, University of California, Riverside, Riverside, CA 92507; email: {dg;rssharma}@cs.
ucr.edu; R. Khardon, EECS Department, Tufts University, Medford, MA 02155, email: roni@
eecs.tufts.edu; H. Mannila, HIIT Basic Research Unit, Department of Computer Science, Uni-
versity of Helsinki, Helsinki; Finland; email: Heikki.Mannila@cs.helsinki.fi; S. Saluja, LSI Logic,
MS E 192, 1551 McCarthy Blvd., Milpitas, CA 95035; email: sanjeev@lsil.com; H. Toivonen, De-
partment of Computer Science, University of Helsinki, Helsinki, Finland; email: Hannu.Toivonen@
ca.helsinki.fi.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2003 ACM 0362-5915/03/0600-0140 $5.00

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003, Pages 140–174.

Discovering All Most Specific Sentences • 141

We then present a new algorithm, the Dualize and Advance algorithm, and prove worst-case
complexity bounds that are favorable in the general case. Our results use the concept of hypergraph
transversals. Our analysis shows that the a priori algorithm can solve the problem of enumerating
the transversals of a hypergraph, improving on previously known results in a special case. On the
other hand, using results for the general case of the hypergraph transversal enumeration problem,
we can show that the Dualize and Advance algorithm has worst-case running time that is sub-
exponential to the output size (i.e., the number of maximally specific sentences).

We further show that the problem of finding maximally specific sentences is closely related to
the problem of exact learning with membership queries studied in computational learning theory.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—search process

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Data mining, association rules, maximal frequent sets, learning
with membership queries, minimal keys

1. INTRODUCTION

Data mining has recently emerged as an active area of investigation and appli-
cations [Fayyad et al. 1996]. The goal of data mining can briefly be stated as “de-
velopment of efficient algorithms for finding useful high-level knowledge from
large amounts of data.” The area combines methods and tools from databases,
machine learning, and statistics.

A large part of current research in data mining can be viewed as address-
ing instances of the following problem: given a language, an interestingness
criterion, and a database, find all sentences from the language that are true
in the database and satisfy the interestingness criterion. Typically, this crite-
rion is a frequency criterion that states that there are sufficiently many in-
stances in the database satisfying the sentence. Examples of scenarios where
this formulation works include the discovery of frequent sets, association rules,
strong rules, episodes, and keys. In this article, we show how the problems
of finding frequent sets in relations and of finding minimal keys in databases
can be reduced to this formulation. Using this theory extraction formulation
[Mannila 1995, 1996; Mannila and Toivonen 1997], one can formulate general
results about the complexity of algorithms for these data mining tasks.

The specific problem we are considering is the complexity of computing the
most specific interesting sentences. This problem has known lower bound re-
sults, however existing algorithms have running times significantly worse than
the best known lower-bounds. We analyze the running time of one of the most
successful data mining algorithms, a priori, that has been applied to that prob-
lem. We then give a new algorithm, Dualize and Advance, that is designed to
find the most specific sentences only.

Several variations of the a priori algorithm have been successfully applied
to problems of data mining [Agrawal and Srikant 1994; Agrawal et al. 1996;
Mannila and Toivonen 1997; Mannila et al. 1994, 1995]. The a priori algorithm
computes the interesting sentences by walking up in the lattice of sentences,
one level at a time. Thus, it operates in a bottom-up fashion: first, the truth
and frequency of the simplest, most general, sentences from the language are

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

142 • D. Gunopulos et al.

evaluated against the database, and then the process continues for more spe-
cific sentences, one level at a time. To concentrate on its operation, we refer
to a priori algorithm as the level-wise algorithm. We show that as long as the
number of levels in the search is small this algorithm is indeed optimal thus
explaining its empirical success and shedding some light on when and why it is
useful. Furthermore, we show that this algorithm can be used to efficiently solve
a special case of the hypergraph transversal problem, improving on previous
theoretical results.

On the other hand, the analysis indicates that when the number of levels in
the search is large, the number of sentences of interest may become too large to
handle. An alternative method is to try to search for the most specific sentences
from the language that satisfy the requirements: these sentences determine
the theory uniquely. The number of interesting sentences can be exponential
to the number of most specific interesting sentences. It is therefore likely that
an algorithm that computes the most specific sentences can offer significant
improvements in computation time.

For this purpose, we present the Dualize and Advance algorithm (first intro-
duced in Gunopulos et al. [1997]) for locating the most specific true sentences
satisfying the frequency criterion. We prove upper bounds on the complexity of
the algorithm for the general case, showing that it comes close to lower bounds
for the problem. Our basic algorithm is deterministic and is sufficient to provide
the worst case complexity bounds. We further apply a randomized heuristic
in the algorithm that can improve its running time in practice considerably.
While the algorithm is randomized, it is complete, in the sense that it returns
all most specific sentences, and the worst case bounds hold for it as well.

Briefly, the method works as follows. We apply a greedy search to locate some
maximal elements from the language. We then use the simple fact that if some
most specific sentences are known, then every unknown one must contain a
minimal transversal of the complements of the known sentences. The algorithm
alternates between finding most specific true sentences and finding minimal
transversals of the complements of the already discovered most specific true
sentences, until no new most specific true sentences can be found.

We show that the running time of the algorithm is sub-exponential to the
size of the output. This result also shows that the complexity of the problem of
computing the most specific interesting sentences is lower than the complex-
ity of finding all the interesting sentences, thus providing theoretical support
for the experimental evidence that recent heuristic algorithms [Bayardo 1998;
Burdick et al. 2001; Agrawal et al. 2000; Gouda and Zaki 2001], that have been
designed to find maximal frequent sets directly, can significantly outperform a
priori.

To demonstrate the utility of the algorithm, we apply it to the problem of com-
puting of all minimal keys, or functional dependencies, in a relational database
in addition to the problem of computing of all maximal frequent sets of a {0, 1}
matrix for a given threshold. The computation of maximal frequent sets is a
fundamental data mining problem which is required in discovering association
rules [Agrawal et al. 1993, 1996; Agrawal and Srikant 1994]. Computation of
minimal keys is important for semantic query optimization, which leads to fast

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

Discovering All Most Specific Sentences • 143

query processing in database systems [Mannila and Räihä 1994; Knobbe and
Adriaans 1995; Bell and Brockhausen 1995; Schlimmer 1993]. Here, we refer
to possible keys that exist in a specific instance of a relational database and
are not designed as such. In both cases, we first prove some hardness results of
related problems ruling out simple algorithmic approaches. We then show that
the algorithm can be adapted to solve these problems.

The rest of this article is organized as follows: In Section 2, we present a
model of data mining that formally defines the theory extraction problem. We
also show how this model can be used to describe the problems of computing
frequent sets and minimal keys. We also show the correspondence between this
problem and problems studied in learning theory. In Section 3, we give hard-
ness results that show that these two specific problems are difficult to solve.
In Section 4, we formally define our computational model. Section 5 presents
and analyses the level-wise algorithm. Section 6 presents the Dualize and
Advance algorithm and analyses its complexity. Section 7 describes how the
Dualize and Advance algorithm can be adapted to compute maximal frequent
sets and minimal keys. We also apply this algorithm to the problem of learn-
ing Boolean monotone functions using membership queries. Section 8 presents
an incremental algorithm for computing the transversals of a hypergraph.
Section 9 presents related work. In Section 10, we discuss the scope of our
algorithms and point out some directions of further work. Preliminary versions
of the work presented here appeared previously in [Gunopulos et al. 1997a,
1997b].

2. DATA MINING AS THEORY EXTRACTION

The model of knowledge discovery that we consider is the following [Mannila
1995, 1996; Mannila and Toivonen 1997]. Given a database r, a language L
for expressing properties or defining subgroups of the data, and a frequency
criterion q for evaluating whether a sentence ϕ ∈ L defines a sufficiently large
subclass of r. The computational task is to find the theory of r with respect to
L and q, that is, the set Th(L, r, q) = {ϕ ∈ L | q(r, ϕ) is true}.

We are not specifying any satisfaction relation for the sentences of L in r:
this task is taken care of by the frequency criterion q. For some applications,
q(r, ϕ) could mean that ϕ is true or almost true in r, or that ϕ defines (in some
way) a sufficiently large or otherwise interesting subgroup of r. We therefore
abstract this away by saying that ϕ is interesting when q(r, ϕ) = 1, and discuss
the problem of mining for interesting sentences.

Obviously, ifL is infinite and q(r, ϕ) is satisfied for infinitely many sentences,
(an explicit representation of) all of Th(L, r, q) cannot be computed feasibly.
Therefore, for the above formulation to make sense, the language L has to be
defined carefully. In caseL is infinite, there are alternative ways of meaningfully
defining feasible computations in terms of dynamic output size, but we do not
concern ourselves with these scenarios. In this article, we assume that L is
finite.

As already considered by Mitchell [1982], we use a specialization/
generalization relation between sentences. (See, e.g., Langley [1995] for an

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

144 • D. Gunopulos et al.

overview of approaches to related problems.) A specialization relation is a
partial order ¹ on the sentences in L. We say that ϕ is more general than θ , if
ϕ ¹ θ ; we also say that θ is more specific than ϕ. The relation ¹ is a monotone
specialization relation with respect to q if the quality predicate q is monotone
with respect to ¹, that is, for all r and ϕ we have the following: if q(r, ϕ) and
ϕ′ ¹ ϕ, then q(r, ϕ′). In other words, if a sentence ϕ is interesting based on
the quality predicate q, then also all less special (i.e., more general) sentences
ϕ′ ¹ ϕ are interesting. We write σ ≺ τ if σ ¹ τ and not τ ¹ σ .

Denote by rank(ψ) the rank of a sentence ψ ∈ L, defined as follows: If for no
θ ∈ Lwe have θ ¹ ψ , then rank(ψ) = 0; otherwise, rank(ψ) = 1+max{rank(θ) |
θ ¹ ψ}. For T ⊂ L, let Ti denote the set of the sentences of L with rank i.

Typically, the relation ¹ is (a restriction of) the semantic implication rela-
tion: if σ ¹ τ , then τ |= σ , that is, for all databases r, if r |= τ , then r |= σ .
Note that if the interestingness predicate q is defined in terms of statistical
significance or something similar, then the semantic implication relation is not
a monotone specialization relation with respect to q: a more specific statement
can be interesting, even when a general statement is not.

Given a specialization relation ¹, the set Th(L, r, q) can be represented by
enumerating only its maximal elements, that is, the set

MTh(L, r, q) = {φ ∈ Th(L, r, q) | for no θ ∈ Th(L, r, q) φ ≺ θ}.
Here again, one should be careful when working with infinite lattices. We

assume throughout the article that the maximal elements exist and are well
defined, and similarly for the minimal elements outside the theory Th(L, r, q).
This definitely holds in finite lattices, and can be useful in more general cases
as well. The problem considered in this article is therefore the following:

Problem 1 [MaxTh]. Given L, r, and q, find MTh(L, r, q).

It is easy to show ([Mannila and Toivonen 1997]) that finding frequent sets,
episodes, keys, or inclusion dependencies are instances of the problem MaxTh.
Especially for the problem of finding keys (or, more generally, functional depen-
dencies) from relation instances the current framework has lots of connections
to previous work.

2.1 Association Rules and Frequent Sets

To facilitate the presentation, we next discuss the problem of computing fre-
quent sets that will serve to illustrate ideas in the next sections.

Given a 0/1 relation r with attributes R, an association rule is an expression
X ⇒ A, where X ⊆ R and A ∈ R. The intuitive meaning of such a rule is that,
if a row has 1 in all attributes of X , then it tends also to have 1 in column A.
Typically, in data mining, association rules are searched so that the set of rows
having 1 in the attributes in X ∪ A is large enough; if we were to draw random
rows from r, it is required that such rows will be drawn with frequency at least
σ , for some fixed σ . The actual frequency is called the support of the rule. The
ratio of rows including 1 in X ∪ A to those including 1 in the set X is called the
confidence of the rule.

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

Discovering All Most Specific Sentences • 145

Given the above description, a major subtask that is usually solved first is
that of computing frequent sets. Namely, given a 0/1 relation r, compute all
subsets Z such that the frequency of rows having 1 in all attributes of Z is
larger than σ . Clearly, this is an instance of the problem discussed above; L is
the set of subsets of R, and q corresponds to having frequency higher than σ .
The set Th(L, r, q) corresponds to the set of frequent sets, and similarly we can
talk of maximal frequent sets. This leads to the definition of the first specific
instance of the problem we are considering:

Problem 2 (Finding Maximal Frequent Sets). Given a 0/1 relation, and a
threshold σ compute all maximal frequent sets.

Once the frequent sets are found, the problem of computing association rules
from them is straightforward. For each frequent set Z , and for each A ∈ Z , one
can test the confidence of the rule Z \A⇒ A.

2.2 Finding Minimal Keys in Databases

In this section, we discuss the problem of finding all minimal keys of a database.
We begin by defining what we mean by keys and describe an application in
which it is useful to find all minimal keys. We view a relational database r as a
matrix whose columns correspond to fields and rows correspond to records.
Let R denote the set of all fields (i.e., columns of the matrix). Then, a set
X ⊆ R is a key of r, if no two rows of r agree on every attribute in X . A
minimal key is a key such that no proper subset of it is a key. Note that every
key must contain some minimal key and conversely every superset of a min-
imal key is a key. Therefore, the collection of all minimal keys of a database
is a succinct representation of the set of all keys of the database. Note the
distinction between our definition of key and the more standard definition of
(primary) key of a database [Ullman 1988]. A (primary) key is a key (with
respect to our definition) of the database throughout the life of the database
and is maintained so by the database manager. However, an arbitrary key, by
our definition, may be so at current state of the database and may not exist
to be so after an update of the database. The problem we consider here is the
following:

Problem 3 (Finding Keys). Given a relational database, compute all mini-
mal keys that exist currently.

As has been discussed in Bell [2003], the knowledge of all minimal keys
existing currently in the database can help in semantic query optimization that
is, in the process by which a database manager substitutes a computationally
expensive query by a semantically equivalent query that can be processed much
faster.

2.3 Relation to Learning Theory

We now show that the problem discussed above is very closely related to prob-
lems in learning theory. One of the scenarios discussed in learning theory is

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

146 • D. Gunopulos et al.

as follows: a Boolean function f : {0, 1}n → {0, 1} is fixed by some adversary
(modeling a concept in the world). A learner is given access to some oracle
giving it partial information on the function f . The task of the learner is to find
a representation for a Boolean function that is identical (or approximates) f .
In particular, we consider the model of exact learning with membership queries
[Angluin 1988].

A membership query oracle MQ(f) allows the learner to ask for the value of
f on a certain point. That is, given x ∈ {0, 1}n, MQ(f) returns the value f (x).
The learning algorithm is given access to MQ(f), and the algorithm is required
to produce an expression that computes f exactly.

Definition 4. An algorithm is an exact learning algorithm with time com-
plexity T (), query complexity Q(), and representation class H, for a class of
functions F , if for all f ∈ F , when given access to MQ(f), the algorithm runs
in time T (), asks MQ on at most Q() points and then outputs a representation
h ∈ H for a Boolean function such that h is equivalent to f .

In the above definition, we omitted the parameters of the functions T () and
Q(). Normally, the algorithm is allowed time polynomial in the number of vari-
ables n, and the size of a representation for f in some representation language.

In particular, we next consider the problem of learning monotone functions
with membership queries. A function f is monotone if f (x) = 1, and y ≥
x implies f (y) = 1, where ≤ is the normal partial order on {0, 1}n. We also
consider the standard CNF and DNF representations for such functions. A
term is a conjunction of literals, for example, x1x2 is a term. A DNF expression
is a disjunction of terms, for example, x1x2∨x2x3 is a DNF expression. Similarly,
a CNF expression is a conjunction of disjunctions, for example, (x1∨ x2)(x2∨ x3)
is a CNF expression. It is well known that monotone functions have unique
minimum size representations in both DNF and CNF, that include all minimal
terms or clauses respectively of the function. (A minimal term, called a prime
implicant, is a term that implies f and such that every subset of it does not
imply f .)

In the scenario that follows, the learning algorithm is allowed time relative
to the number of attributes n, and the sum of sizes of its DNF and CNF rep-
resentations. That is, we consider T (m), and Q(m) where m = n+ |DNF (f)| +
|CNF (f)|.

The correspondence between learning monotone functions and computing
interesting sets is thus straightforward. The elements of {0, 1}n correspond to
subsets of the variables so that a value 1 implies that the corresponding at-
tribute is in the set. The value of the function on an assignment corresponds to
the negation of the interestingness relation q. Since q is monotone, the function
is monotone. Membership queries now naturally correspond to Is-interesting
queries. We therefore get:

THEOREM 5. The problem of computing interesting sentences for problems
representable as sets is equivalent to the problem of learning monotone functions
with membership queries, with representation class CNF (or DNF).

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

Discovering All Most Specific Sentences • 147

3. HARDNESS RESULTS ON THE COMPUTATION OF FREQUENT SETS
AND MINIMAL KEYS

Computing frequent sets or maximal frequent sets is an enumeration problem.
The algorithm must enumerate all sets and in the end provide proof that no
more sets exist. The results in this section indicate that it is difficult not only
to find all maximal frequent sets and minimal keys, but it is also difficult to
verify that all maximal sets or keys have already been found. The hardness
results we present also show that it is difficult to to find the number of frequent
sets or keys. As a result, algorithms that find frequent sets or keys are likely
to be worst case exponential. Consequently, we use an output-size sensitive
complexity model to evaluate the performance of the algorithms.

3.1 Hardness Results on the Computation of Frequent Sets

We first consider the problem of counting the number of σ -frequent sets.

THEOREM 6. The problem of finding the number of σ -frequent sets of a given
0− 1 relation r and a threshold σ ∈ [0, 1] is #P-hard.

PROOF. We show a polynomial time reduction from the problem of comput-
ing the number of satisfying assignments of a monotone-2CNF formula to the
problem of computing the number of frequent sets, that has a simple mapping
between the number of solutions. This suffices, since the problem of computing
the number of satisfying assignment of monotone-2CNF formulas is known to
be #P-hard [Valiant 1979].

A monotone-2CNF formula is a Boolean formula in conjunctive normal form
in which every clause has at most two literals and every literal is unnegated.
Given a monotone-2CNF formula f with m clauses and n variables, construct
an m × n {0, 1} matrix M as follows: M j ,i is 0 if the ith variable is present
in the j th clause and 1 otherwise. An assignment of variables falsifies f , iff
the set of columns corresponding to variables with value 1 forms a frequent
set of M with threshold 1

m . Therefore, the number of frequent sets of M with
threshold 1

m is (2n—the number of satisfying assignments of f). This completes
the reduction.

Note that the above result still does not rule out the possibility of an output
polynomial algorithm for computing all maximal frequent sets, since in contrast
with counting, for enumeration one is given time polynomial in the size of the
output. The next theorem rules out the possibility of an efficient algorithm that
outputs the maximal frequent sets in the decreasing order of their size.

THEOREM 7. The problem of deciding if there is a maximal σ -frequent set
with at least t attributes for a given 0− 1 relation r, and a threshold σ ∈ [0, 1],
is NP-complete.

PROOF. It is easily seen that the problem is in NP. To show the NP-hardness,
we show a polynomial time reduction from the Balanced Bipartite Clique prob-
lem to the above problem. Since the Balanced Bipartite Clique is known to be
NP-hard, the result will follow [Garey and Johnson 1979].

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

148 • D. Gunopulos et al.

Given a bipartite graph G = (V1, V2, E), a balanced clique of size k is a
complete bipartite graph with exactly k vertices from each of V1 and V2. The
Balanced Bipartite Clique problem is, given a bipartite graph G and a positive
integer k, check if there exists a balanced bipartite clique of size k.

Given a bipartite graph G and a positive integer k, let n1 and n2 be the
number of vertices in V1 and V2 respectively. Define an n1 × n2 {0, 1}matrix M
as follows. Mi, j is 1 iff ith vertex of V1 is connected to the j th of V2. Then, there
is a bipartite clique of size k in G iff there is a frequent set of M of size at least
k with threshold k

n1
.

3.2 Hardness Results for Computing Minimal Keys

THEOREM 8. The problem of finding the number of all keys of a given
database is #P-hard.

PROOF. We prove the result in two steps. First, we show a polynomial-time
reduction from the problem of computing the number of satisfying assignments
of a monotone-2CNF formula to the problem of computing the number of set-
covers of a family of sets. Then, we show a polynomial time reduction from the
problem of computing the number of set covers of family of sets to the problem
of computing the number of keys of a database. Since the reductions maintain
the same number of solutions, and the problem of computing the number of
satisfying assignments of a monotone-2CNF formula is #P-hard [Valiant 1979],
this proves the result.

Recall that, given a family of sets each of which is subset of a finite universe
set, a set cover is a collection of sets from the family such that every element of
the universe is in at least one of the sets in the collection. Given a monotone-
2CNF formula with m clauses and n variables, construct a family of n sets
S1, . . . , Sn each of which is a subset of the set {1, 2, . . . , m}, as follows. The
set Si contains j iff ith variable is present in j th clause. It is easily seen that
a satisfying assignment of the monotone-2CNF formula corresponds to a unique
set cover of the family of sets and vice-versa, by picking Si in the set cover iff the
ith variable has value 1 in the assignment. Therefore, the number of satisfying
assignments of the monotone-2CNF formula is exactly the number of set covers
of the family of sets. This completes the first reduction.

We now discuss the second reduction. Given a family of sets S1, . . . , Sn each
of which is a subset of the universe set {1, 2, . . . , m}, construct a relational
database as follows: The database has n fields f1, . . . , fn and m + 1 records
r0, . . . , rm. The record r0 will have value 0 in every field. For 1 ≤ j ≤ n and
1 ≤ i ≤ m, the field f j of record ri will have value i if element i is present in
the set Sj ; otherwise, it will have value 0. Note that a collection Si1 , Si2 , . . . , Sic
(for some c) of sets from the family will be a set cover iff the collection of fields
fi1 , . . . , fic is a key of the database. Therefore, the number of set covers of the
given family of sets is the same as the number of keys of the database. This
completes the second reduction and the proof of the theorem.

The following theorem shows that counting the number of minimal keys is
not easier than counting the number of all keys.

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

Discovering All Most Specific Sentences • 149

THEOREM 9. The problem of finding the number of minimal keys of a given
database is #P-hard.

PROOF. Once again, we show two polynomial time reductions that main-
tain the same number of solutions. The first reduction is from the problem of
computing the number of minimal vertex covers of a graph to the problem of
computing the number of minimal set covers of a family of sets. The second
reduction is from the problem of computing the number of minimal set covers
of a family of sets to the problem of computing the number of minimal keys of
the database. Since the problem of computing the number of minimal vertex
covers of a graph is known to be #P hard [Valiant 1979], this implies the result.

Recall that a vertex cover of a graph G is a set of vertices of G such that
every edge of G is incident on at least one vertex in the set. Given a graph G
with n vertices and m edges, define a family of sets S1, . . . , Sn each of which
is a subset of the set {1, 2, . . . , m}, as follows. The set Si has element j iff the
j th edge of the graph is incident on the ith vertex. Note that a collection of
sets Si1 , . . . , Sic (for some c) from the family is a minimal set cover iff the set
of vertices {i1, . . . , ic} is a minimal vertex cover of G. Therefore, the number of
minimal vertex covers of G is same as the number of minimal set covers of the
family. This completes the first reduction.

For the second reduction, we use the same reduction that was used as sec-
ond reduction in the proof of Theorem 8. With respect to the reduction, note
that a collection Si1 , . . . , Sic is a minimal set cover of the family iff the set of
fields { fi1 , . . . , fic} is a minimal key of the database. Therefore, the number of
minimal set covers of the family is same as the number of minimal keys of the
database.

4. COMPLEXITY OF FINDING ALL INTERESTING SENTENCES

The hardness results we presented in the previous section show that algorithms
that find maximal frequent sets or keys are likely to have exponential worst
case running time. Consequently, we use an output-size sensitive complexity
model to evaluate the performance of the algorithms.

To study the complexity of the generation problem, we introduce some no-
tation and basic results that appeared previously in Mannila and Toivonen
[1997].

Consider a set S of sentences from L such that S is closed downwards under
the relation ¹, that is, if θ ∈ S and ϕ ¹ θ , then ϕ ∈ S. The border Bd(S) of
S consists of those sentences σ such that all generalizations of σ are in S and
none of the specializations of σ is in S. Those sentences σ in Bd(S) that are in
S are called the positive border1 Bd+(S), and those sentences σ in Bd(S) that
are not in S are the negative border Bd−(S). In other words,

Bd(S) = Bd+(S) ∪ Bd−(S),

where

Bd+(S) = {σ ∈ S | for all γ such that σ ≺ γ , we have γ 6∈ S}
1That is, the positive border corresponds to the set “S” of [Mitchell 1982].

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

150 • D. Gunopulos et al.

and

Bd−(S) = {σ ∈ L \ S | for all γ ≺ σ, we have γ ∈ S}.

The positive border of the theory is the set of its maximal elements, that is,
MTh(L, r, q) = Bd+(Th(L, r, q)). Note that Bd(S) can be small even for large S.

Above, we assumed that the set S is closed downwards. We generalize the
notation for sets S that are not closed downwards by simply defining that
Bd(S) = Bd(S′) where S′ is the downward closure of S. The generalization
is similar for negative and positive borders.

Some straightforward lower bounds for the problem of finding all frequent
sets are given in Agrawal et al. [1996] and Mannila et al. [1994]. Now we
consider the problem of lower bounds in a more realistic model of computation.

The main effort in finding interesting sets is in the step where the interest-
ingness of subgroups are evaluated against the database. Thus, we consider the
following model of computation. Assume the only way of getting information
from the database is by asking questions of the form

Is-interesting Is the sentence ϕ interesting, that is, does q(r, ϕ) hold?

THEOREM 10 [MANNILA AND TOIVONEN 1997]. Any algorithm for computing
Th(L, r, q) that accesses the data using only Is-interesting queries must use at
least |Bd(Th(L, r, q))| queries.

This result, simple as it seems, gives as a corollary a result about finding
functional dependencies that in the more specific setting is not easy to find;
cf. Mannila and Räihä [1992] and Mannila and Toivonen [1997]. Similarly, the
corresponding verification problem requires at least this number of queries.

Problem 11 (Verification). Given L, r, q, and a set S ⊆ L, verify that S =
MTh(L, r, q).

COROLLARY 12 [MANNILA AND TOIVONEN 1997]. Given L, r, q, and a set S ⊆ L,
determining whether S =MTh(L, r, q) requires in the worst case at least |Bd(S)|
evaluations of the predicate q, and it can be solved using exactly this number of
evaluations of q.

We now show that the verification problem is closely related to computing
hypergraph transversals. A collectionH of subsets of R is a (simple) hypergraph,
if no element of H is empty and if X , Y ∈ H and X ⊆ Y imply X = Y . The
elements ofH are called the edges of the hypergraph, and the elements of R are
the vertices of the hypergraph. Given a simple hypergraphH on R, a transversal
T of H is a subset of R intersecting all the edges of H, that is, T ∩ E 6= ∅ for all
E ∈ H.

Transversals are also called hitting sets. Here we consider minimal transver-
sals: a transversal T ofH is minimal if no T ′ ⊂ T is a transversal (Figure 1). The
collection of minimal transversals of H is denoted by Tr(H). It is a hypergraph
on R.

Problem 13 (HTR). Given a hypergraph H, construct Tr(H).

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

Discovering All Most Specific Sentences • 151

B
A

C D

Fig. 1. The set {A, B} is a transversal of the hypergraph with edges AB, AC, AD, BD.

For more information on hypergraphs, see [Berge 1973]. The problem of com-
puting transversals appears in various branches of computer science; a com-
prehensive study of this problem is given by [Eiter and Gottlob 1995]. The HTR
problem also appears in several forms in databases. In particular, the problem
of translating between a set of functional dependencies and their corresponding
Armstrong relation [Mannila and Räihä 1986, 1992] is at least as hard as this
problem and equivalent to it in special cases [Eiter and Gottlob 1995]. Further
discussion of these issues is given by Khardon [1995] and Mannila and Räihä
[1994].

Notice that, in general, the output for this problem may be exponentially
larger than its input, and thus the question is whether it can be solved in time
polynomial in both its input size and output size. We say that an algorithm is
output T () time algorithm for the problem if it runs in time T (I, O) where I is
the input size, and O is the corresponding output size. A more strict condition,
that we use here, requires that the output transversals be enumerated, and that
the time to compute the ith transversal will be measured against the input size
and i. That is, an algorithm solves the problem in incremental T (I, i) time if the
ith transversal is computed in time T (I, i). For further discussion and other
variations, see Eiter and Gottlob [1995].

The exact complexity of the HTR problem is yet unknown. A subexponential
solution for the problem has been recently discovered [Fredman and Khachiyan
1996], and several special cases can be solved in polynomial time [Eiter and
Gottlob 1995; Mishra and Pitt 1997].

Now we return to the verification problem. Given S ⊆ L, we have to deter-
mine whether S =MTh(L, r, q) holds using as few evaluations of the interest-
ingness predicate as possible.

Definition 14 (Representing as Sets). Let L be the language, ¹ a special-
ization relation, and R a set; denote by P(R) the powerset of R. A function
f : L → P(R) is a representation of L (and ¹) as sets, if f is one-to-one and
surjective, f and its inverse are computable, and for all θ and ϕ we have θ ¹ ϕ
if and only if f (θ) ⊆ f (ϕ).

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

152 • D. Gunopulos et al.

A B C D

AB AC AD BC BD CD

ABCD

ABC ABD ACD BCD

{}

Fig. 2. The lower shaded area represents the downward closure of S = {ABC, ABD}, S is exactly
the positive border and the negative border is the set CD.

Thus, representing as sets requires that the structure imposed on L by ¹ is
isomorphic to a subset lattice. In particular, the lattice must be finite, and its
size must be a power of 2. Note that frequent sets, functional dependencies with
fixed right-hand sides, and inclusion dependencies are easily representable as
sets; the same holds for monotone Boolean functions. However, the language of
Mannila et al. [1995] used for discovering episodes in sequences does not satisfy
this condition.

Given S, we can compute Bd+(S) without looking at the data r at all: sim-
ply find the most special sentences in S. The negative border Bd−(S) is also
determined by S, but finding the most general sentences in L\S can be dif-
ficult. We now show how minimal transversals can be used in the task. As-
sume that (f , R) represents L as sets, and consider the hypergraph H(S)
on R containing as edges the complements of sets f (ϕ) for ϕ ∈ Bd+(S):
H(S) = {R\ f (ϕ) | ϕ ∈ Bd+(S)}. Then Tr(H(S)) is a hypergraph on R, and
hence we can apply f −1 to it: f −1(Tr(H(S))) = { f −1(H) | H ∈ Tr(H(S))}. We
have the following.

THEOREM 15 [MANNILA AND TOIVONEN 1997]. f −1(Tr(H(S))) = Bd−(S).

Example 16. Consider the problem of computing frequent sets illustrated
in Figure 2, with attributes R = {A, B, C, D}. Let S = {ABC, ABD}, where
we use a shorthand notation for sets, for example, we represent {A, B, C} by
ABC. Then, the downward closure of S is equal to {ABC, ABD, AB, AC, AD,
BC, BD, A, B, C, D}, and S includes the maximal elements. The negative border
(that can be found by drawing the corresponding lattice) is Bd−(S) = {CD}.

For this problem, we already have L represented as sets and thus use
the identity mapping f (X)= X , thus H(S)={D, C}. It is easy to see that
Tr({D, C})={CD}, and thus f −1 indeed yields the correct answer.

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

Discovering All Most Specific Sentences • 153

The requirement for representing as sets is quite strong. It is however nec-
essary. In particular, the mapping f must be surjective, that is, cover all of
P (R). Otherwise, after computing the transversal, a set may not have an in-
verse mapping to be applied in the last transformation in the theorem. This is
indeed the case when we consider the problem of finding sequential patterns
[Agrawal and Srikant 1995] or episodes [Mannila et al. 1995]. The a priori
(level-wise) algorithm can be extended to handle sequences of attributes rather
than sets of attributes because we can define a monotone specialization relation
between sequences. However, it is not clear how to represent sequences of at-
tributes as sets so the Dualize and Advance algorithm cannot be applied in this
case.

5. THE LEVEL-WISE ALGORITHM

The a priori algorithm [Agrawal and Srikant 1994; Mannila and Toivonen 1997]
for computing Th = Th(L, r, q) proceeds by first computing the set Th0 consist-
ing of the sentences of rank 0 that are in Th. Then, assuming Thi is known, it
computes a set of candidates: sentences ψ with rank i + 1 such that all θ with
θ ≺ ψ are in Th. For each one of these candidates ψ , the algorithm calls the
function q to check whether ψ really belongs to Th. This iterative procedure is
performed until no more sentences in Th are found.

This level-wise algorithm has been used in various forms in finding associa-
tion rules, episodes, sequential rules, etc. [Agrawal and Srikant 1994, 1995;
Agrawal et al. 1996; Mannila et al. 1995; Mannila and Toivonen 1997]. In
Gunopulos et al. [1997a], it is shown to be optimal for the computation of the
set Th(L, r, q). The algorithm solves the problem MaxTh by simply finding all
interesting statements, that is, the whole theory Th(L, r, q) going bottom up.
The method is as follows:

Algorithm 17. The a priori (level-wise) algorithm for finding all interesting state-
ments.
Input: A database r, a language L with specialization relation ¹, and a quality predi-
cate q.
Output: The set Th(L, r, q).
Method:

1. C1 := {ϕ ∈ L | there is no ϕ′ in L such that ϕ′ ≺ ϕ};
2. i := 1;
3. While Ci 6= ∅ do
4. Li := {ϕ ∈ Ci | q(r, ϕ)};
5. Ci+1 := {ϕ ∈ L | for all ϕ′ ≺ ϕ we

have ϕ′ ∈ ⋃ j≤i L j }\
⋃

j≤i Cj ;
6. i := i + 1;
7. Od;
8. output

⋃
j<i L j ;

The algorithm works iteratively, alternating between candidate generation
and evaluation phases. First, in the generation phase of an iteration i, a collec-
tion Ci of new candidate sentences is generated, using the information available
from more general sentences. Then the quality predicate is computed for these

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

154 • D. Gunopulos et al.

{}

AB AC AD BC BD CD

ABCD

ABC ABD ACD BCD

A B C D

Fig. 3. The a priori algorithm operates at levels: After computing the frequent sets of size 2
(L2 = {AB, AC, BC}), the only set of cardinality 3 that must be considered is ABC, which is a
superset of all the sets in L2.

candidate sentences. The collection Li will consist of the interesting sentences
in Ci. In the next iteration i + 1, candidate sentences in Ci+1 are generated
using the information about the interesting sentences in

⋃
L j (Figure 3). Note

that using the notion of border, Step 5 of the algorithm can be written as
Ci+1 := Bd−(

⋃
j≤i L j) \

⋃
j≤i Cj .

The algorithm aims at minimizing the amount of database processing, that is,
the number of evaluations of q (Step 4). Note that the computation to determine
the candidate collection does not involve the database (Step 5). For example,
in Agrawal et al. [1996], when computing frequent sets Step 5 used only a
negligible amount of time.

Clearly, by definition, the algorithm finds the maximal interesting sentences.
Moreover, we show that under certain conditions the algorithm does not take
too much time. The following theorem is immediate.

THEOREM 18. The level-wise algorithm computes the set of interesting sen-
tences correctly, and it evaluates the predicate q

|Th(L, r, q) ∪ Bd−(Th(L, r, q))|
times.

Example 19. Consider, again, the problem of computing frequent sets
where R = {A, B, C, D} and MaxTh = {ABC, BD}, that is, the situation of
Figure 2. The level-wise algorithm works its way up from the bottom. It starts
by evaluating the singletons A, B, C, and D; all of these are frequent. In the
second iteration, C2 contains pairs of attributes such that both attributes are
frequent, in this case all attribute pairs. Of them, AB, AC, BC, and BD are

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

Discovering All Most Specific Sentences • 155

frequent. C3 then contains such sets of size three all of whose subsets are fre-
quent, that is, the set ABC, which is actually frequent. Notice that the negative
border corresponds exactly to the sets that have been found not interesting
along the way, that is the sets AD and CD.

In order to further analyze the complexity, we use the following notation.
First, recall the definition of rank, given in Section 2, capturing the “level” of
a sentence. Denote by dc(k) the maximal size of the downward closure of any
sentence φ of rank ≤ k. Also, by width(L,¹), denote the maximal number of
immediate successors on L and ¹. That is,

width(L,¹) = max
θ
|{φ | θ ≺ φ and for no ψ, θ ≺ ψ ≺ φ}|.

THEOREM 20. Let k be the maximal rank over all interesting sentences in
the problem (L, r, q). The level-wise algorithm computes the set of interesting
sentences correctly, and the number of queries it makes is bounded by

dc(k) width(L,¹) |MTh(L, r, q)|.
PROOF. The number of sentences below any maximal element is bounded

by dc(k), and thus the number of elements not rejected from Ci at all stages
together is bounded by dc(k)|MTh(L, r, q)|. Each of these sentences might create
at most width(L,¹) new sentences for consideration in Ci+1 that may be rejected
(i.e., they are in Bd−(Th(L, r, q))).

This result holds for any (L, r, q). For problems representable as sets one can
derive more explicit bounds. In particular, in the problem of frequent sets the
rank corresponds to the size of the set, the width is the number of attributes,
and dc(k) = 2k . A standard assumption in practical applications is that the size
of frequent sets is bounded. In these cases the level-wise algorithm is indeed
efficient:

COROLLARY 21. Let k be the size of the largest frequent set, and n the number
of attributes. The level-wise algorithm computes the set of frequent sets correctly,
and the number of queries it makes is bounded by 2kn|MTh(L, r, q)|.

As a further corollary of the above, we get that if the size of frequent sets is
not too large then the size of Bd−(Th(L, r, q)) is not prohibitive and thus the
problem is feasible.

COROLLARY 22. Let k be the size of the largest frequent set, and n the number
of attributes.

(i) The size of sets in Bd−(Th(L, r, q)) is bounded by k + 1.
(ii) If k = O(log n), the size of Bd−(Th(L, r, q)) is bounded by O(nO(1)|

MTh(L, r, q)|).
We thus get an application for hypergraph transversals:

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

156 • D. Gunopulos et al.

THEOREM 23. For k = O(log n), the problem of computing hypergraph trans-
versals, where the edges of the input graph are all of size at least n−k, is solvable
in input polynomial time by the level-wise algorithm.

PROOF. If the edge size is at least n− k, then the maximal sets that are not
transversals are of size at most k. Set non-transversals to be “interesting” and
use the algorithm. We get that the negative border is the required transversal
hypergraph.

This improves on previous results by Eiter and Gottlob [1995] (Theorem 5.4)
that show that this is possible for constant k (and uses a brute force enumer-
ation algorithm using property (i) above). Notice that the level-wise algorithm
does not use the structure of original hypergraph directly. All it does is to test
whether certain subsets are transversals of it or not.

6. THE DUALIZE AND ADVANCE ALGORITHM

The results of the previous section show that the a priori algorithm is optimal if
we want to compute all frequent elements. It also performs very well when we
want to compute the maximal elements, and the size of the maximal elements
is small. Given this analysis, the disadvantage of the level-wise approach is
clear. If there is an element in MTh whose rank is large, then all the down-
ward closure of this element will be tested and this would require too much
time.

Example 24. For example, consider the situation where there are n at-
tributes, and k maximal sets of size n

k . Then, the size of the border is O(n2)
(the maximal frequent sets are k, and the minimal nonfrequent sets are all
pairs of attributes that belong to different maximal frequent sets), while the
total number of frequent sets is O(nn/k). For constant k, an algorithm that
finds the maximal frequent sets by way of computing all the frequent sets can
take exponential amount of computational time even if the size of the output is
polynomial.

Intuitively, one would want in such case to have an algorithm that goes
directly to the maximal element instead of exploring all of its downward closure
first. Our algorithm captures exactly this intuition with the subroutine AMSS
(A Most Specific Sentence). Given an interesting sentence ϕ, AMSS finds a
maximal interesting sentence θ , such that ϕ ¹ θ . Once a set of most specific
sentences is found the algorithm focuses its search by computing the negative
border of the sentences found so far (using a transversal computation), and
starting its upward search from this negative border. Clearly, if progress can
be made, it can be made from the negative border and thus the approach is
guaranteed to succeed. These intuitions are formalized in the algorithm and its
analysis that follows.

While the algorithm can be phrased for any (L,¹), our analysis only holds
for problems representable as sets, and we thus describe it in the restricted
setting.

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

Discovering All Most Specific Sentences • 157

AB AC AD BC BD CD

ABCD

ABC ABD ACD BCD

A B C D

{}

Fig. 4. The operation of the algorithm AMSS. The attributes are considered in the order C, A, D, B
in the example. Sets C and AC are found frequent, the set ACD is not frequent, and finally ABC is
found to be a maximal frequent set.

We first give the algorithm to compute one most specific sentence from Th.
Denote ψ ≺1 θ , if ψ ≺ θ and for no ϕ we have ψ ≺ ϕ ≺ θ ; in this case, we say
that θ is an immediate specialization of ψ .

Algorithm AMSS. Given a relation r with attributes {R1, . . . Rm}, a language L with
specialization relation ¹, equivalent to the subset relation on R, and a quality predicate
q, find a most specific sentence from MTh(L, r, q).

(1) Find a permutation p of the numbers 1, 2, . . .m.
(2) ψ := {}.
(3) For i= 1 to m do:

If q(r, ψ ∪ {Rp(i)}) holds, let ψ := ψ ∪ {Rp(i)}.
(4) Output ψ .

The algorithm assumes that {} ∈ L, and proceeds to specialize it successively
until a most specific sentence is found (Figure 4). In Step 2, if ψ is initialized
with an arbitrary sentence σ ∈ Th instead of “true”, then the algorithm will
find a most specific sentence s′ such that s ≤ s′.

Note that the correctness of the algorithm, and the subsequent analysis does
not depend on the use of a specific permutation p. In order to discover a maximal
frequent set, the algorithm has to consider all attributes sequentially, but the
actual order does not matter. The use of random permutations is an interesting
heuristic that can allow more efficient discovery of new maximal frequent sets.

Once a collection C of most specific sentences is found, any new most specific
sentence F cannot be a subset or a superset of any of the ones found so far. It
follows that F intersects all the complements of all sets in C and therefore is a
transversal of the hypergraph whose edges are the complements of all sets in C.

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

158 • D. Gunopulos et al.

To discover new most specific sentences, we start with a minimal transversal
of the hypergraph whose edges are the complements of sets in C, and extend it
to a most specific sentence. If every minimal transversal is considered for this
extension, then every new most specific sentence will be discovered.

Denote by Algorithm AMSS(ψinit) the parameterized version of the Algorithm
AMSS, which starts by initializing ψ with the sentence ψinit.

We now give the general algorithm for finding all most specific sentences.

Algorithm All MSS. Given a relation r with attributes {R1, . . . Rm}, a language
L with specialization relation ¹, equivalent to the subset relation on R, x a quality
predicate q, compute MTh(L, r, q).

1. i := 1
2. Ci = {}
3. Di := {complements of sets in Ci}
4. Use a subroutine to enumerate the minimal transversals of Di

5. For each transversal X enumerated:
(a) if q(r, X) holds, mark X as a counter example and quit loop

6. If, for every transversal, q(r, X) does not hold output Ci and exit.
7. For the counterexample X :

Run Algorithm AMSS(X) to find a maximal superset Y of X such that q(r, Y) holds
8. Ci+1 = Ci ∪ {Y }
9. i = i + 1

10. Go to 3.

It is useful to notice that the transversal computation does not look at the
data, only at elements ofL; if the input data is large, a complicated computation
on L can still be much cheaper than just reading the data once.

Example 25. Consider the problem of computing frequent sets described
in Figure 5.

The algorithm All MSS starts with C1 = ∅, and D1 = {ABCD}. The transver-
sals are Tr(D1) = {A, B, C, D}. Assume that, in Step 5, the transversal A is
tested first. Then, A is found interesting and the algorithm continues in Step 7
to find a maximal element Y . This can be done by adding one attribute at a
time, and testing whether q holds, and yields Y = ABC. In the next iteration
C2 = {ABC}, D2 = {D}, and Tr(D2) = {D}. In Step 5 D, is found to be interest-
ing, and, in Step 7, the algorithm finds that Y = BD is maximal interesting.
We therefore have C3 = {ABC, BD}, D3 = {D, AC}, and Tr(D3) = {AD, AC}. All
the elements of the transversal are not interesting and therefore the algorithm
stops. The set C3 is exactly MTh and Tr(D3)

6.1 The Complexity of the Algorithm

We now prove an upper bound for the complexity of the algorithm. Similar
bounds were previously obtained by [Bshouty et al. 1996; Bioch and Ibaraki
1995] in the context of identifying Boolean functions with membership queries
(see Section 2.3), for somewhat different algorithms. In order to establish cor-
rectness, we start with a simple lemma:

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

Discovering All Most Specific Sentences • 159

{}

AB AC AD BC BD CD

ABCD

ABC ABD ACD BCD

A B C D

Fig. 5. The operation of the Dualize and Advance algorithm: Assume that ABC and BD are the
maximal frequent sets found so far. Then any other frequent set must be a superset of either
AC or CD. These are the transversals of the hypergraph with edges D = ABCD\ABC and AC =
ABCD\BD.

LEMMA 26. For any iteration i of the algorithm, if Ci 6= MTh(L, r, q), then
at least one of the elements of Tr(Di) is interesting.

PROOF. First note that the elements of Ci are verified by the algorithm to be
maximal interesting. We therefore have Ci ⊆MTh(L, r, q). Now if there is a set
c ∈ MTh(L, r, q)\Ci, then (since ¹ is monotone) there is a minimal interesting
set not in Ci, that is there is an interesting set in Bd−(Ci). (Just walk down in
the lattice to find such a set).

As we saw earlier, sets of attributes are already represented as sets and
the identity mapping f (X) = X is used. We thus get from Theorem 15 that
Tr(Di) = Bd−(S) and one of these elements is interesting.

The question is how many sets X should be enumerated before finding such a
counterexample on the negative border. The following example shows that there
are cases where the size of MTh(L, r, q) and its negative border are small, but
in an intermediate step the size of the negative border of Ci may be large.

Example 27 [Mannila and Räihä 1986]. Consider the case where MTh =
MTh(L, r, q) includes all sets of size n−2, and Bd−(MTh) thus includes all sets
of size n− 1. Further consider the case where Ci is such that Di = {{x2i−1, x2i} |
1 ≤ i ≤ n/2}. Then the size of Tr(Di) is 2n/2 while Bd−(MTh) is small.

LEMMA 28. For any iteration i of the algorithm, if Ci 6=MTh(L, r, q) then the
number of sets enumerated before a counterexample set X is found is bounded
by |Bd−(MTh(L, r, q))|.

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

160 • D. Gunopulos et al.

PROOF. Denote Bd− = Bd−(MTh(L, r, q)). We show that each set X enumer-
ated either matches an element of Bd− exactly, or is interesting. In other words,
the set X cannot be both not interesting, and a strict superset of an element in
Bd−. It follows that at most |Bd−| elements need to be enumerated.

To prove the claim, notice that every set that is deemed interesting by the
Ci is indeed interesting. If X is both not interesting, and a strict superset of an
element Z in Bd−, then Z , which is not interesting, is claimed interesting by
Ci (since X ∈ Bd−(Ci) is minimal, and Z ⊂ X); a contradiction.

THEOREM 29. If there is an incremental T(I, i) time algorithm for computing
hypergraph transversals then MTh =MTh(L, r, q) can be computed in time poly-
nomial in |MTh| and T (|MTh|, |Bd−(MTh)|), while using at most (|Bd−(MTh)|+
width(L,¹)|MTh|) queries.

PROOF. The bound follows by using algorithm All MSS. By Lemma 26, each
iteration finds a new maximal set, and therefore the algorithm is correct, and
the number of iterations is |MTh|. By Lemma 28, in each iteration the algorithm
runs a transversals subroutine that enumerates sets on the negative boundary.
Each set is either a counterexample, or is a set of Bd−(MTh). If we keep the
sets in Bd−(MTh) that we have already discovered, then, for each set X that
the transversal subroutine enumerates, first we determine whether it is one of
the sets we know already are in Bd−(MTh) (in which case we can ignore it),
and otherwise we check if it is frequent. If not, then X is part of Bd−(MTh),
but if it is frequent, we try to extend it to a maximal set. The extension of the
counterexample X into a maximal set Y requires at most rank(MTh) stages
each with one query. The total number of queries is then |Bd−(MTh)| to discover
the negative boundary, and at most width(L,¹) to discover each maximal set
(since we can use the order induced by R and avoid trying to add an attribute
more than once when going up in the lattice).

Thus, we see that the connection to hypergraph transversals holds not only
for the verification problem but also for the generation problem. It is also impor-
tant to notice that the time complexity and query complexity of the algorithm
are separated. Theorem 29 shows that, while the running time depends on the
transversal enumeration and may not be polynomial, only a polynomial number
of queries is required.

Recently, Fredman and Khachiyan [1996] presented an incremental algo-
rithm for the HTR problem with time complexity T (I, i) = (I + i)O(log(I+i)). We
can therefore conclude the following:

THEOREM 30. For any problem representable as sets, MTh(L, r, q) can be
computed in time t(|MTh| + |Bd−(MTh)|), where t(n) = nO(log n), while using at
most (|Bd−(MTh)| +width(L,¹)|MTh| queries.

The theorem shows that the Dualize and Advance algorithm always takes
subexponential time to the size of the output (number of maximal elements),
and can in fact be exponentially faster than the a priori algorithm.

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

Discovering All Most Specific Sentences • 161

7. APPLYING THE DUALIZE AND ADVANCE ALGORITHM FOR COMPUTING
MAXIMAL FREQUENT SETS, FOR FINDING MINIMAL KEYS, AND FOR
LEARNING MONOTONE FUNCTIONS

In this section, we discuss how to adapt the Dualize and Advance algorithm to
find maximal frequent sets of a {0, 1}matrix and threshold value σ , for finding
minimal keys in a database, and for learning monotone functions. The case of
frequent sets is straightforward, and we briefly outline the approach here.

As in the general case, the following lemma guarantees the success of our
method.

LEMMA 31. Let C be a collection of maximal σ -frequent sets of a relation, and
F be a maximal σ -frequent set not in C. Then there exists a minimal transversal
T of the hypergraph defined by the complements of the sets in C such that T ⊆ F.

To apply the general algorithm (Algorithm AMSS), we use the lattice struc-
ture efficiently: the process can be seen as a random walk in the lattice. Given
X , in order to select a set Y such that X ¹1 Y the only thing we have to do is
to get an item A ∈ R\X and let Y = X ∪ {A}. We give the algorithm AMFS (A
Maximal Frequent Set), which finds a single maximal σ -frequent set containing
a given set S of attributes. This algorithm corresponds to the parameterized
version of the algorithm AMSS.

Algorithm AMFS(S). Given a {0, 1}matrix M with attributes R = {A1, . . . , A|R|} and
n tuples (rows), a threshold σ and the set S of attributes {AS1 , . . . , ASl }; find a maximal
σ -frequent set F containing all the attributes in S.

(1) Find a permutation p of (1, . . . , |R|) such that for i ≤ |S|, p(i) = Si .
(2) Set X = ∅.
(3) For i = 1 to |R|:

(a) If X ∪ {Ap(i)} is a σ -frequent set, add Ap(i) to X .
(4) Return X

The following theorem shows that the AMFS algorithm does not need to make
width(L,¹) passes over the data, but instead can be performed efficiently by
maintaining an index per item.

THEOREM 32. Let S be a σ -frequent set of a relation r. Then the algorithm
AMFS(S) finds the lexicographically first (in according with the ordering given
by p) maximal σ -frequent set containing attributes in S. Further, its time com-
plexity is O(|r|).

PROOF. The basic operation of the algorithm is to add a new attribute in the
σ -frequent set X . We keep the set of rows α(X , r) that support X as a vector
s = (s1, . . . , sm). When attribute Ri is considered, we take the intersection of
s and the i-th column of r. This is the support of the set X ∪ Ri. This process
takes O(m) time, so the total running time of the algorithm is O(m|R|) = O(|r|),
linear to the size of the relation r.

Note that with respect to a given permutation, a maximal frequent set F1 is
lexicographically smaller than another maximal frequent set F2, if the smallest
attribute (with respect to the order of attributes defined using permutation) in
the symmetric difference of F1 and F2 is in F1.

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

162 • D. Gunopulos et al.

It is clear that the output set X is a maximal σ -frequent set. Assume that
it is not the lexicographically first maximal σ -frequent set with respect to the
ordering p that contains S. S has to be a frequent set itself, and all the attributes
of S are in the beginning of p, they will all be included in X is Step 3. Thereafter,
the algorithm will add greedily into X attributes in the order given by p. Let
LF = {RLF1 , . . . , RLFk } be the lexicographically first maximal σ -frequent set
with the attributes sorted according to p, and let Pi be the first attribute that
is included to LF but not X . But the set {RLF1 , . . . , Ri} is a frequent set, and
therefore the algorithm would add Pi to X when it was considered. It follows
that at the end of the algorithm F will represent the lexicographically smallest
maximal σ -frequent set containing S.

The following is a corollary of Theorems 30 and 32:

COROLLARY 33. The algorithm All MFS finds all maximal σ -frequent sets
of the input matrix M in time subexponential to the number of the maximal
σ -frequent sets.

7.1 Finding Minimal Keys

We now discuss our algorithm for discovering all minimal keys of a database.
We first note that for the case of functional dependencies with fixed right-hand
side, and for keys, even simpler algorithms can be used [Mannila and Räihä
1992; Khardon 1995]. In this case, one can access the database and directly
compute Bd−(MTh) (according to the appropriate representation as sets, this
corresponds to the so called agree sets of the relation). Then a single run of
an HTR subroutine suffices. The current approach can be applied even if the
access to the database is restricted to “Is-interesting” queries. Furthermore, as
we show, it can be implemented efficiently, and depending on the database, it
can be more efficient since it avoids the computation of the agree sets that is
quadratic in the number of tuples in the database.

To keep an analogy with the problem of discovering maximal frequent sets,
we use the notion of an anti-key. An anti-key in a database is a set of fields
which is complement of some key of the database. A maximal anti-key is an
anti-key such that no proper superset of it is an anti-key. Note that a set of
fields is a maximal anti-key iff its complement is a minimal key. Therefore, the
problem of finding all minimal keys of a database is equivalent to the problem of
finding all maximal anti-keys of the database. To keep presentation analogous
to maximal frequent sets, we will henceforth in this section talk only of the
problem of finding all maximal anti-keys of a database.

We first present algorithm AMAK (A Maximal Anti-Key) for finding one
maximal anti-key containing a given set of fields.

Algorithm AMAK(S). Given a database in the form of an n×m matrix M and a set
S = { fi1 , . . . , fis } of fields of the database, find a maximal anti-key which contains all
the fields in the set, provided there exists one.

1. Find a permutation p of (1, 2, . . . , m) such that for j ≤ s, p(j) = i j .
2. Set A = ∅.
ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

Discovering All Most Specific Sentences • 163

3. For j = 1 to m:
(a) If A∪ { f p(j)} is an anti-key, add f p(j) to A.

4. If S ⊂ A, return A.

As in the problem of frequent sets, we show that this procedure can be im-
plemented efficiently. In principle, in order to check that a set is an anti-key all
pairs of rows must be compared. We show that this can be done efficiently by
maintaining suitable data structures. The details however, are more involved
than in the case of frequent sets, and we first present the expanded version of
algorithm AMAK.

Algorithm AMAK(S), expanded. Given a database in the form of an n×m matrix
M and a set S = { fi1 , . . . , fis } of fields of the database, find a maximal anti-key which
contains all the fields in the set, provided there exists one.

1. Find a permutation p of (1, 2, . . . , m) such that for j ≤ s, p(j) = i j .
2. Set m pointers to the columns (i.e., fields) of the matrix according to the permutation

so that we can assume without loss of generality that the columns of the matrix are
in the order defined by p.

3. Compute right to left profile matrix RLn×m as follows:
(a) Consider the mth column of M . Relabel the values in this column with consec-

utive positive integers starting from 1 so that identical values are labeled with
the same integer and different values are labeled with distinct integers. For all
i, define RLi,m to be the integer labeling the value in Mi,m.

(b) For j = m− 1 to 1:
Consider the n pairs defined by the values in j th column of M and (j + 1)th
column of RL. Relabel the pairs with consecutive positive integers starting from
1 so that identical value pairs are labeled with the same integer and different
value pairs are labeled with distinct integers. For all i, define RLi, j to be the
integer labeling the pair in (Mi, j , RLi,(j+1)).

4. Initialize the left to right profile array LRn×1 to be all 0’s. Initialize A to be empty
set.

5. For j = 2 to m:
(a) Consider the n pairs defined by values in LR and the j th column of RL. Label all

the pairs with consecutive positive integers starting from 1 so that identical pairs
are labeled with the same integer and different pairs are labeled with distinct
integers.

(b) If the labeling uses all integers from {1, 2, . . . , n} then A = A∪ { j − 1} else
i. Consider the n pairs defined by the entries in LR and the (j − 1)th column of

M . Label the pairs with consecutive positive integers so that identical pairs
are labeled with the same integer and different pairs are labeled with distinct
integers. For all i, update the value of LRi,1 to be the integer labeling the ith
pair.

ii. If the labeling uses all integers from {1, . . . , n}, then A = A∪ { j , j + 1, . . . , m}
and go to Step 6.

6. For k = 1 to |S|: If fk 6∈ A then Stop.
7. Output A.

Observation. Let j be an integer from {1, 2, . . . , m}. Consider the n tuples
formed by taking the projection of the database with respect to the columns
{ j , j + 1, . . . , m}. Then the j th column of RL represents the distinctness of
these n tuples that is, RLi1, j and RLi2, j are different iff the ith

1 and ith
2 tuples are

distinct. This follows by a simple induction on j .

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

164 • D. Gunopulos et al.

Observation. At the end of the ith iteration of the for loop (just before Step 6,
the array LR represents the distinctness of the n tuples formed by columns in
the set { f1, . . . , fi} \ A. This follows by a simple induction on the loop variable
j . A field f j is inserted in A only if the fields before j that are not in A together
with the fields f j+1, . . . , fm form a key. Therefore, A is always the complement
of a key.

THEOREM 34. For a given set S of fields, suppose there is an anti-key that con-
tains all the fields in S. Then, the algorithm AMAK outputs the lexicographically
smallest maximal anti-key with respect to the permutation and that contains all
the fields in S. Further, assuming that the time to access any field of any record
is constant, the running time of the algorithm is O(nm).

PROOF. The algorithm greedily inserts fields in A, under the invariant that
A remains an anti-key, and so outputs the lexicographically first maximal anti-
key, with respect to permutation p. Since p has all fields in S before any other
key, A includes all fields in S if S is an anti-key.

Note that the Step 3 makes one pass of the whole database and hence need
O(nm) time. Here we are assuming the domain is prefixed and finite so that
the assignment of names can be done in linear time using a bucket sort like
method. Similarly Step 5 makes one pass of the database. Other steps take
O(m)or O(n) time. Therefore the total time complexity of the algorithm is
O(nm).

We now give the complete algorithm for finding all maximal antikeys, which
is analogous to the algorithm for finding all maximal frequent sets. First we
point out that an analogue of the Lemma 26 holds also for the case of maximal
anti-keys.

LEMMA 35. Given a collection C of maximal anti-keys of a database, let
K be a maximal anti-key not in C. Then there exists a minimal transversal
T of the hypergraph defined by the complements of the sets in C such that
T ⊆ K .

In the description of the algorithm All MAK, we ignore the details of how to
find all minimal transversals of a hypergraph.

Algorithm All MAK. Given a relational database in the form of n×m matrix M, find
all maximal anti-keys.

(1) C = {}
(2) Run algorithm AMAK(φ) and add to C the maximal anti-key discovered.
(3) While new antikeys are being found:

(a) Compute the set X of all minimal transversals of the hypergraph defined by
complements of subsets in C.

(b) For each x ∈ X : Run algorithm AMAK(X) and add any new maximal anti-key
found to C.

(4) Output C.

We can now claim the following corollary.

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

Discovering All Most Specific Sentences • 165

COROLLARY 36. The algorithm All MAK finds all maximal anti-keys (and
hence minimal keys) of the input database.

7.2 Learning Monotone Functions

In this section, we apply the results of the previous section to the problem of
learning monotone Boolean functions using membership queries. Theorem 5
shows that this problem is equivalent to the problem of finding maximal fre-
quent sets.

Example 37. The problem of computing the maximal frequent sets de-
scribed in Figure 4 is mapped to the problem of learning the function f
whose DNF representation is f = AD ∨ CD and whose CNF representation
is f = (A ∨ C)(D). The terms of the DNF correspond to the elements of Bd−,
and the clauses of the CNF are the complements of the sets in MTh.

As an immediate corollary of the results in Section 5, we get:

COROLLARY 38. The level-wise algorithm can be used to learn the class of
monotone CNF expressions where each clause has at least n− k attributes and
k = O(log n), in polynomial time, and with a polynomial number of membership
queries.

As a corollary of Theorem 10, we get a lower bound:

COROLLARY 39. Any algorithm that learns monotone functions with mem-
bership queries must use at least |DNF(f)| + |CNF(f)| queries.

While the bound is not surprising, it hinges on the lower bound given by
Angluin [1988]. It is shown there that an algorithm may need to take time
exponential in the DNF size when not allowed CNF size as a parameter. Indeed
the CNF size of the function used to show the lower bound is exponential. (The
lower bound in Angluin [1988] is, however, more complex since the learner has
access to several additional oracles.) On the other hand, by using Theorem 29,
we see that with membership queries alone one can come close to this lower
bound.

COROLLARY 40. If there is an incremental T(I,i) time algorithm for com-
puting hypergraph transversals, then there is a learning algorithm for mono-
tone functions with membership queries, that produces both a DNF and a
CNF representation for the function. The number of MQ queries is bounded
by (|DNF(f)| +n|CNF(f)|). The running time of the algorithm is polynomial in
n and T (|CNF(f)|, |DNF(f)|).

As noted earlier, Bioch and Ibaraki [1995] have studied the same problem
and have previously derived a similar result, as well as other related results.
The result can also be derived from a more general construction in Bshouty et al.
[1996] (Theorem 18), that studies the complexity of learning in the context of
NP-Oracles.

Here again, using the result of Fredman and Khachiyan [1996], we can derive
as a corollary a subexponential learning algorithm for this problem.

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

166 • D. Gunopulos et al.

8. COMPUTING THE TRANSVERSALS OF THE
HYPERGRAPH INCREMENTALLY

The results of Section 6 show that the efficient operation of the Dualize and
Advance algorithm depends on an incremental algorithm for computing the
transversals of a hypergraph. The general problem of finding all minimal
transversals of a hypergraph in output polynomial time is still an open problem.
The algorithm by Fredman and Khachiyan [1996] generates all transversals in
provably output subexponential time, however it is difficult to implement.

In this section, we present a heuristic technique for finding the transversals
of a hypergraph. Our technique has the advantage of being easy to describe
and implement, as well as being able to continue the transversal computation
at each step of the Dualize and Advance algorithm from the previous one. As a
result, the transversal computation can be integrated to the algorithm instead
of starting from the beginning at each step.

Consider two consecutive steps of the algorithm All MSS, the ith and the
(i + 1)th. If some new maximal frequent sets were found during step i, then
Di ⊂ Di+1. Let X be a transversal of Di. Then either X is a transversal of Di+1
as well, or it can become a transversal of Di+1 if it is expanded by a set of items
that cover Di+1 \ Di. In fact, each such transversal can be expended to a set of
transversals of the set Di+1.

Example 41. Let Di = {{A, B}, {B, C}}, and Di+1 = {{A, B}, {B, C}, {D, E}}.
Then, the set {B} is a transversal of Di, but Di+1 contains an additional edge
that is not covered by {B}. We can expand {B} by adding D or E (these cover
the new edge). In both cases we get a transversal for Di+1 ({B, D} and {B, E},
respectively.

It follows that, if we have the transversals of Di, we can incrementally create
the transversals of Di+1 by expanding each of the original transversals so that
they intersect each of the new complements of maximal elements.

In addition, if a transversal X is found to be not frequent at step i, then we
do not expand this transversal in the next step. All the transversals we can gen-
erate from it have to be nonfrequent as well. This is an important improvement
because it allows us to reduce the number of transversals we have to generate
at each step.

The algorithm is given below:

Algorithm for computing transversals at Step i+ 1. Let Ti be the set of transver-
sals at step i.

(1) Set Ti+1 = {}
(2) For each X ∈ Ti

(a) Expand X and obtain a set X ′ of transversals of Di+1.
(b) For each X ′ ∈ X ′:

i. It X ′ is not interesting, remove X ′ from X ′
(c) Ti+1 = Ti+1 ∪ X ′

To complete the algorithm we need a technique to efficiently extend each
transversal in Ti so that it intersects all the complements of the new maximal

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

Discovering All Most Specific Sentences • 167

A C D

AE C

CDE

D

ABE BC D

BC BD CD DE

BCE ABC BD CD DE

ABD CD DE

ACD BCD DE

BDEADE

BE ACD

CDEAB

ACE BD

AD BCE

BC ADE

BD ACE

CD ABE

DE ABC

MF Set Comp.

Fig. 6. To compute the transversals incrementally we use a tree structure: Assume attributes
A, B, C, D, E. Let BE be the first maximal frequent set found. It’s complement is ACD, and the
transversals of the complement are A, C, and D. When a new maximal frequent set is found (AB in
the second row), the existing transversals are extended, if necessary, to intersect the complement
of the new maximal frequent set (CDE). In this case, the new transversals are AE, C, D. When
a transversal is found to be non-frequent, (as is ABE in the example), the branch of the tree is
pruned.

frequent sets. We use the tree-structure scheme for traversing the set of
transversals of hypergraph that was presented in Kavvadias and Stavropoulos
[1999]. The operation of the algorithm is shown in Figure 6.

9. RELATED WORK

Recently, a number of algorithms have been proposed to solve the MaxTh prob-
lem for frequent sets [Bayardo 1998; Lin and Kedem 1998; Burdick et al. 2001;
Agrawal et al. 2000; Han et al. 2000; Gouda and Zaki 2001]. Below, we briefly
describe the most recent and important of these algorithms and compare their
design approach with Dualize and Advance. We note that none of these algo-
rithms has provably worst case complexity that is subexponential to the size
of the output, as Dualize and Advance does (Theorem 30). For some of these
algorithms [Bayardo 1998; Lin and Kedem 1998; Han et al. 2000], we give exam-
ples that show that their worst-case complexity is exponential to the size of the
output (i.e., to the number of maximal frequent sets). Therefore, in the worst
case, these algorithms are provably asymptotically slower than Dualize and
Advance. The other algorithms use heuristics and their worst case complexity
is not yet known.

Pincer-Search [Lin and Kedem 1998] is similar to a priori and to Dualize-
and-Advance in that it also uses the lattice method to enumerate the item sets.
Pincer-Search combines a bottom-up and a top-down technique to find the max-
imal frequent sets. The bottom-up technique moves through the lattice level by
level. The bottom-up process finds frequent sets, and nonfrequent sets. The

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

168 • D. Gunopulos et al.

nonfrequent sets are used by a top down process to refine a set of potential
maximal frequent sets. For example, assume that at the beginning of the algo-
rithm, a set ABCD is a potential maximal frequent set. If a set BD is found to be
non-frequent, then ABCD cannot be frequent any more. It is refined to the sets
ABD and ABC that are potential frequent sets and their support is checked in
the next iteration of the algorithm.

The combination of a bottom-up and a top-down search can result to signif-
icant improvements compared to a priori. One such case is if there exists only
one maximal frequent set of cardinality n − 1 (where n is the number of at-
tributes). In this case, Pincer-search finds this set in two database passes, and
after finding the support of its subsets of cardinality 1 and 2.

The operation of Pincer-Search has similarities to the operation of the
Dualize and Advance algorithm. The main difference is that Pincer-Search
tries to guess maximal frequent sets, by considering large sets that may be
frequent, while Dualize and Advance starts from sets that have to be frequent
and expands them to maximal frequent sets. As a result, Dualize and Advance
guarantees that new maximal sets are found in each iteration (if a maximal set
is not found, then a set in the negative boundary is found) and thus is always
making progress, while Pincer-Search does not always do that.

The following example shows a case where this happens. Assume that there
are n attributes, all the sets of size at most k are frequent, and no sets of
k + 1 are frequent. For such a dataset, the performance of Pincer-Search is
identical to the performance of a priori. This is because the bottom-up search
does not find any non-frequent sets until the kth step, and therefore the top
down search cannot refine the candidate maximal frequent sets until that point.
Therefore the number of sets for which the algorithm finds their support can
be exponential to the number of frequent sets. If for example k = n − c, for
some constant c, the number of frequent sets is O(2n), and the number of the
maximal frequent sets is O(nc) (see also Example 24).

This example shows that Pincer-Search can take time that is exponential to
the size of the output because it has to find the support of a number of sets
that is exponential to the number of maximal frequent sets. In this case, the
performance of Pincer-Search is exponentially worse that the performance of
the Dualize and Advance algorithm, in terms of the number of Is-interesting
queries executed.

FP-Growth [Han et al. 2000] uses a new data structure, the FP-tree, to rep-
resent all the transactions of the database. It then uses this structure with a
recursive technique to find large frequent sets. This is a very efficient technique
for finding all frequent sets. However, although the technique does not need to
compute sets of candidate patterns, it still finds the support of all frequent sets
and therefore can be less efficient than other techniques when used to find the
maximal frequent sets only.

Max-Miner [Bayardo 1998] was one of the first successful practical algo-
rithms for finding all maximal frequent sets. The algorithm uses Rymon’s set
enumeration [Rymon 1992] to enumerate all the itemsets (Figure 7). Max-Miner
reduces the search space by pruning the tree to eliminate both supersets of in-
frequent sets and subsets of frequent sets. Essentially, when the algorithm

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

Discovering All Most Specific Sentences • 169

A B C D E

AB

ABC

ABCD

ABCDE

ABCE

ABD ABE

AC AD AE BC BD BE CD CE DE

ACD ACE ADE BCD BCE BDE

ABDE ACDE BCDE

Fig. 7. Rymon’s set enumeration tree.

computes the support of a set A, it also computes the support of the largest set
that appears in the subtree rooted at this set (by the design of Rymon’s tree,
this is a superset of A). If this superset is frequent, then all other sets in this
subtree must be frequent too. Thus, the algorithm avoids having to compute
the support of all the frequent sets, and therefore performs better than a priori
when the size of the maximal frequent sets is large.

Max-Miner uses a breadth-first-search technique to explore the set enumer-
ation tree. It computes the support of candidate sets that are on the same level
of the tree in one database pass. An important factor in the efficiency of the algo-
rithm is the use of heuristics that reorder the attributes, and therefore change
the order that the various sets appear in the tree [Burdick et al. 2001]. Experi-
mentally, it has been shown that ordering the attributes in increasing support
gives the best results [Bayardo 1998]. In the best case, Max-Miner can find all
maximal frequent sets in a few database passes, and using a small number of
Is-interesting queries (linear to the number of maximal frequent sets).

In its operation, Max-Miner uses a similar approach to Dualize and Advance
in looking for large frequent sets as early as possible, and in trying to prune
parts of the space that are known to be frequent. The difference is that Dualize
and Advance uses a slow procedure (the transversal computation) that guar-
antees efficient pruning, while Max-Miner uses heuristics that are much more
efficient to apply but do not offer such a guarantee, as the following example
demonstrates.

An example of a dataset that results to running time that is exponential to the
size of the output in the execution of Max-Miner is given in Figure 8. Assume
that all itemsets are frequent, except the supersets of a given set with two
attributes. Also assume that the two items in this set always have individually
the highest support. This can happen if we take a dataset where all sets are
frequent for a given small threshold, add two new items (D and E in Figure 8),
and create a new dataset as follows: For each tuple in the original dataset, we
create two new tuples and add these in the new dataset. The original attributes
remain the same, but in the first new tuple attribute E is 1 and D is 0, and in
the second new tuple E is 0 and D is 1. So the set DE is not frequent, but the

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

170 • D. Gunopulos et al.

Fig. 8. A worst case for Max-Miner. Set DE and its supersets are the only nonfrequent sets. We
assume that the ordering of the attributes, A, B, C, D, E, is in ascending support.

attributes D and E have always the highest individual support. In this case,
Max-Miner has to compute the support of all frequent sets because no subtree
can be eliminated. The number of Is-interesting queries evaluated is the same
with a priori, and exponential to the number of the maximal frequent sets.
Assuming n attributes, the algorithm has to find the support of O(2n) sets, while
the number of maximal frequent sets is constant. In the example of Figure 8,
the attributes are A, B, C, D, E, ordered in ascending support. If the set DE
and its supersets are infrequent, the only maximal frequent sets are ABCD
and ABCE, yet Max-Miner has to find the support of all frequent itemsets.

Similar to Max-Miner, MAFIA [Burdick et al. 2001], DepthProject [Agrawal
et al. 2000], and MaxGen [Gouda and Zaki 2001] use Rymon’s set enumeration
technique. The design of DepthProject has been influenced by the continuous
increase in available main memory size. It assumes that the dataset fits in
main memory and does not attempt to minimize the number of dataset passes.
Both MAFIA and DepthProject use a depth-first-search mechanism to enumer-
ate the itemsets. All three algorithms also use efficient pruning heuristics to
avoid examining some itemsets that can be determined to be frequent or non-
frequent. Compared to Max-Miner, MAFIA, DepthProject and MaxGen use the
same technique to enumerate the search space (although MAFIA and Depth-
Project enumerate the space in different order since they use depth-first-search
enumeration), and use a similar set of heuristics to prune the set enumeration
tree, including: (i) attribute reordering, and (ii) checking the support of the
largest set in the subtree rooted at the current node. They also introduce new
optimizations; one such optimization, used by MAFIA and MaxGen checks if
candidate sets are subsets of known maximal frequent sets before computing
their support. However, they use different techniques for computing the sup-
port, resulting to different performance characteristics. For example, MAFIA
uses a very efficient vertical bitmap representation with compression, which
significantly improves the running time. This set of algorithms (including Max-
Miner) has proven to be very efficient in practice, however their performance

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

Discovering All Most Specific Sentences • 171

crucially depends on how effective the pruning heuristics that the algorithms
employ are in reducing the search space. The worst-case complexity of these
algorithms is not known, and so a theoretical comparison with the Dualize and
Advance algorithm cannot be made.

10. DISCUSSION

In this article, we studied the data mining problem of searching for a set of
maximally interesting sentences. This problem comes up in many data mining
applications, including the well known problem of computing association rules.

We present a thorough analysis of two algorithms for the problem. These
algorithms have complementary properties. The a priori (level-wise) algorithm
is efficient as long as the rank of interesting sentences in the generalization
lattice of the language is small. The algorithm is in fact optimal if we want
to find all the interesting sentences. This result is also supported by recent
experimental comparisons between various techniques [Zheng 2001]. The level-
wise algorithm is too slow, however, if there are interesting sentences of large
rank.

We introduce the Dualize and Advance algorithm that is useful in the general
case. The algorithm alternates between phases of finding maximal elements,
and computing the negative boundary of these elements via a transversal com-
putation.

The analysis of the algorithm shows that the complexity of finding the most
specific interesting sequences is lower than the complexity of finding all inter-
esting sequences. The number of queries the algorithm makes to the database
is essentially optimal, while the time complexity depends on the complexity of
enumerating hypergraph transversals, for which the best known algorithm is
mildly super-polynomial.

We have illustrated the application of the algorithm in two important data
mining scenarios: computing all maximal σ -frequent sets of a {0, 1} relation
with threshold σ and computing all minimal keys of a database. To the best of
our knowledge, this is the only known subexponential algorithm for finding all
the maximal σ -frequent sets of a relation.

A number of issues can be explored in future work. These include exper-
iments on the trade-off between performing the transversal computation for
focusing search and employing randomized search to find more most specific
sentences from each seed. A particularly important issue concerns the number
of passes over the database. In the description of the algorithm, we assume that
the data fit in memory, but in many cases this is not so in practice. In this situ-
ation, an important consideration is to minimize the number of times we have
to read the entire data from the file system into the main memory. This issue
can be tackled in several ways. We can use a randomized version of algorithm
AMSS (taking a random permutation p in Step 1 of algorithm AMSS) and run
this algorithm a number of times at each starting point. All the randomized
instantiations starting from a given point can be run at the same time during
one pass over the database. Another aspect concerns the basic subroutine for
going up in the lattice. In principle this procedure requires one round for each

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

172 • D. Gunopulos et al.

attribute in the database (though it can be done on a large batch in one round).
Recently, Bshouty [1996] introduced an algorithm for learning monotone func-
tions in parallel that may be useful in this respect. Intuitively, the idea is that
we have a large batch of points with which to go up; instead of going up one
attribute at a time, we will test in each round the unions of the sets we already
have, and of these will choose a subset that will give us the best leap in going
up in the lattice. In this way the number of rounds is reduced considerably.

Another interesting possibility we plan to explore is to use the randomized
heuristic in combination with the level-wise algorithm. The randomized algo-
rithm for maximal σ -frequent sets can be used to select the right range for σ ,
as a preprocessing step to the a priori algorithm of Agrawal and Srikant [1994]
and Agrawal et al. [1996].

Finally, an extension of our theoretical framework will be useful. We as-
sumed throughout the paper that the algorithms can only access the data via
“is-interesting” queries. Clearly, more can be done with real databases. The
question is whether real computational advantages can be gained by using
such services. Another limitation of our results is that they only apply to prob-
lems representable as sets. One can easily generalize the Dualize and Advance
algorithm for arbitrary lattices, and prove its correctness. The question is when
can we take advantage of the structure so as to derive efficient algorithms using
this method.

ACKNOWLEDGMENTS

We wish to thank Eyal Kushilevitz for pointing out the work in Bshouty et al.
[1996], Roberto Bayardo, Rakesh Agrawal, and Christino Tamon for useful dis-
cussions, and Jordan Gergov for comments on an earlier version of the article.

REFERENCES

AGRAWAL, R. C., AGGARWAL, C. C., AND PRASAD, V. V. V. 2000. Depth first generation of long patterns.
In Knowledge Discovery and Data Mining, pp. 108–118.

AGRAWAL, R., IMIELINSKI, T., AND SWAMI, A. 1993. Mining association rules between sets of items
in large databases. In Proceedings of ACM SIGMOD Conference on Management of Data (SIG-
MOD’93) (May). ACM, New York, pp. 207–216.

AGRAWAL, R., MANNILA, H., SRIKANT, R., TOIVONEN, H., AND VERKAMO, A. I. 1996. Fast discovery
of association rules. In Advances in Knowledge Discovery and Data Mining, U. M. Fayyad,
G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Eds. AAAI Press, Menlo Park, Calif., pp.
307–328.

AGRAWAL, R. AND SRIKANT, R. 1994. Fast algorithms for mining association rules in large databases.
In Proceedings of the 20th International Conference on Very Large Data Bases (VLDB’94) (Sept.).
pp. 487–499.

AGRAWAL, R. AND SRIKANT, R. 1995. Mining sequential patterns. In Proceedings of the 11th Inter-
national Conference on Data Engineering (ICDE’95) (Taipei, Taiwan, Mar.). pp. 3–14.

ANGLUIN, D. 1988. Queries and concept learning. Mach. Learn. 2, 4, (Apr.), 319–342.
BAYARDO, R. J. 1998. Efficiently mining long patterns from databases. In Proceedings of the ACM

SIGMOD International Conference on Management of Data. ACM, New York.
BELL, S. 2003. Deciding distinctness of query results by discovered constraints. Manuscript.
BELL, S. AND BROCKHAUSEN, P. 1995. Discovery of data dependencies in relational databases. Tech.

Rep. LS-8 14. Universität Dortmund, Fachbereich Informatik, Lehrstuhl VIII, Künstliche Intel-
ligenz.

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

Discovering All Most Specific Sentences • 173

BERGE, C. 1973. Hypergraphs. Combinatorics of Finite Sets, 3rd ed. North-Holland, Amsterdam,
The Netherlands.

BIOCH, J. AND IBARAKI, T. 1995. Complexity of identification and dualization of positive Boolean
functions. Inf. Comput. 123, 1, 50–63.

BSHOUTY, N. H. 1996. The monotone theory for the pac-model. In Proceedings of the ACM Sympo-
sium on Theory of Computing (STOC). ACM, New York.

BSHOUTY, N. H., CLEVE, R., GAVALDA, R., KANNAN, S., AND TAMON, C. 1996. Oracles and queries that
are sufficient for exact learning. J. Comput. Syst. Sci. 52, 421–433.

BURDICK, D., CALIMLIM, M., AND GEHRKE, J. 2001. Mafia: A maximal frequent itemset algorithm for
transactional databases. In Proceedings of the International Conference on Data Engineering.

EITER, T. AND GOTTLOB, G. 1995. Identifying the minimal transversals of a hypergraph and related
problems. SIAM J. Comput. 24, 6 (Dec.), 1278–1304.

FAYYAD, U. M., PIATETSKY-SHAPIRO, G., SMYTH, P., AND UTHURUSAMY, R., EDS. 1996. Advances in Knowl-
edge Discovery and Data Mining. AAAI Press, Menlo Park, Calif.

FREDMAN, M. L. AND KHACHIYAN, L. 1996. On the complexity of dualization of monotone disjunctive
normal forms. J. Algorithms 21, 3 (Nov.), 618–628.

GAREY, M. AND JOHNSON, D. 1979. Computers and Intractability—A Guide to the Theory of NP-
Completeness. W. H. Freeman, New York.

GOUDA, K. AND ZAKI, M. J. 2001. Efficiently mining maximal frequent itemsets. In ICDM, pp.
163–170.

GUNOPULOS, D., KHARDON, R., MANNILA, H., AND TOIVONEN, H. 1997a. Data mining, hypergraph
transversals, and machine learning. In Proceedings of the 16th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS’97). ACM, New York.

GUNOPULOS, D., MANNILA, H., AND SALUJA, S. 1997b. Discovering all most specific sentences by
randomized algorithms. In Proceedings of the International Conference on Database Theory
(ICDT’97).

HAN, J., PEI, J., AND YIN, Y. 2000. Mining frequent patterns without candidate generation. In
Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. ACM,
New York, pp. 1–12.

KAVVADIAS, D. AND STAVROPOULOS, E. C. 1999. Evaluation of an algorithm for the transversal hy-
pergraph problem. In Algorithm Engineering, pp. 72–84.

KHARDON, R. 1995. Translating between Horn representations and their characteristic models. J.
Artif. Intel. Res. 3, 349–372.

KNOBBE, A. J. AND ADRIAANS, P. W. 1995. Discovering foreign key relations in relational databases.
In Workshop Notes of the ECML-95 Workshop on Statistics, Machine Learning, and Knowledge
Discovery in Databases (Heraklion, Crete, Greece, Apr.). pp. 94–99.

LANGLEY, P. 1995. Elements of Machine Learning. Morgan-Kaufmann, San Mateo, Calif.
LIN, D.-I. AND KEDEM, Z. M. 1998. Pincer search: A new algorithm for discovering the maximum

frequent set. In Extending Database Technology, pp. 105–119.
MANNILA, H. 1995. Aspects of data mining. In Workshop Notes of the ECML-95 Workshop on

Statistics, Machine Learning, and Knowledge Discovery in Databases (Heraklion, Crete, Greece,
Apr.). pp. 1–6.

MANNILA, H. 1996. Data mining: Machine learning, statistics, and databases. In Proceedings of
the 8th International Conference on Scientific and Statistical Database Management (Stockholm,
Sweden). pp, 2–9.

MANNILA, H. AND RÄIHÄ, K.-J. 1986. Design by example: An application of Armstrong relations. J.
Comput. Syst. Sci. 33, 2, 126–141.

MANNILA, H. AND RÄIHÄ, K.-J. 1992. Design of Relational Databases. Addison-Wesley, Wokingham,
U.K.

MANNILA, H. AND RÄIHÄ, K.-J. 1994. Algorithms for inferring functional dependencies. Data Knowl.
Eng. 12, 1 (Feb.), 83–99.

MANNILA, H. AND TOIVONEN, H. 1997. Levelwise search and borders of theories in knowledge dis-
covery. Data Mining Knowl. Disc. 1, 3, 241–258.

MANNILA, H., TOIVONEN, H., AND VERKAMO, A. I. 1994. Efficient algorithms for discovering associa-
tion rules. In Knowledge Discovery in Databases, Papers from the 1994 AAAI Workshop (KDD’94)
(Seattle, Wash., July), pp. 181–192.

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

174 • D. Gunopulos et al.

MANNILA, H., TOIVONEN, H., AND VERKAMO, A. I. 1995. Discovering frequent episodes in sequences.
In Proceedings of the 1st International Conference on Knowledge Discovery and Data Mining
(KDD’95) (Montreal, Ont., Canada, Aug.). AAAI Press, pp. 210–215.

MISHRA, N. AND PITT, L. 1997. Generating all maximal independent sets of bounded-degree hy-
pergraphs. In Proceedings of the Conference on Computational Learning Theory (COLT). pp.
211–217.

MITCHELL, T. M. 1982. Generalization as search. Artif. Intel. 18, 203–226.
RYMON, R. 1992. Search through systematic set enumeration. In Proceedings of the International

Conference on Principles of Knowledge Representation and Reasoning.
SCHLIMMER, J. 1993. Using learned dependencies to automatically construct sufficient and sensi-

ble editing views. In Knowledge Discovery in Databases, Papers from the 1993 AAAI Workshop
(KDD’93) (Washington, D.C.). AAAI Press, pp. 186–196.

ULLMAN, J. D. 1988. Principles of Database and Knowledge-Base Systems, vol. I. Computer Science
Press, Rockville, Md.

VALIANT, L. G. 1979. The complexity of enumeration and reliability problems. SIAM J. Comput.
8, 3, 410–421.

ZHENG, Z., KOHAVI, R., AND MASON, L. 2001. Real world performance of association rule algorithms.
In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, New York.

Received March 2001; revised April 2002, November 2002, February 2003; accepted February 2003

ACM Transactions on Database Systems, Vol. 28, No. 2, June 2003.

