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ABSTRACT 
Loops constitute the most executed segments of programs and 
therefore are the best candidates for hardware software 
partitioning. We present a set of profiling tools that are specifically 
dedicated to loop profiling and do support combined function and 
loop profiling. One tool relies on an instruction set simulator and 
can therefore be augmented with architecture and micro-
architecture features simulation while the other is based on 
compile-time instrumentation of gcc and therefore has very little 
slow down compared to the original program We use the results of 
the profiling to identify the compute core in each benchmark and 
study the effect of compile-time optimization on the distribution of 
cores in a program. We also study the potential speedup that can be 
achieved using a configurable system on a chip, consisting of a 
CPU embedded on an FPGA, as an example application of these 
tools in hardware/software partitioning. 

Categories and Subject Descriptors 
C.3 [Performance of Systems]: Measurement techniques, Design 
studies – profiling techniques, hardware/software partitioning.  

General Terms 
Measurement, Performance, Design, Experimentation. 

Keywords 
Hardware/Software partitioning, loop analysis, compiler 
optimization. 

1. INTRODUCTION 
Embedded software is the key contributor to embedded system 

performance and power consumption. Program execution tends to 
spend most of the time in a small fraction of code, a feature known 
as the “90-10 rule” – 90% of the execution time comes from 10% of 
the code. By their very nature, embedded applications tend to 
follow the 90-10 rule even more so than desktop type of 
applications.  

Tools seeking to optimize the performance and/or energy 

consumption embedded software therefore should focus first on 
finding that critical code. Possible optimizations include 
aggressive recompilation, customized instruction synthesis, 
customized memory hierarchy synthesis, and hardware/software 
partitioning [10,2] all focusing on the critical code regions. Of 
those critical code regions, about 85% of those regions are inner 
loops, while the remaining 15% are functions. A partitioning tool 
should focus first on finding the most critical software loops and 
understanding the execution statistics of those loops, after which 
the tool should try partitioning alternatives coupled with loop 
transformations in the hardware (such as loop unrolling). Our 
particular interest is in the hardware/software partitioning of 
programs, but our methods can be applied to the other optimization 
approaches too. 

Many profiling tools have been developed. Some tools, like gprof, 
only provide function-level profiling and do not provide sufficient 
information at a more detailed level, such as loop information, 
necessary for partitioning. However, tools that profile at a more 
detailed level tend to focus on statements or blocks – a user 
interested in loops must implement additional functionality on top 
of those profilers. Furthermore, many profiling tools, like ATOM 
[12] or Spix [11], are specific to a particular microprocessor 
family.  

Instruction-level profiling tools can be tuned to provide useful 
information regarding the percentage of time spent in different 
loops of a program. Instruction profiling tools can be broadly 
classified into two categories – compilation based instruction 
profilers and simulation based instruction profilers. A compilation 
based profiler instruments the program by adding counters to 
various basic blocks of the program. During execution the counter 
values are written to a separate file. Simulation based instruction 
profiler uses an instruction set simulators they can be further 
classified into static or dynamic profilers. Simulation based 
dynamic instruction profilers obtain the instruction profile during 
the execution of the code on the simulator while in static profiling 
the execution is written to a trace and the trace is processed to get 
instruction counts. For very large applications, the trace generated 
by static profiling can grow to unmanageable proportions. Even 
though a dynamic profiling method is slow compared to the 
compiler-based instrumentation, a variety of architectural 
parameters can be tuned and studied while the program gets 
profiled on a full system simulator.  

We have developed a profiling tool that focuses on collecting 
loop level information for a very large variety of microprocessor 
platforms. Our profiling tool supports both the instrumentation and 
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the simulation paradigms. We achieved this goal by building on top 
of two very popular tools – gcc for instrumentation, and Simics [9] 
for simulation – while keeping the output identical for the two 
paradigms, enabling easy switching among the paradigms. Both gcc 
and Simics, and hence our tool, support dozens of popular 
microprocessors. We call our toolset as Frequent Loop Analysis 
Toolset (FLAT). 

2. RELATED WORK 
Profilers like gprof are helpful to the extent of determining the 

time spent on function calls. However, to make judicious 
hardware/software partitioning decisions, knowledge of the program 
at the granularity of loops is imperative.  

ATOM [11] provides a toolset that lets the user track a 
program’s behavior by inserting analysis routine at interesting parts 
of the program. When the program is executed, the analysis routines 
collect information about various parts of the program and dump the 
result to a separate file. ATOM provides the following tools for 
instruction profiling-hiprof, pixie and uprof. The hiprof tool is 
capable of providing sampled program counters for different 
program events. Pixie tool provides basic block profile information. 
Uprof is useful for profiling non-time events and can provide 
procedure, source line and assembler profiles for a program.  

The Harvard Atom Like Tool (HALT) [3] provides a flexible 
way to add routines to program produced by the SUIF compiler. 
Users indicate interesting parts of the program by labeling them 
with SUIF annotations. HALT looks for these annotations, and 
inserts function calls to analysis routines that match the type of the 
annotation. Using different analysis routines, Halt provides a 
number of hardware simulators, performs branch stream analysis, 
and records statistics for profile-driven optimizations. HALT is 
helpful for obtaining information regarding branch prediction, code 
layout, instruction scheduling, and register allocation. It has been 
ported to MIPS and ALPHA processors. 

Optimally Profiling and Tracing Programs [4] inserts counters 
in the CFGs in order to record the execution count of the basic 
blocks and the program. QPT [15] is an instruction-profiling tool 
based on the algorithms described in [4] and is targeted for the 
SPARC architecture. It supports two modes of instruction profiling 
– a quick mode and a slow mode. Slow mode inserts a counter for 
every basic block while the quick mode relies on inserting counters 
on an infrequently executed subset of edges in the control flow 
graph. CPROF [15] processes program traces generated by QPT and 
annotates source lines and data structures with the appropriate cache 
miss statistics. 

ProfileMe [5] samples instructions as they move through an out-
of-order issue pipeline and reports statistics like cache miss rates. 
LooAn [1] is a profiling tool that gives loop and function level 
information. However, since it’s a static profiler, trace files scale up 
to unmanageable proportions for very large programs. Shade [15] 
combines instruction set simulation with trace generation capability. 
It uses a user-specified trace analyzer to control program execution 
and the extent of trace generation. The analyzer code is generated 
dynamically and is cached for reuse. 

ALTO [16] develops whole-program data flow analysis and 
code optimization techniques for link time program optimization 
and is targeted to the DEC Alpha architecture. SpixTool [11] is an 
instruction profiling toolset intended for the SPARC architecture 

and it consists of the following two tools – Spix and Spixstat. Spix 
generate basic block execution profile while Spixstat generates 
statistics on instruction count, branch behavior, opcode usage, etc. 
Loop information can be easily deduced from the tool’s output.  

The Vtune [13] Performance Analyzer collects, analyzes and 
displays software performance data from the program-level down 
to a specific function, module or instruction in a developer's source 
code. Vtune runs on windows and Linux and is targeted for all 
Intel processors. Idtrace [17] is an instrumentation tool for Intel 
architecture on Unix platforms. It produces a variety of trace types 
like profile, memory reference, and full execution traces. Primitive 
post-processing tools, which read output files, view traces, and 
compute basic profile data are included in the IDtrace package.  

Cacheprof [18] is an execution-driven memory simulator for 
the x86 architecture. It annotates each instruction that reads and 
writes memory and links a cache simulator into the resulting 
executable. Upon execution, the data references are trapped and 
sent to the simulator. Besides producing a procedure-level 
summary, Cacheprof reports number of memory references and the 
number of misses for each line of the source code. 

FLAT is intended to provide loop/function level information 
for a wide variety of platforms. FLAT_C works for all platforms to 
which the GNU C Compiler (gcc) has been ported. FLATSIM is 
capable of producing loop level statistics for a variety of platforms 
like x86, Strong ARM, MIPS and SPARC. 

3. FLAT: FREQUENT LOOP ANALYSIS 
TOOLS  

Instruction profiling tools provide information based on which 
useful hardware/software partitioning decisions can be made. 
Frequent Loop Analysis Tool set (FLAT) is a profiling tool written 
in python and it provides the execution time of a given application 
at the granularity of both loops and functions. Loop profiles can be 
obtained through two different ways. The first method is to 
instrument the compiler to output the frequency of a loop and the 
other method is to use an instruction set simulator to find the 
execution count of loops. Both methods have their own advantages 
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and disadvantages. The compilation-based approach is a lot faster 
while the simulation-based approach would prove to be more 
beneficial in tuning the various architectural aspects of the program. 

During hardware/software partitioning, frequently executed 
functions often prove to be the favorite candidates for hardware 
mapping. However, a frequently executed function could have many 
infrequently executed loops that contribute towards the total execution 
time of the function. Since loops perform the bulk of computation, 
returns for the silicon real estate would be maximized if a frequently 
executed loop of the program were chosen instead of the frequent 
function mentioned above. The output provided by FLAT is useful in 
deciding whether a loop or function needs to be mapped onto 
hardware. FLAT considers functions as loops that are iterate once for 
each call. FLAT comprises of two profiling tools - FLATC and 
FLATSIM. 

Figure 1 shows the tool flow for FLATC. FLATC uses gcc to obtain 
the basic block counts of a program. The information regarding the 
loop names and function calls are obtained from the disassembled 
instructions. Once the loops and function calls are identified, the 
percentage execution can be determined from the execution 
percentage of basic blocks. Since FLATC uses gcc, it is portable 
across a variety of platforms and there are no restrictions on the kind 
of code that can be profiled using FLATC. If a code can be compiled 
using gcc, it can be profiled using FLATC. Compile-time 
instrumentation adds roughly 15% of the instructions to the binary in 
order to accomplish profiling. 

Figure 2 shows the toolflow for FLATSIM. FLATSIM uses 
Virtutech’s Simics instruction set simulator to do the instruction 
profiling. Simics is a full system simulation platform, capable of 
simulating high-end target systems with sufficient fidelity and speed 
to boot and run operating systems and commercial workloads. Simics 
provides a controlled, deterministic, and fully virtualized environment 
for a variety of hardware and software engineering tasks. Hence, We 
decided to instrument the Simics modules to get realistic instruction 
profile estimates. Simics is not an open source simulator. However, 
the source code for the add-on modules is included with the 
distribution. 

The functionality of the simulator can be extended by modifying the 
existing modules or by creating custom modules. One such module 
that is supplied with the Simics distribution is the id-splitter module. 
The id-splitter module in Simics handles all cache accesses and 
redirects them to the instruction or data cache accordingly. 
FLATSIM relies on getting the instruction profile from a modified 
version of the id-splitter module. The suggested modification to the 
id-splitter module is as follows. A tree structure containing all the 
loop-addresses is introduced into the id-splitter module. During 
execution, if an instruction belongs to one of the loops, the counter 
associated with the loop is incremented. Finally information about 
loops and function calls are written to a file. FLATSIM analyses this 
file and prints out information regarding the loop execution. Table 1 
shows the output of FLAT for Diffie-Hellman (DH) key exchange 
application from the NetBench [19] benchmark suite. 

FLAT maintains a DAG like representation for holding data 
structures for loops and functions. Every loop and function is 
associated with a name. The loops and functions are named in a 
hierarchical fashion. For example, the loop name 
<NN_AddDigitMult.1> in Table 1 refers to the first loop in the 
function called NN_AddDigitMult. The first sub-loop of this loop 
would be named as <NN_AddDigitMult.1.1>. The loop name, 
number of loop iterations, total number of instructions executed in 
the loop, percentage of the execution time spent in the loop are the 
fields printed in FLAT’s output. The function statistic consists of the 
function name, number of times it was called, static size, total 
number of instructions executed inside the function and percentage 
of time spent in the function.  

 

Table 1 FLAT's output for the DH application 
Loop Name Frequency Loop 

size 
Total Inst. 
(In Million) 

% 
Exec. 

<Program> 1 54563 4178 100.00 

<NN_SubDigitMult.1> 3192157 246 598 14.31 

<NN_AddDigitMult.1> 3198863 221 548 13.12 

<NN_Sub.1> 1529347 237 237 5.66 

<NN_Div.1> 260926 602 80 1.92 

<NN_Lshift.1> 691293 137 64 1.53 

<NN_AssignZero.1> 1384533 57 54 1.29 

<NN_Mult.1> 232447 204 39 0.93 

<NN_Div.1.1> 333351 256 33 0.79 

<NN_Cmp.1> 280283 139 28.00 0.67 

     

Function Name Frequency Loop 
size 

Total Inst. 
(In Million) 

% 
Exec. 

<NN_DigitMult> 5972388 297 1479 35.39 

<NN_SubDigitMult> 2985562 365 673 16.12 

<NN_AddDigitMult> 2986826 339 627 15.01 

<NN_Sub> 1436259 319 263 6.28 

<NN_DigitDiv> 240351 799 151 3.61 

<NN_Div> 240351 1057 126 3.02 

<NN_AssignZero> 1302080 122 79 1.88 

<NN_Lshift> 650132 263 78 1.85 

<NN_Mult> 212257 421 47 1.11 

<NN_Cmp> 279953 213 40 0.95 

Executable 

Disassembled instructions 

FLATSIM Simics 

Objdump 

Loop & Function statistics 

Figure 2 Tool flow for FLATSIM 
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4. BENCHMARKS 
We analyze an extensive collection of SPECINT [20] integer 
applications (mcf, bzip2, vpr, vortex, crafy, parser), MediaBench 
[21] (ADPCM, G721, MPEG, JPEG, Pegwit), cryptographic 
applications (AES, 3DES, RC4, RC6, idea, blowfish, seal and sha1) 
and network applications (dh, drr, tl, route and url - all from 
NetBench [19]). The benchmarks were compiled for the X86 
architecture using the GNU C Compiler (gcc version 2.95.3). The 
execution times of the first 10 loops of different benchmarks are 
shown in Tables 2, 3 and 4. 

5. CORE IDENTIFICATION 
We define core as the set of all loops whose execution time is 

higher than a threshold value. If for an application, no loop 
contributes more than the threshold value, we classify the 
application as coreless. We refer to the cores with contribution 
closer to 90% as a strong core and we refer to cores with 
contribution is closer to 50% as a weak core. Tables 2, 3 and 4 show 

the loop contributions from the first 10 loops of SPECINT, 
MediaBench and NetBench/security applications respectively. We 
find that the loop contribution decreases successively as we move 
towards the tenth loop.  

We identify the cores across different benchmarks in the 
following manner. For each application, all frequent loops that 
take up more than 5%( a fixed threshold) of the total execution 
time are considered as a part of the core. From Tables 3 and 4, it is 
clear that embedded system applications like MediaBench, 
NetBench and cryptographic algorithms have a very high 
percentage of core contribution. Cryptographic applications tend to 
have much lesser code size as compared to the media or network 
applications and are hence characterized by the presence of very 
strong cores. On an average, the cores for cryptographic 
applications often consist of two loops. The NetBench applications 
have strong cores and their core size is 3 loops for most of the 
applications. Media applications from the SPECINT to be less 
significant than the core contribution have moderately strong cores 

Table 2 Percentage execution time of top 10 loops of SPECINT (Threshold = 5%) 

 
                                                       Loop 

 
 
Benchmarks 1 2 3 4 5 6 7 8 9 10 

No. 
Of 
Core 
Loops 

Core 
type 

ACLC * 

Bzip2 18 37 46 55 61 67 73 77 82 85 6 Weak 11.15 
Crafty 25 33 40 46 52 57 62 67 71 75 7 Weak 8.84 
Eon 3 5 7 9 11 13 15 16 17 18 0 Coreless 0.00 
Gap 17 26 34 41 47 51 56 60 63 67 5 Weak 9.30 
Gzip 29 43 54 65 73 81 86 90 93 96 6 Strong 13.53 
MCF 24 47 58 68 76 83 89 94 94 95 7 Strong 12.66 
Parser 8 15 21 27 33 38 43 47 50 54 6 Weak 6.38 
Twolf 21 28 35 41 45 49 52 55 58 60 4 Weak 10.25 
Vortex 14 23 29 35 37 40 42 43 45 46 4 Weak 8.71 
Vpr 30 42 52 60 66 72 77 81 85 87 7 Strong 11.00 
Average  19 30 38 45 50 55 59 63 66 68 5 Weak 10.03 

 

Table 3 Percentage execution time of top 10 loops in MediaBench (Threshold = 5%) 

 
                                                        Loop  

 
 
Benchmarks 1              2             3            4             5             6            7           8             9            10 

No. 
Of 
Core 
Loops 

Core 
type 

ACLC * 

ADPCM 100 100 100 100 100 100 100 100 100 100 1 Strong 99.95 
G721decode 47 69 87 92 95 96 97 98 98 97 3 Strong 28.95 
G721encode 46 68 85 90 93 94 95 96 97 97 3 Strong 28.36 
Jpegdecode 41 67 77 86 89 90 90 90 90 90 4 Strong 21.47 
Jpegencode 29 42 54 65 75 84 89 92 93 95 6 Strong 14.03 
Mpegdecode 76 81 84 87 89 90 92 93 93 94 1 Strong 76.68 
Pegwit 40 71 81 85 89 92 94 97 98 98 3 Strong 26.83 
Average 52 69 80 86 89 92 93 94 95 95 4 Strong 21.42 

*  ACLC – Average Core Loop Contribution 
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while most of the SPECINT applications have weak cores. We find 
that most of the SPECINT applications have weak cores except for 
eon, which is coreless. 

For the unoptimized and the optimized versions of each 
benchmark, Tables 6, 7 and 8 show the total number of instructions 
in the benchmark, number of instructions in the core of the 
benchmark and the percentage of instructions contributed by the 
core.  The benchmarks were optimized using the GNU C Compiler 
(gcc), operating at the highest level of optimization (O3), with loop 
unrolling enabled. 

6. CORE OPTIMIZATION 
In general, compiler optimization reduces the overall dynamic 

instruction count of a program. It also involves a lot of code 
movement and code redistribution. Hence, after optimization, the 
distribution of cores in a program often gets altered. Table 5 shows 
the percentage contribution from top four loops of the MCF 
application in SPECINT suite. One might observe that optimization 
results in extensive code movement. In Table 5, for the unoptimized 
version, the second loop in the function <price_out_impl> has the 
highest contribution. Due to compiler optimizations such as 
function inlining, an additional loop is introduced in the function  

and hence the third loop of the function  <price_out_impl> 
becomes the most frequent loop after optimization. The 
contribution of loop <primal_bea_mpp.3> increases from 8.28% to 
15.91% while that of loop <refresh_potential.2> decreases. 
Overall, the contribution of the top four loops to the execution 
time increases from 57% to 75%. Compiler optimizations have a 
strong impact not only on the size of the computation core but also 
on its composition and the distribution of the frequently executed 
loops.  

Table 5 Effect of compiler optimization on instruction cycles in 
MCF benchmark 

Un-optimized code  Optimized code 

Loop Name % 
Exec 

Loop Name % 
Exec. 

<price_out_impl.2> 23.44 <price_out_impl.3> 32.07 

<refresh_potential.2> 18.07 <primal_bea_mpp.3> 15.91 

<primal_bea_mpp.3> 8.28 <refresh_potential.3> 13.56 

<replace_weaker_arc.1> 7.54 <refresh_potential.2> 13.22 

Average 57.33 Average 74.76 

Table 4 Percentage execution time of top 10 loops in Security and NetBench applications (Threshold = 5%) 

 
                                                           Loop 

 
 
Benchmarks 1               2           3              4            5              6           7           8            9             10 

No. 
Of 
Core 
Loops 

Core 
type 

ACLC * 

AES 78 93 97 100 100 100 100 100 100 100 2 Strong 46.50 
Blowfish 62 87 93 95 95 95 95 95 95 95 3 Strong 31.10 
DES 46 90 94 98 98 98 98 98 98 98 2 Strong 45.00 
IDEA 48 87 95 95. 95 95 95 95 95 95 3 Strong 31.67 
RC4 95 100 100 100 100 100 100 100 100 100 1 Strong 95.00 
RC6 87 100 100 100 100 100 100 100 100 100 2 Strong 50.00 
Seal 63 98 100 100 100 100 100 100 100 100 2 Strong 48.93 
SHA1 75 98 100 100 100 100 100 100 100 100 2 Strong 48.91 
CRC 87 99 100 100 100 100 100 100 100 100 2 Strong 49.45 
TL 71 82 90 93 95 97 98 98 99 99 3 Strong 29.90 
URL 77 95 99 100 100 100 100 100 100 100 2 Strong 47.47 
DRR 26 48 65 80 85 87 91 93 95 95 4 Strong 20.09 
Average 68 90 95 97 97 98 98 98 99 99 2 Strong 45.35 

*  ACLC – Average Core Loop Contribution 
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If the core is more conducive to optimization than the rest of the 
program, then most of the optimization would be centered around 
the core. However, the extent to which the core and rest of the 
program are affected by optimization largely depends on the nature 
of the application. In order to quantify the impact of optimization on 
the core, we define a new metric called Core to Program Reduction 
Ratio (CPRR) – the ratio of decrease in core size to the decrease in 
program size. CPRR is computed as follows: 

nsinstructio program in Decrease
nsinstructio core in DecreaseCPRR =  

One can visualize any program to consist of core and non-core 
portions. In the definition of CPRR, the numerator denotes the 
decrease in core instructions between the unoptimized and 
optimized programs. The denominator is the decrease in total 
dynamic instruction count due to optimization. If the decrease in the 
dynamic instruction count can be considered as being proportional 
to the extent of optimization, then, a CPRR of 50% would mean that 
the core and the rest of the program were optimized equally. A 
CPRR value higher than 50% implies that core is more amenable to 
optimization as compared to the rest of the program; while a CPRR 

of less than 50% implies that the impact of optimization on the 
non-core portion of the program is higher. 

As illustrated in the Tables 6,7 and 8, programs like the 
security and Netbench applications have high CPRR values while 
applications like the SPECINT benchmarks tend to exhibit lower 
CPRR. We computed the CPRR for SPECINT in order to show the 
effect of compiler optimization on the kernels of large 
applications. Of course, the embedded applications, MediaBench, 
NetBench and the security applications, consist of small kernels 
while the SPECINT benchmarks are complete programs. This 
explains why the computation core in the embedded applications is 
more explicit and dominant. 

7. PARTITIONING FOR CSoC 
In this section we evaluate the potential speedups that can be 

achieved by mapping the optimized cores to hardware. 
Configurable System On Chip platforms (CsoCs) like the Xilinx 
Virtex II pro [7], Altera Excalibur [8] and the Triscend A7 [6] are 
examples of a few architectures that prove to be ideal for migrating 
the core loops to hardware. The obvious objective of migrating 
code to hardware is the speed-up that can be achieved. One should 
also note that not all loops are conducive to hardware mapping. 
Figure 3 shows a target architecture that could benefit by mapping 
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Table 4 CPRR for Security and NetBench applications 

Benchmark Progra
m unopt. 
(106 

inst.) 

Core 
unopt. 
(106 

inst.) 

% of 
core in 
unopt. 
Progra
m 

Program 
optimized 
(106 inst.) 

Core 
optimized 
(106 inst.) 

% Core 
in 
optimized 
program 

Decreas
e in 
program 
size 

CPRR 

AES 577 577 99.99 1023 1020 99.75 43.52 99.43 
Blowfish 1770 1680 94.94 572 572 100.00 67.70 92.53 
CRC 56 55 99.81 19 19 100.00 66.79 99.71 
DES 4390 4290 97.61 2390 2390 100.00 45.58 94.81 
IDEA 2710 2580 95.19 1530 1530 100.00 43.59 88.97 
IPChains 26.02 24.09 92.57 11 10 91.63 59.40 93.21 
RC4 740 740 99.99 328 328 100.00 55.63 99.99 
RC6 802 780 97.20 323 323 99.99 59.72 95.40 
Seal 168 168 99.94 61 61 100.00 63.73 99.90 
TL 6 5 93.12 2 2 90.85 64.26 94.39 
URL 1580 1580 99.50 1430 1420 99.65 9.96 98.09 
DRR 18 15 80.37 16 13 80.33 10.92 80.68 
Average 1072 1042 96 642 641 96.58 49.23 94.76 

 
Table 5 CPRR for SPECINT  

Benchmark Program 
unopt. 
(109 inst.) 

Core 
unopt. 
(109 inst.) 

% of core in 
unopt. 
Program 

Program 
optimized 
(109 inst.) 

Core 
optimized 
(109 inst.) 

%Core in 
optimized 
program 

Decrease in 
program size 

CPRR 

Gzip 10800 6650 61.5 6860 4310 62.87 36.93 58.21 
Vpr 12400 7310 58.96 6120 3310 541.6 50.7 63.62 
MCF 5470 3480 63.72 2010 1820 90.74 63.22 48 
Crafty 14900 6530 43.82 9460 4430 46.79 36.46 38.64 
Parser 24600 6670 27.08 12100 4870 40.13 50.72 14.39 
Bzip2 13900 7600 54.48 7300 3650 50.01 47.65 59.4 
Twolf 23900 9800 40.99 16100 5710 35.49 32.73 52.29 
Average 15153 6863 50.03 8564 4014 54.31 45.49 47.79 

 
Table 6 CPRR for MediaBench  

Benchmark Program 
unopt. 
(106 inst.) 

Core 
unopt. 
(106 inst.) 

% of core in 
unopt. 
Program 

Program 
optimized 
(106 inst.) 

Core 
optimized 
(106 inst.) 

% Core in 
optimized 
program 

Decrease 
in 
program 
size 

CPRR 

ADPCM 56 56 100 32 32 100 43.27 99.99 
JpegDecode 1930 1660 85.87 1260 1070 84.50 34.66 88.45 
JpegEncode 103 67 64.75 77 61 79.43 26.04 23.04 
MpegEncode 1280 1100 86.51 917 752 81.95 28.15 98.17 
G721decode 1800 1650 91.61 1010 938 93.24 44.15 89.54 
G721encode 1920 1720 89.53 1070 947 88.58 44.33 90.72 
Average 1181 1042 86.37 728 633 87.95 36.76 81.65 
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Table 7 Speedup and cumulative execution percentages for the top five loops of SPECINT 

                              Loop                          Speedup  
Benchmarks 1 2 3 4 5 1 2 3 4 5 

Bzip2 19.55 30.19 45.94 50.86 59.16 0.77 0.83 0.96 1.01 1.10 
Crafty 24.23 32.68 40.09 46.79 52.21 0.79 0.85 0.91 0.97 1.02 
Gzip 31.36 45.89 59.46 67.96 77.46 0.84 0.96 1.10 1.22 1.37 
MCF 32.47 64.58 83.72 90.7 97.35 0.85 1.17 1.50 1.68 1.89 
Parser 14.26 23.50 32.19 40.13 47.35 0.74 0.79 0.85 0.91 0.97 
Twolf 24.37 29.74 37.44 42.90 48.68 0.79 0.83 0.89 0.93 0.99 
Vortex 14.80 26.63 29.19 37.22 41.14 0.74 0.81 0.83 0.89 0.92 
Vpr 29.2 32.79 44.62 54.16 61.08 0.83 0.84 0.95 1.04 1.12 
Average  23.78 35.75 46.58 53.84 60.55 0.79 0.89 1.00 1.08 1.17 

Table 11 Speed up and cumulative execution percentage of top five loops in Security/NetBench 

                              Loop                          Speedup  
 
Benchmarks 

1 2 3 4 5 1 2 3 4 5 

AES 91.88 100.00 100.00 100.00 100.00 1.71 1.99 1.99 1.99 1.99 
Blowfish 96.5 99.85 100.00 100.00 100.00 1.86 1.99 1.99 1.99 1.99 
DES 61.64 91.41 97.04 99.95 99.99 1.13 1.70 1.88 1.99 1.99 
IDEA 64.45 97.09 100.00 100.00 100.00 1.17 1.88 1.99 1.99 1.99 
RC4 100.00 100.00 100.00 100.00 100.00 1.99 1.99 1.99 1.99 1.99 
RC6 100.00 100.00 100.00 100.00 100.00 1.99 1.99 1.99 1.99 1.99 
SEAL 55.32 98.03 99.99 100.00 100.00 1.05 1.92 1.99 1.99 1.99 
SHA1 91.43 99.99 100.00 100.00 100.00 1.70 1.99 1.99 1.99 1.99 
CRC 99.06 99.62 100.00 100.00 100.00 1.96 1.98 1.99 1.99 1.99 
TL 41.50 67.12 85.79 90.85 94.38 0.92 1.20 1.55 1.69 1.79 
URL 76.36 94.89 99.20 99.65 99.91 1.35 1.81 1.96 1.98 1.99 
DRR 26.08 47.84 64.11 80.33 84.67 0.81 0.98 1.16 1.43 1.53 
Average 75.35 91.32 95.51 97.57 98.25 1.47 1.79 1.87 1.92 1.94 

Table 10 Speed up and cumulative execution percentage of top five loops in MediaBench   

                              Loop                          Speedup  
 
Benchmarks 

1 2 3 4 5 1 2 3 4 5 

ADPCM 99.94 99.99 99.99 99.99 99.99 1.99 1.99 1.99 1.99 1.99 
G721decode 46.42 72.15 88.23 93.24 96.31 0.96 1.28 1.64 1.76 1.86 
G721encode 38.62 67.24 80.11 88.57 92.73 0.90 1.21 1.43 1.62 1.74 
Jpegdecode 50.66 66.31 78.07 84.67 88.15 1.00 1.19 1.39 1.53 1.61 
Jpegencode 50.08 60.75 71.35 79.66 86.17 1.00 1.12 1.27 1.42 1.56 
Mpegdecode 60.16 68.13 74.34 78.75 82.22 1.11 1.22 1.32 1.40 1.47 
Pegwit 45.79 80.22 82.91 85.29 87.03 0.96 1.43 1.49 1.54 1.58 
Average 55.96 73.55 82.29 89.17 90.37 1.06 1.30 1.47 1.59 1.67 
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loops to hardware. One might observe that no additional delay is 
required to fetch the data for the configurable logic fabric. In this 
section, we describe an analysis of this speed-up based on the 
results obtained from the profiling tool. Note that in this analysis we 
will not assume any overlap in computation between the CPU and 
the FPGA on the CSoC. This is a pessimistic but fair assumption 

SoCP time = CPU time + FPGA times 

CPU time = SW_only_ time – SW_loop_time 

FPGA time = SW_loop_time/HS 

ution%loop_exec*0.471
1

)
HS
1(1

meSW_Only_ti
meSW_loop_ti1

1
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meSW_loop_timeSW_loop_timeSW_only_ti

meSW_Only_ti
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Where SW_only_time is the time from software only execution 

and the SW_loop_time is the time taken on a CPU by the loop that 
will be mapped to hardware. HS (hardware speedup) denotes the 
speedup expected on the loop by mapping it to hardware. From past 
results [1] we have computed this speedup to be 19 in number of 
cycles. However, our experience shows that the clock frequency 
that can be obtained on an FPGA is about 10 times lower than a 

CPU frequency. For the remainder of this analysis we will assume 
that HS = 1.9. 

The overall speedup is the ratio of the 
SW_only_time over the CsoC time. From Tables 
9, 10 and 11, it is clear that mapping the first 5 
frequent loops gives an average speedup of 1.17, 1.67 and 1.94 for 
the SPECINT, MediaBench and NetBench/Security applications. It 
should be noted that not all loops are suitable for mapping on 
hardware.  

8. CONCLUSION 
We propose a loop analysis toolset to support hardware 

software partitioning. We provide a Simics based loop analyzer to 
profile an application and to fine-tune the various architectural 
aspects of the application. We also provide an instrumentation 
based loop analyzer that profiles an application without any 
significant slowdown compared to the actual execution.  For a 
wide range of benchmarks, we identify the cores of the program 
and then study the effect of compiler optimization on the 
distribution of cores. We find that the cores are optimized more as 
compared to the rest of the program. On an average, the 
contribution from the first 2-4 loops of embedded applications is 
roughly 90% while the first 6 loops in the Spec bench suite 
contributes to almost 55% of the execution time. We observe that 
mapping the first five most frequent loops to hardware is 
beneficial for MediaBench, Network and Cryptographic 
applications. 
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