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Abstract

In this paper, we present a novel approach that en-
ables network researchers to quickly select the most ac-
curate modeling and analysis method for a given wired or
wireless network path and network characteristic of inter-
est (e.g., delay, loss, or error process). Amongst the net-
work models that our approach includes in its analysis are
two data preconditioning models that we have developed
as a part of the Tapas project, an investigation into new
approaches for accurately modeling and analyzing the be-
havior of various time-varying network path characteris-
tics. Traditional modeling approaches, such as Discrete
Time Markov Chains (DTMC) are limited in their ability
to model time-varying characteristics. This problem is ex-
acerbated in the wireless domain, where fading events cre-
ate extreme burstiness of delays, losses, and errors on wire-
less links. We introduce a new approach to the modeling of
network characteristics, the data preconditioning method-
ology, and present the latest application of this methodol-
ogy, the Modified hidden Markov Model (M

�
). Our domain

analysis methodology defines and classifies binary network
traces (i.e., traces which describes the occurrence or the
lack of occurrence of a network event over time), and using
these classifications, it determines the most accurate model
or models from a set of models.

1 Introduction

Perhaps the most common method for evaluating appli-
cation and network protocol designs while they are under
development is the use of network link simulation and em-
ulation. Simulation and emulation are low-cost techniques
that enable networking researchers to quickly, and in a re-
peatable manner, explore the behavior of a network or appli-
cation protocol under a variety of network conditions (e.g.,
varying loss, delay, and error conditions). However, the be-
havior and thus, the results and performance, of many pro-
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tocols depends on the characteristics of the network con-
ditions. Designers of such algorithms and protocols make
assumptions about the way in which a particular network
characteristic varies and encode these assumptions into the
algorithms.

For example, a detailed understanding of the packet loss
process and burstiness of errors is necessary for the proper
design and parameter tuning of error control protocols, such
as Automatic Repeat reQuest (ARQ) protocols. Another ex-
ample is modeling end-to-end delay in the Internet, a pro-
cess that becomes significantly more complex when the net-
work includes a wireless link. For real-time one-way or
two-way audio/video applications, system and human per-
ceptual tolerances dictate maximum acceptable transmis-
sion delays. One-way application delays are bounded by
the willingness of a human to wait for playback to begin
and by system resource limitations on the size of a reason-
able playback buffer, while for two-way applications, de-
lays are bounded by human interaction constraints of 200
milliseconds. In both types of applications, data packets
with greater delays are discarded since they are no longer
useful. The testing of the behavior of multimedia applica-
tions under varying delay conditions depends upon an ac-
curate modeling of the delay behavior of the network under
test.

Thus, we are led to one of the most important problems
in statistics: the choice of an appropriate model for char-
acterizing a given dataset. We encounter this same prob-
lem in computer networks, where many design decisions
are the results of some chosen simulation parameters and
models. Floyd and Kohler [6] argue that the use of inaccu-
rate models in computer networks leads to flaws in Internet
research. In analyzing computer networks, researchers are
faced with measurements whose characteristics experience
non-stationarity (time variability) and complex patterns due
to a large number of factors, including both internal network
elements and external events. Often, it is difficult to iden-
tify and thus, accurately model, the causes of these patterns.
However, classical models have often worked surprisingly
well in modeling composite events in traditional networks.
As we will show in this paper, the characteristics of some
of today’s wired and wireless networks (e.g., a packet that
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couldn’t be transmitted through a noisy wireless channel)
or network metrics being examined, has resulted in datasets
that cannot be adequately characterized or modeled using
classical techniques. In this paper we introduce a new mod-
eling methodology, a data preconditioning technique which
takes into consideration the time varying statistical proper-
ties of today’s networks.

The traditional approach to modeling networks is the use
of a classical network model, such as a Bernoulli, Gilbert,
high-order Discrete Time Markov Chain (DTMC), or Hid-
den Markov Model (HMM). The choice of which model to
use is usually an ad hoc one, often without adequate consid-
eration of the statistical properties of each model. For ex-
ample, the Bernoulli model is a memory-less process, which
means that the output value at each iteration is independent
of the previous outputs. Thus, output values will be evenly
distributed in proportion to the model’s probability value.
However, a network with bursty behavior would not experi-
ence a matching even distribution of outputs. So, it would
appear that for such a network, the Bernoulli model would
not be an ideal choice, as it would not match the network’s
actual characteristics.

1.1 The Role of Accurate Modeling

The observation that different models may yield differ-
ent statistical characteristics from a network and metric un-
der investigation is important only if it is actually the case
that the use of an accurate model (i.e., one with the cor-
rect distribution) is critical to the correct design of proto-
cols using simulation and emulation. However, we have
already demonstrated the correctness of this belief in [3].
In that paper, we observed that a naive assumption about
the error model used for simulation during protocol de-
sign could lead to a poor choice of value for the protocol’s
design parameters. In particular, we evaluated alternative
logical frame sizes to the fixed data frame size used by
the semi-reliable protocol, Radio Link Protocol (RLP), in
a Global System for Mobility (GSM) digital cellular data
network. More specifically, we were interested in determin-
ing the optimal logical frame size in poor signal coverage
(i.e., worst case conditions), one that balances the header
and checksum overhead associated with each frame, with
the time to retransmit an entire corrupted frame, to yield the
maximum throughput. Notice that the distribution of errors
(e.g., bursty versus more even) will affect the choice of opti-
mal frame size, since bursty errors favor larger frame sizes,
while evenly distributed errors favor smaller frame sizes.

To summarize our work in [3], we collected radio link
error traces from a commercial GSM network, calculated
the throughput for different frame sizes, and determined
that 210 bytes is the optimal frame size value for maxi-
mum throughput (see Figure 1). We then compared the re-
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Figure 1. Optimal frame size versus error
model.

sults when assuming the error process is a Bernoulli pro-
cess, Gilbert process, and 3rd order DTMC process. Using
each error model, we generated an artificial trace of same
length as the original GSM trace and computed the optimal
frame sizes using each model. Using the Bernoulli model,
the optimal frame size was found to be 60 bytes (i.e., a 71
percent decrease in performance relative to the actual op-
timum value). The Gilbert and 3rd order Markov models
yielded optimal frame sizes of 150 and 180 bytes, respec-
tively. We then developed a data preconditioning algorithm,
the Markov-based Trace Analysis (MTA) algorithm, which
more accurately models the error distribution in the GSM
network. Using the MTA error model, we generated an ar-
tificial trace that yielded an optimal frame size of 210 bytes
(see Figure 1). There are two important observations to
derive from this figure: the Gilbert and 3rd order Markov
models predicted higher throughput values than expected,
and performance of both for larger frame sizes is substan-
tially less than that of the actual trace. The increased per-
formance differences are relatively small in this case, how-
ever, they could lead to questions about performance if the
system is deployed and peak performance does not match
predicted performance. The decreased performance dif-
ferences are important because the overall protocol design
would most likely be a compromise between optimizing
performance under both poor and good conditions. A de-
signer who knows that performance under poor conditions
would only be slightly reduced by increasing the frame size
could choose a larger frame size, and increase overall per-
formance with a small penalty for poor conditions.

While the results in [3] were specific to a particular net-
work link and its loss process, in this paper, we generalize
and apply our research to a broad spectrum of loss and delay
networks path traces collected from three different types of
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Trace Frames FER ������� , �	�
����� , ������ C

IP 1 360,385 0.027 0.034, 0.099, 0.82 1
IP 2 331,021 0.050 0.002, 0.099, 0.11 82
IP 3 155,889 0.064 0.057, 0.099, 0.79 1
WLAN E 288,804 0.063 0.044, 0.099, 0.34 5
WLAN D 188,436 0.293 0.046, 0.005, 0.414 41
GSM E 616,404 0.055 0.005, 0.056, 0.41 23
GSM D 2,579 0.055 0.002, 0.028, 0.95 31

Table 1. Collected traces and their character-
istics: number of frames, Frame Error Rate
(FER), the variables �������������	�
���������������� , and
the change of state variable, � .

wired and wireless networks, and the general challenge of
domain analysis: choosing the most appropriate model to
use for modeling the behavior of an arbitrary network path
and characteristic. We also revisit our previously developed
data preconditioning algorithm, the MTA algorithm, and
introduce a new one, the Modified hidden Markov Model
(M

�
) algorithm. We then show how domain analysis can

be used to choose a network model that best represents the
characteristics of a given network path, a metric of interest,
and scenario.

Overall, as we will show in this paper, the results are
that classical models perform well for modeling some wired
network paths, but surprisingly, not all. However, classical
models are insufficient for modeling modern wireless net-
work paths. In part, this is due to the more complex, bursty
behavior of these networks. We confirm this property of
classical models in a detailed exploration of their behav-
ior in modeling a synthetic network in Section 8. The data
preconditioning models are better at capturing the loss and
delay behavior of networks, but are still lacking in some
areas.

The rest of this paper is structured as follows. In Sec-
tion 2, we define binary network traces and review the con-
cept of stationarity. In Section 3, we discuss traditional
modeling techniques, followed by a discussion of related
work in Section 4. In Section 5, we review our data pre-
conditioning technique and two algorithms based on this
technique. We present our approach to evaluating model ac-
curacy and our modeling methodology in Section 6, and in
Section 7, we apply we apply these techniques to two types
of network path traces collected from seven different net-
works. We introduce our domain of applicability selection
technique in Section 8 and use it to evaluate the behavior of
the various modeling techniques. Finally, we conclude with
Section 9.

2 Defining and Classifying Binary Network
Path Traces

We define binary network path traces as sequences of 0’s
and 1’s, where a 1 denotes the occurrence of a specific event
in the network path, while a 0 denotes the lack of the event.
For example, a 1 could represent a lost or dropped packet,
while a 0 could represent a correctly received packet. In [4],
we used the Runs Test developed by Bendat and Piersol [2]
to show that GSM binary error traces are locally stationary
binary time series [8], consisting of regions that experience
various statistical behaviors. In this paper, we extend that
work by analyzing and modeling several types of network
path traces. In particular, we analyze traces that capture the
following events: IP packet losses, wireless frame errors,
and packet delays. In a loss trace, a 1 signifies a lost packet,
while in an error trace, a 1 denotes a corrupted frame, and
in a delay trace, a 1 means that the packet or frame arrived
with a delay greater than some maximum threshold1. To
generalize all these cases, whenever we encounter a 1 in a
packet or frame trace, we will refer to it as an error frame.

We define the Frame Error Rate (FER) as the overall per-
centage of frames (or packets) that have errors (or losses, or
delays) relative to the total number of frames (or packets) in
a trace.

To understand the effectiveness of domain analysis for a
broad set of network types and metrics, we analyzed traces
collected under various scenarios from several networks and
at different protocol layers (see Table 1). IP 1 is a loss trace
collected by Yajnik et al. [15] during an uncongested IP
connection from Massachusetts to Sweden. IP 2 and IP 3
are IP loss traces collected by Wenyu Jiang at Columbia
University (CU). IP 2 was collected during an uncongested
connection from CU to GMD (the German National Re-
search Center for Information Technology), and IP 3 was
collected during an uncongested connection from CU to the
University of Massachusetts. WLAN E was collected under
good signal quality conditions from an IEEE 802.11b wire-
less LAN testbed at the Technical University of Berlin by
Andreas Willig [14]. We collected GSM E under poor sig-
nal quality conditions at the Circuit-Switched Data (CSD)
radio link layer of a GSM wireless data cellular network at
the UC Berkeley campus. We also collected GSM D and
WLAN D at the transport layer using UDP over a poor sig-
nal quality GSM CSD link2 and a good signal quality IEEE
802.11b network at the UC Berkeley campus, respectively.
These two traces were collected to analyze the delays in-
troduced in applications by various wireless networks. For
GSM D, the delay threshold was chosen to be 2 seconds,

1The threshold value is dependent upon the particular application of
interest and it indicates the delay value for which packets will be dropped
by the application.

2We are still in the process of collecting additional GSM D traces.
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Figure 2. An error trace with lossy and error-
free states.

while for WLAN D, we chose a delay threshold of 20 mil-
liseconds. Note that the delay statistics obtained in GSM D
and WLAN D are the results of the effects from two links:
the delays due to the radio link layer between the sender and
the base station in the GSM or access point in the 802.11b
network and the delays caused by the IP network. Analyz-
ing each link in isolation might yield different models for
each link. However, in this paper, we only analyze the end-
to-end effects as a superposition of the effects from the two
links. In future work, we plan to explore the differences, if
any, between the composition of individual models and the
generation of a superposition model. Finally, we are in the
process of collecting and analyzing loss and delay traces in
a General Packet Radio Service (GPRS) GSM network and
a Code Division Multiple Access (CDMA) 1xRTT wireless
data network.

We analyzed the traces in Table 1 and observed that these
traces can be decomposed into clusters of 1’s and 0’s, and
long clusters of just 0’s. We associate these clusters with
lossy states and error-free states (see Figure 2), by delineat-
ing the trace into states (clusters) with lossy states beginning
with a first element of 1 and containing bursts of 1’s and 0’s.
A lossy state ends with a burst of 0’s of length equal to or
greater than a change-of-state variable � . The next 0 ele-
ment following the burst of � 0’s begins an error-free state,
which is then terminated by the 0 preceding the next 1 ele-
ment in the trace. The value of � is a design decision that
we have defined as the mean plus one standard deviation
of the length of error bursts in a trace. In Section 5.2, we
provide an analysis to optimize and justify the parameter C.

We observe that the length distributions of lossy and
error-free states can be approximated with an exponential
distribution function, where the smaller the exponential pa-
rameter, the larger the average cluster length. Based on
this observation, we characterize collected traces using a
tuple of three variables ��� ����� ��� � ����� ��� ����� � , where � �����
and � � ����� are the parameters of the lossy and error-free
state length exponential distribution, and � ����� is the error
density in the lossy state (i.e., the probability of getting a 1
inside a lossy state). Note the significant difference between
������ and the FER.

2.1 Stationarity of Network Path Traces

In the Tapas project, we collect and model network path
measurements in the form of binary traces of losses, errors,
and delays as described in Section 2. Consider a trace to be
the process

��� �����	��
� with a discrete space ��� � 
 ��� � .
A process

� � is strictly stationary if the distribution of
� � ����� ������� � � ����� � is the same as that of � � � ������� � � � � for
each � and � .

� � is second-order stationary if the mean� ��� � � � ��� is constant (independent of � ), and the auto-
covariance only depends on the difference � for all � (i.e.,
� ��! �"� � � �#� � ��! � � � � � �%$ ���#� � ��! �&��� ). Given a
second-order stationary binary time series

� � , the process
can be modeled as a homogeneous DTMCs, where the value
of the chain at time � is determined by the memory of the
process [8]. In a homogeneous DTMC, the transition prob-
abilities remain constant over time, (i.e., ' (�� � �)��� �+* �� � �-,��.�/' (�� �10 �2* � � � �-,�� ).

However, checking a binary trace for second-order sta-
tionarity is mathematically challenging, and, we believe,
not necessary for network modeling. Thus, we define a bi-
nary trace as stationary whenever the statistical properties,
such as mean, median or standard deviation do not vary over
time for small window sizes (i.e., values of � ). The require-
ment on the window size to be small is necessary to be able
to apply high-order DTMCs, where the transitions probabil-
ities do not vary over time.

As mentioned above, we observe that empirical network
traces are non-stationary, since the traces’ statistical prop-
erties vary over time. However, these traces exhibit local
stationarity (i.e., a non-stationary data set composed of de-
terministic regions and small stationary regions). In this pa-
per, we show that neglecting the non-stationary aspects of
network traces and attempting to fit traditional models onto
these traces can lead to inadequate models that do not cap-
ture the many possible patterns of the data and their distri-
bution.

We use the Runs Test to analyze the stationarity of net-
work path traces. The Runs Test computes the median run
(i.e., error burst) value of the trace, divides the trace into
equal size segments, and plots a histogram of runs not equal
to the median value in each segment. Too few or too many
runs is a sign of non-stationarity. If a trace is stationary,
the number of runs distribution between the 0.05 and 0.95
cut-offs will be close to 90 percent. The Runs Test can be
summarized as follows:

1. Define a run as a number of consecutive ones (also re-
ferred to as an error burst).

2. Divide the trace into segments of equal lengths (win-
dow size).

3. Compute the lengths of runs in each segment.
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Figure 3. The Runs Test applied to lossy sub-
trace.

4. Count the number of runs of length above and below
the median value for run lengths in the trace.

5. Plot a histogram for the number of runs.

We applied the Runs Test to GSM E with window size of
60. Figure 3 shows that only 21.2 percent of the runs distri-
bution lie between the 0.05 and 0.95 cut-offs, and 78.8 per-
cent lays outside the left and right cut-offs. Thus, from the
Runs Test, we conclude that GSM E is a non-stationary pro-
cess for a window size of 60. We also tested several window
sizes, and observed that as the window size decreases the
percentage of runs distribution between the boundary points
also decreases, (i.e., for smaller window sizes,GSM E is
non-stationarity). For example, for a window size of 20,
only 12.3 percent of the runs distribution lie between the
boundary points.

3 Classical Markov Models

In this section, we present the two types of classical
stochastic models for characterizing the statistical proper-
ties of network traces that we examine in this paper. One is
the Gilbert model, the well known and popular Markov pro-
cess of memory one, and the second is the Hidden Markov
Model (HMM) [10]. We discuss the reasoning behind our
choices below.

3.1 The Gilbert Model

We choose the Gilbert model because it is one of the
most common models used for network simulation. The
model is a DTMC of order one and has two states (see Fig-
ure 4). In a network trace, the Gilbert model states cor-
respond to the status of each data frame

�
0,1 � , as defined

Pr(0|1)

0 1Pr(0|0) Pr(1|1)

Pr(1|0)

Figure 4. Gilbert model state transition dia-
gram.

S
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Figure 5. Bayesian Network of a 2nd Order
Hidden Markov Model.

previously. The Gilbert model predicts the state of the next
frame by only considering the previously received frame.
As a result, the Gilbert model can only model relatively
short bursts of an event.

An alternative to the Gilbert model is a 3rd order Markov
model, a DTMC of order three (i.e., with eight states).
Compared to the Gilbert model, this model keeps track of
the status of the previous three frames, increasing its pre-
diction accuracy at the cost of additional complexity (i.e.,
the model can model short and relatively long bursts of an
event). However, even with this increase in accuracy, 3rd

order Markov models don’t always accurately capture real
network statistical characteristics (see Figure 1).

3.2 The Hidden Markov Model

For the second model, we choose a HMM model because
many statisticians believe that the non-stationary charac-
teristic of empirical network traces makes Hidden Markov
Models (HMM) a good potential candidate to model net-
work traces. In a HMM, each data pattern is associated
with a hidden state, giving the HMM its main advantage:
the ability to model non-stationary processes. The model
parameters in a HMM are the transition probabilities be-
tween hidden states, the memory of the process, and the
conditional probabilities of the observations given the cur-
rent state. In a HMM, the current observation is statisti-
cally independent of the previous observations and it only
depends on the current state, this is known as the output in-
dependence assumption. Figure 5 illustrates the Bayesian
network [13] for the graphical representation of a HMM of
order 2, where � � ������� ��� � ������� represents the sequence of states
and � � ������� ��� � ������� represents the sequence of observation.

We model network traces with a two-hidden-state 4th or-
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der hidden Markov model. The states
��� � � � 0 � correspond

to the lossy and error-free states defined in Section 2, while
the observation symbols

��� � � � 0 � correspond to the status
of the data frame

� 
 ��� � . We choose a high order of 4 to ac-
count for possible correlations between consecutive states.
Using an order greater than 4 improves accuracy slightly,
but it significantly increases the computational complexity
of the model.

4 Related Work

There is significant interest in the area of using network
measurements to model network behavior. However, very
few researchers address the problem of non-stationarity in
network measurements. Zhang et al. [16] study stationarity
in the Internet and introduce a new notion of stationarity that
is more relevant to network properties. They call a dataset
operational stationary, if the statistics of interest remain
within bounds considered operationally equivalent. Their
most interesting finding is the observation that stationarity
depends on the time scale that is used for evaluation. Others
have looked at the stationarity behavior of network traffic,
traffic stationarity. For example, Molnar et al. [11] propose
a simple approach for identifying stationary intervals and
analyzing them independently. They introduce a new tech-
nique for identifying these intervals. Leland et al. [9] study
the stationarity of self-similar models of network traffic.

Several researchers have applied traditional models to
the analysis of non-stationary data collected in computer
networks. In particular, they have used traditional models
to characterize the loss process of various channels. Bolot
et al. [5] use a characterization of the loss process of audio
packets to determine the appropriate error control scheme
for streaming audio. They model the loss process as a two-
state Markov chain, and show that the loss burst distribu-
tion is approximately geometric. Yajnik et al. [15] char-
acterize the packet loss in a multicast network by examin-
ing the spatial (across receivers) and temporal (across con-
secutive packets) correlation in packet loss. Of particular
interest is their modeling of temporal loss using a 3rd or-
der Markov chain. Yajnik’s work identifies the problem of
non-stationarity in their datasets, and they analyze the data
by removing these parts of the data that experience non-
stationary error behavior.

There is also related work in wireless traffic modeling.
Nguyen et al. [12] present a two-state Markov wireless error
model (i.e., Gilbert model), and develop an improved model
based on collected Lucent 900 MHz WaveLAN error traces.
Building on this work, Balakrishnan and Katz [1] also col-
lected error traces from a Lucent 900 MHz WaveLAN net-
work and developed a two-state Markov chain error model.
Willig et al. [14] present a special class of Markov models,
called bipartite models. Zorzi et al. [17] also investigate

the error characteristics of a wireless channel and compare
an Independent and Identically Distributed (IID) model to
the Gilbert model. Their work postulates that higher order
models are not necessary.

In summary, the Tapas project addresses the modeling
of similar networks with non-stationary error and delay be-
haviors, providing a new modeling methodology. Our work
is relatively novel in its approach of not only identifying
datasets with non-stationary behavior, but also identifying
stationary regions and modeling the entire dataset as a se-
quence of stationary components. We also focus on and
demonstrate the importance of accuracy in network model-
ing. In previous work [3, 4], we have shown how assum-
ing the wrong error distributions has led to incorrect design
decisions. For example, as we show in the introduction,
choosing an incorrect error model yields a suboptimal wire-
less frame size. Based on this and other observations, we
argue that there is a need to develop methods for choosing
the most accurate modeling algorithms that best describe
and handle time-varying real world network characteristics
and their statistics.

5 Modeling through Data Preconditioning

As we will show, classical modeling approaches are in-
capable of capturing all of the complexities and charac-
teristics of some datasets. We introduce a new model-
ing methodology that supports a greater degree of behav-
ior complexity in computer networks. We then describe
two instances of this methodology, the Markov-based Trace
Analysis (MTA) algorithm and the Modified hidden Markov
Model (M

�
) algorithm.

5.1 Data Preconditioning

The search for a better method for creating accurate an-
alytical network models that take the non-stationarity be-
havior of networks into account leads us to propose a new
research methodology. This methodology consists of the
analysis and preconditioning of data before the data is fed
into traditional models. Intuitively, we use pattern recogni-
tion to break down datasets that experience non-stationarity
into subsets that exhibit stationary behavior, and hence are
easier to accurately model with traditional models. For a
particular network characteristic, we follow the process il-
lustrated in Figure 6. First, we identify data patterns that ex-
hibit stationarity and suggest an underlying process consist-
ing of some number of states. Each state is associated with
a specific data pattern corresponding to a particular network
behavior3. For example, for the network traces presented in
Section 2, we identified two distinct states: lossy and error-
free. Second, we concatenate trace regions with same states

3Each network behavior has certain statistical properties.
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 Subtrace 1

Network
  Trace

 Subtrace 2

 Subtrace 3

Figure 6. Data Preconditioning: in this exam-
ple a network trace is decomposed into three
subtraces, each consisting of a concatena-
tion of a specific data pattern.

to form stationary subtraces of the original trace, (i.e., lossy
and error-free subtraces). These subtraces have the property
that they can be modeled using a high-order DTMC. Note
that there will be as many subtraces as states. Finally, we
use Markov models (or other similar modeling techniques)
to calculate the transition probabilities between states.

This approach can be used to model very different
characteristics of datasets from collected network mea-
surements, including packet loss, end-to-end latency, or
throughput. In particular in this paper, we demonstrate how
this research methodology can be applied to significantly
improve the accuracy of the modeling of the error and delay
processes in wired and wireless networks.

5.2 Optimizing the change-of-state variable C

An important design desicion in our data preconditioning
methodology is the choice of the change-of-state variable C.
Our goal is to construct subtraces that experience stationar-
ity for a given window size. In Section 2, we defined C as
the mean plus one standard deviation of the length of er-
ror bursts in the trace. In this section we will analyze our
chooice on the value C, and we will provide an optimiza-
tion algorithm to find the best possible value for C. We use
GSM E trace for our analysis.

We first calculate the mean and standard deviation for
the error burst length in GSM E. For this trace, the mean
value was found to be 6 frames and the standard deviation
was 17 frames, yielding a state-of-change constant value
� of 23 ( ��� ��� ) frames. With a � value of 23, we form
lossy subtrace by first identifying lossy states, as described
in Section 2, and concatenating all lossy states together. To
prove that lossy trace is a stationary process we apply the
Runs Test described in Section 2.1. Figure 7 shows that 90.5
percent of the runs distribution lie between the 0.05 and 0.95
cut-offs. Therefore, this result proves that lossy subtrace,
constructed with a � value of 23, is a stationary process for
a window size of 60. Recall in Section 2, GSM E only had
21.2 percent of the runs distribution between the boundary
points.
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Figure 7. The Runs Test applied to lossy sub-
trace.

Variable � Percentage

25 89.3
24 90.7
23 90.5
22 91.5
21 91.4

Table 2. Percentage of runs distribution be-
tween boundary points for a range of � val-
ues.

Next, in order to optimize the � value, we developed an
algorithm that takes an original non-stationary trace and it
executes the Runs Test for a large range of � values. The
goal is to find the greater � value that yields a stationary
lossy subtrace.

Table 2, shows the the percentage of runs distribution
between the boundary points for various � values between
21 and 25. We are interested in obtaining the largest � value
that gives 90 percent distribution. Table 2 illustrates that
choosing any value smaller that 25 yield a stationary lossy
subtrace. Therefore, our intituiticve choice of 23 was inside
this optimal range of values. In fact, choosing any � value
close to 23 will yield stationarity.

Decreasing the window size in the Runs test, put more
restriction in the stationary behavior. The smaller the win-
dow size, the smaller the � value would have to be to obtain
stationary subtraces.

5.3 The Markov-based Trace Analysis Algorithm

The basic concept behind the Markov-based Trace Anal-
ysis (MTA) algorithm [4] is that a trace can be decomposed
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into the lossy and error-free states described in Section 2.
The lossy states are concatenated to form the lossy sub-
trace, while the error-free states are concatenated to form
the error-free subtrace. Lossy subtrace exhibits stationar-
ity and it can be modeled using a high-order DTMC. Next,
the MTA algorithm models lossy subtrace as a DTMC and
computes the memory and transitions probabilities.

The last step of the MTA algorithm is to determine the
best fitting distribution for the lengths of both lossy and
error-free states. MTA approximates the states’ lengths
distribution using an exponential distribution function and
computes the exponential function’s parameters using a fit-
ting function. The Cumulative Distribution Function (CDF)
of the empirical trace is plotted along with exponential dis-
tributions with parameter values ranging from 0 to 1 in steps
of 0.001. MTA then chooses the exponential parameter that
yields a CDF curve that is the best approximation to the em-
pirical CDF curve. The best approximation is determined
by calculating the correlation coefficient, as explained in
Section 6, between the original CDF curve and the expo-
nential approximations.

We define two random processes with a discrete space
� � � 
 ��� ����������� � :

� The lossy state length process
��� � � � � 
 � , where� � represents the number of elements in the ����� lossy

state, (i.e., the length of the state).

� The error-free state length process
��	 � � � � 
� ,

where
	 � represents the � ��� error-free state length.

The application of the MTA algorithm to an input trace
can be summarized as follows:

1. Calculate the mean ( � � ) and standard deviation ( ��
�� )
values for error burst lengths in the trace.

2. Set � , the change-of-state variable, equal to � � + ��
 � .
3. Partition the trace into lossy state and error-free state

portions using the following definitions:

� Lossy state: runs of 1’s and 0’s, with the first el-
ement being a 1, and with runs of only 0’s that
have length less than or equal to the � .

� Error-free state: runs of only 0’s that have length
greater than � .

4. Create lossy sub-trace by concatenating the lossy state
portions of the error trace.

5. Model lossy sub-trace as a DTMC, and calculate its
order and transition probabilities.

6. Determine the best fitting exponential distributions for
the length processes

� � and
	 � .

5.4 The Modified hidden Markov Model Algo-
rithm

The Modified hidden Markov Model (M
�
) modeling al-

gorithm is the most recent application of our data precon-
ditioning methodology. Unlike the MTA algorithm, the M

�

algorithm is capable of modeling traces with two or more
data patterns and non-exponential state length distributions.
Similar to a HMM, the M

�
views each data pattern as a hid-

den state, and it models the transition among states with
a high order DTMC. Using the data preconditioning ap-
proach, the M

�
algorithm concatenates subtraces from each

of the same hidden states encountered in the original trace to
form subtraces, and then models each subtrace with a high
order DTMC. Intuitively, this new algorithm can be viewed
as a new type of hidden Markov process [10], where the out-
put independent assumption is not taken. Figure 8 shows the
Bayesian network representation of a M

�
model of order 2.

In this diagram, we assume that � �� 0 ������� � ����� � ��� ��� � ��� � 0
are the same hidden state and, if we have several hidden
states, each hidden state would generate a subtrace.

S
k−2

S S S Sk−1 k k+1 k+2

y y y y y
k−2 k−1 k+1

k+2k

Figure 8. Bayesian Network of a 2nd Order M
�

Model.

In Section 2, we identified two hidden states in our net-
work traces (i.e., the error-free and lossy states). Using this
observation, we summarize the steps of the M

�
algorithm as

follows:

� Similar to the method used for MTA, M
�

first identifies
the states in the original trace and it creates subtraces
by concatenating same states.

1. Create lossy subtrace from the lossy state por-
tions of the error trace.

2. Model lossy subtrace as a DTMC, and calculate
its order and transition probabilities.

3. Model the error-free state as a deterministic pro-
cess, where each element is 0.

� Next, M
�

determines the transitions between error-free
and lossy states:

1. Create state trace. This trace corresponds to the
collected dataset (e.g., GSM E trace), with lossy
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states (as defined by the first step) replaced by all
1’s and error-tree states (as defined by the first
step) remaining all 0’s.

2. Model state trace as a DTMC, and calculate its
order and transition probabilities.

In summary, the M
�

algorithm applies traditional
Markov process properties to local stationary data by iden-
tifying stationary regions and modeling these regions and
the transition between them using DTMCs.

6 Model Accuracy and Validation

In this section, we provide three necessary mechanisms:
an approach for evaluating the accuracy of a particular
model, a method for determining the minimum size of a col-
lected trace that is necessary to extract model parameters for
a specific network, and a process for validating that the cre-
ated models are representative of a particular network path
scenario (e.g., poor signal quality, uncongested, etc.) and
metric of interest.

6.1 Measuring Model Accuracy

We are interested in evaluating model accuracy for two
classical models (i.e., Gilbert and 4th order HMM) and two
data preconditioning algorithms (i.e., MTA and M

�
). Us-

ing each model with the collected traces in Table 1, we can
generate artificial traces and compare each trace’s result-
ing statistics with the original traces’ statistics. We then
need to quantify the accuracy of each model. We do this by
first plotting the error and error-free burst Cumulative Dis-
tribution Functions (CDF) for each artificial trace. Then, for
each trace, we calculate the correlation coefficient ( ��� ) [2]
between the error and error-free CDFs of artificial trace and
the CDFs of the original trace. We use the ��� as a measure
of how closely each artificial trace approximates the origi-
nal trace. A ��� of 1 signifies that the two traces experience
the same error or error-free statistics, while a ��� of 0 indi-
cates no statistical correlation between the traces.

To better understand the relationship between ��� values
and model accuracy, we calculated the error burst statis-
tics of several generated traces and computed their ��� val-
ues for a given reference trace. First, we generated a ref-
erence trace with fixed set of �������������	� ����������������� values
of (0.006, 0.1, 1.0). Next, we generated artificial traces
by changing the value � ����� from 0.0065 to 0.02 in steps
of 0.0005, while keeping �	� ����� and � ����� constant (i.e.,
���	� ����� ��� ����� �%� � 
 ��� ��� � ), and we computed the associ-
ated ��� value for each artificial trace. Finally, using the
reference trace’s mean error burst size as a reference point
(i.e., 173 frames), we plotted the mean error burst and its
percentage reduction (relative to the reference trace’s error

burst size) for each observed ��� value (see Figure 9). Thus,
the percentage reduction indicates the decrease in size of the
mean error burst of an artificial trace relative to the mean
error burst of the reference trace. Figure 9 shows that an
artificial trace with a ��� of 0.99, yields a mean error burst
of 160 frames or only an 8 percent reduction. As the ��� de-
creases, the percentage of reduction increases, and ��� values
smaller than or equal to 0.96 will yield percentages greater
than or close to 50 percent. Based on these observations,
we choose to associate ��� values smaller than or equal to
0.96 (i.e., mean percentage reduction greater that 50 per-
cent) with inaccurate models.
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Figure 9. Mean error burst and percentage
reduction for different correlation coefficient
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0.334
0.363

0.421

0.702

0.476

0.930

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

100000 50000 25000 12500 6250 3125

Subtrace Length (Frames)

C
o

rr
el

at
io

n
 C

o
ef

fi
ci

en
t

Figure 10. WLAN E error path modeling: mean
and standard deviation correlation coefficient
values for different subtrace lengths.

9



0.817

0.896
0.9550.992 0.9790.995

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

100000 50000 25000 12500 6250 3125

Subtrace Length (Frames)

C
o

rr
el

at
io

n
 C

o
ef

fi
ci

en
t

Figure 11. GSM E error path modeling: mean
and standard deviation correlation coefficient
values for different subtrace lengths.
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6.2 Minimum Trace Length for Accurate Model-
ing

Another important aspect in the generation of accurate
models is determining the minimum trace length required
to precisely capture model parameters. To address this is-
sue, we provide the following analysis method. Given a
specific network path, scenario, and metric of interest, we
collect a very large trace, (e.g., a 200,000 frame trace repre-
senting over an hour’s worth of data), we call this trace the
reference trace. Next, we calculate the maximum error-free
burst (max EFB) encountered in this trace. If max EFB is
close to the size of the collected trace (i.e., 200,000 in this
case), then a larger trace must be collected. Once we have
the typical max EFB and a reference trace of length ref len,
we divide this trace into subtraces of sizes

� ��� � ���0��
, where

* � � � ������������� � � . The maximum value of * (i.e., � ) is cho-
sen such that

� ��� � ���0 � � � � 
 
 
 frames. For example, a ref-

erence trace of 200,000 frames will generate 2 subtraces of
100,000 frames, 4 subtraces of 50,000 frames, 8 subtraces
of 25,000 frames, 16 subtraces of 12,500 frames, 32 sub-
traces of 6,250 frames, 64 subtraces of 3,125 frames, and
128 subtraces of 1,562 frames (i.e., � � � is the maxi-
mum value that yields a subtrace length greater than 1,000
frames). Then, we calculate the ��� value of each subtrace to
the reference trace. The ��� value indicates the degree of sta-
tistical correlation between the subtraces and the reference
trace. As previously discussed, a ��� of 0.96 or less signi-
fies an inaccurate model, therefore a subtrace with such a ���

value should not be used to obtain a model’s parameters.
As an example, we perform this analysis on WLAN E

and GSM E. First, we calculate their max EFB values
to be 81,493 and 20,447, respectively, and take the first
200,000 frames of each trace to construct the reference
traces, ref WLAN E and ref GSM E. We choose � � � ,
which generates a total of 126 subtraces of similar and dif-
ferent lengths. For the reference traces ref WLAN E and
ref GSM E, Figures 10 and 11 illustrate the mean and stan-
dard ��� values for each subtrace length. For GSM E, sub-
traces of sizes as small as 25,000 frames yield ��� values
greater than 0.96. Subtraces of size equal or smaller than
12,500 frames can give ��� values greater that 0.96, but there
is a greater chance that the ��� value will be smaller than
0.96. For WLAN E, any trace smaller than 100,000 frames
will have a high probability of having a ��� value smaller
than 0.96, and even the 100,000 length subtraces have some
likelihood of having ��� values of 0.96 or less. From this
analysis, we conclude that given a particular path, the min-
imum length required to extract the model parameters is a
somewhat arbitrary choice that depends on the path’s typ-
ical max EFB. A reasonable, safe length would be to use
a trace of length equal to or greater than the double of the
max EFB. For WLAN E, the doubled max EFB is 162,986,
which is greater than 100,000 frames, the maximum sub-
trace length that we found in our earlier analysis. For GSM,
the doubled max EFB is 40,894, and our analysis shows
than any length equal to or greater than 25,000 will lead
to accurate model parameters.

6.3 Modeling Technique Validation

The final step in validating our modeling methodology is
to guarantee that a generated model is an accurate represen-
tation of the network path, and metric of interest for a given
scenario (i.e., will the model accurately describe the charac-
teristics of additional traces collected from the network path
for the same scenario?). To verify that the answer is yes, we
perform an experiment that determines the best model using
a subsection of a reference trace, and then uses this model to
create an artificial trace. We then compare artificial trace’s
statistics to those of a different reference trace subsection
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and to the entire reference trace itself.
We extracted 200,000 frames from GSM E trace, and

called this reference trace AB. We divided AB into two sub-
traces of 100,000 frames each, and called these subtraces A
and B. Next, we calculated the best model for subtrace A
using the ��� metric to determine model accuracy (see Sec-
tion 6.1). The M

�
model yielded the highest ��� value, there-

fore we chose this model to create a 100,000 frame artificial
trace M

��
.

To determine the accuracy of the statistics of artificial
trace, M

��
, we calculated the ��� of the error burst and error-

free burst CDFs (see Section 6.1) between M
��

and traces A
(0.98 and 0.90), B (0.98 and 0.95), and AB (0.99 and 0.93).
The computed ��� values between M

��
and A and between

M
��

and B are relatively close in value (especially for for
error bursts), which indicates that the artificial trace gener-
ated by M

�
reasonably accurately models other regions of a

reference trace.
This analysis shows that our model generation technique

is not biased by a particular section of a trace we are ana-
lyzing, but rather it demonstrates that a captured trace can
be used to accurately model the statistics of a particular net-
work characteristic over a long period of time.

7 Choosing the Best Network Path Model

In this paper we have presented two classical and two
data preconditioning models that capture the error and
error-free statistics of network traces. In this section, we
apply the model validation methods described in the previ-
ous section to the collected traces listed in Table 1. We show
that the various models yield differing degrees of accuracy
when used to emulate a network path, metric of interest, and
scenario. Then, we compare the computational complexity
and performance of the various models.

7.1 Choosing Accurate Models for Collected
Traces

For each of the collected traces in Table 1, we determined
the model parameters for the two classical and two data pre-
conditioning models. We list the ��� values for the error and
error-free bursts CDF of the traces, the best model choice,
and the associated best average ��� value in Table 3. Ex-
amining the error burst CDF ��� values for the GSM E trace
shows values for the Gilbert, HMM, MTA, and M

�
models

of 0.74, 0.89, 0.99, and 0.99 respectively. As we discussed
in the previous section, ��� values less than or equal to 0.96
indicate models that poorly capture the statistics of the net-
work and metric being investigated. To better clarify the
differences between a ��� of 0.99 and a ��� of 0.74, we plot
the error burst CDF for the GSM E trace models in Fig-
ure 12. Examining this figure, we can see that the CDFs

for the Gilbert and the HMM model are not good approxi-
mations to the real distribution, therefore we may conclude
that ��� values of 0.74 and 0.89 indicate poor correlations be-
tween the artificial traces and the actual trace. On the other
hand, a ��� value of 0.99 yields a very good approximation.

Tables 4 and 5 show the maximum, mean, and standard
deviation values of the error and error-free bursts for the
original and artificial traces for each of the models. Note
that those models with mean values that are similar to the
reference traces’ mean values in general have higher ��� val-
ues.

Overall, the results show two important observations:
different models have varying degrees of success in cap-
turing the statistical properties of the networks, metric of
interest, and scenario, and, as shown by the modeling of
IP 2 and GSM D, we still need better models for capturing
network path behaviors. The Gilbert model performs well
when modeling wired IP networks, however, surprisingly,
it is not always accurate for IP networks (e.g., IP 2). The
HMM model accurately captures error bursts in some wired
networks, but is fairly inaccurate at modeling wireless net-
works. The data preconditioning models perform well at
modeling many of the networks, especially the error burst
portions. However, in general, as shown in Table 5, they are
not as accurate in modeling the error free bursts. Note that
the same observation is true for both the Gilbert and HMM
models. We believe that future research should focus on
optimizing the modeling of both error burst and error free
burst behavior.

7.2 Model Computational Complexity

Another important feature to consider when choosing a
network model is the model’s computational complexity.
One measure of the complexity of a model is its execution
time. For example, on a 1.8GHz Intel Pentium 4 proces-
sor, the modeling of the IP 1 trace took 8 seconds using the
Gilbert model, 57 seconds using the HMM model, 7 sec-
onds using the MTA algorithm, and 59 seconds using M

�
.

Note that the M
�

uses two 4th order DTMCs, resulting in
a total of 32 states. The HMM model consists of a single
4th order DTMC, and it calculates the output according to
the state. The cost of the HMM is similar to the M

�
model.

The MTA model consists of one small 4th order DTMC for
modeling the lossy subtrace portion of the trace, while the
Gilbert model uses one large 1st order DTMC for modeling
the original trace. The MTA model has a lower computa-
tion cost than the Gilbert because it only needs to calculate
the transition probability for the lossy subtrace, which is a
much smaller trace than the original trace. Overall, we ob-
serve that the M

�
is the highest cost model.

Thus, the choice of model may also depend on the type
of simulation being done. If a trace can be generated in
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Trace Gilbert HMM MTA M
�

Best Model Best Average cc

IP 1 0.99, 0.98 0.99, 0.66 0.72, 0.95 0.99, 0.98 Gilbert or M
�

0.99 or 0.99
IP 2 0.92, 0.81 0.19, 0.68 0.95, 0.62 0.98, 0.94 M

�
0.96

IP 3 0.99, 0.99 0.98, 0.75 0.76, 0.96 0.99, 0.98 Gilbert 0.99
WLAN E 0.92, 0.74 0.73, 0.51 0.99, 0.87 0.99, 0.73 MTA 0.93
WLAN D 0.93, 0.80 0.29, 0.37 0.99, 0.54 0.98, 0.95 M

�
0.97

GSM E 0.74, 0.92 0.89, 0.92 0.99, 0.96 0.99, 0.94 MTA 0.98
GSM D 0.27, 0.74 0.71, 0.96 0.91, 0.84 0.82, 0.82 MTA 0.88

Table 3. Artificial traces, their correlation coefficient (error burst CDF, error-free burst CDF), best
model(s), and average correlation coefficient for best model(s).

Trace Original Gilbert HMM MTA M
�

IP 1 23, 1, 0 5, 1, 0 7, 1, 0 62, 4, 4 13, 1, 0
IP 2 6374, 2, 80 4, 1, 0 594, 102, 103 37, 2, 4 169, 2, 9
IP 3 13, 1, 0 5, 1, 0 7, 1, 0 34, 3, 3 10, 1, 1
WLAN E 42, 2, 3 4, 1.67, 0.54 140, 13, 15 23, 2, 2 28, 2.68, 2.68
WLAN D 2212, 4, 37 8, 1, 1 1448, 194, 206 61, 4, 6 122, 4, 8
GSM E 626, 6, 17 6, 1.86, 0.40 124, 16, 16 44, 5, 6 72, 6.37, 8.21
GSM D 38,20,11 2,1.5,0.87 36,12,12 7,3,3 52,26,18

Table 4. Original and artificial traces’ error burst statistics: maximum, mean, and standard deviation.

advance, model complexity will be less of an issue. How-
ever, for real-time trace generation, developers may need to
consider both the complexity and the accuracy of a model.

8 Determining the Domain of Applicability

In this section, to better understand the behavior of
each of the four models, we observe them while they at-
tempt to capture the properties of a synthetic network.
We first use the three parameters for classifying traces
( ������� ���	�
�������������� , defined in Section 2) to capture the
properties of a synthetic network and network characteris-
tic of interest, and then identify the domain of applicability
for each model: for a given characteristic of a trace, which
model performs best at modeling that characteristic?

8.1 Generating Artificial Traces

We answer this question with the following process, we
begin by generating artificial traces (using a method de-
scribed below) for various values of ������� , �	�
����� , and
� ����� . Next, for each model and each trace, we calculate
the ��� for the error and error-free burst CDFs, and the av-
erage value of these two ��� values. Note that the accuracy
of the ��� for the error bursts CDF is equally as important
as the accuracy of the error-free burst CDF. However, one
could add a weight to either one depending on the impor-
tance of obtaining the correct distribution accuracy for each

burst type. For example, in Table 3 for the IP 1 trace, the
Gilbert, the HMM, and the M

�
models give a ��� for the error

burst distribution of 0.99, however, the ��� for the error-free
burst distribution in the HMM is only 0.66.

To generate artificial traces for our exploration of domain
analysis, we first choose three fixed values for the parame-
ter ������ of 0.2, 0.4, and 0.7, while for the ������� and �	�
�����
parameters, we vary the values of each from 0.001 to 0.1
in steps of 0.001. We use the fixed ������� values to gener-
ate Bernoulli process-based random errors inside the lossy
state. Note that this means that inside a lossy state the occur-
rence of errors are memoryless (i.e., the next frame’s value
doesn’t depend on the previous frame’s value). The effect
of using a Bernoulli process to generate errors is, for small
values of � ����� , that it biases the domain analysis results to-
wards the simpler Gilbert model, instead of more complex
higher order models. However, as the value � ����� increases,
so does the likelihood of occurrence of multiple consecu-
tive error; and thus, the bias switches towards higher order
models being better choices. Since most real network traces
will experience some degree of memory, using them for do-
main analysis would yield results that were almost always
biased towards memory process-based models. Thus, we
choose an artificial trace generation method that will allow
us to explore the full range of domain analysis and results.

We determine the lossy and error-free bursts lengths
by using the inverse transformation method [7]. Given a
random variable

�
with a CDF � ��� � , the variable � is
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Trace Original Gilbert HMM MTA M
�

IP 1 977,40,70 383,121,90 3500,1033,791 260,55,46 486,156,118
IP 2 3079,50,193 404,239,195 5973,1400,1220 15205,3743,3251 5769,325,489
IP 3 607,17,27 146,81,66 678,254,193 149,45,38 240,68,51
WLAN E 81493,42.00,1306 393,195,159 1799,415,356 331,63,53 2689,219,258
WLAN D 5893, 11, 132 148, 50, 40 2295, 1724, 1558 2094, 294, 305 1830, 42, 90
GSM E 20447,114,550 888,535,438 3258,654,563 2927,477,420 3453,574,550
GSM D 907,347,253 1107,2805,2270 523,674,488 2160,4516,3528 864,1688,1194

Table 5. Original and artificial traces’ error free burst statistics: maximum, mean, and standard devia-
tion.

uniformly distributed between 0 and 1. We can gener-
ate a sample value of

�
by generating � and calculating

�2� � � � � � � . For an exponential function with parameter� , ��� � ��� � � � $�� ��� � . Thus, we can determine � from
� � $ � � � � ��� � .

We summarize the algorithm for generating an artificial
trace as follows:

1. Choose the number of frames, N, to generate in the
artificial trace.

2. The algorithm repeats the following steps until all N
frames have been generated:

(a) Determine 	 � ��� , the error-free state length from
the error-free state length distribution (i.e., ex-
ponential distribution function with parameter
�	�
����� ).

(b) Determine 
 � ��� , the lossy state length from the
lossy state length distribution (i.e., exponential
distribution function with parameter ������� ).

(c) Generate 	 � ��� error-free frames (i.e., a sequence
of “0” of length 	 � ��� ).

(d) Generate 
 � ��� frames, where each frame is an er-
ror frame with probability ������� .

In examining the artificial trace generator’s results, it is
important to consider that some of the parameter values ex-
plored by the trace generator are not found in real networks.
As a point of reference, Table 1 shows the parameter values
for several sample traces of real networks.

We construct Domain Applicability Plots (DAP) for each
� ����� value, where each point in the DAP diagram indicates
the best model for each ( � ����� , �	� ����� ) pair. The best model
is defined as the model with a corresponding maximum av-
erage ��� value. Note that, on both the x and y axes, as the ex-
ponential distribution parameter increases, the state length
decreases (see Figure 13).

8.2 Model Statistical Accuracy

In this section, we explore the statistical accuracy of an-
alytical models for describing a network characteristics. In
particular, we evaluate two well-known classical models
and our two data preconditioning models by analyzing Do-
main Applicability Plot (DAP) diagrams.

Figures 14, 15, and 16 show the DAPs for � ����� values of
0.2, 0.4, and 0.7, respectively. Observe that, for � ����� � 
 � �
(see Figure 14), the Gilbert model is best for a large portion
of the graph. The result is as we expected because of the
use of a Bernoulli process to generate losses in the lossy
state. Here, the error burst length is relatively small. As a
result, for a large portion of points in this plot, the Gilbert
model is the optimal choice. However, as the probability of
error in the lossy state ������� increases, the error burst length
increases and thus, the region occupied by the Gilbert model
decreases and the M

�
and MTA become better choices.

Further examination of the results shows that the mean
��� value in this area for the Gilbert model is 0.99, while for
this same region the mean ��� value for the � �

model is 0.98
(see Table 6). Thus, while the Gilbert model yields the best
results, the � �

also performs very well for this “optimal-
Gilbert” region (see Section 6 for an explanation of the rela-
tionship between ��� values and a model’s accuracy). For the
region where the � �

is optimal (the “optimal- � �
” region),

the mean ��� value for the � �
model is 0.97, while the mean

��� for the Gilbert model in this region is 0.96. In Section 6,
we showed that ��� values smaller than or equal to 0.96 yield
inaccurate models. Therefore, we can conclude that, for this
network, an ������� value of 0.2, using the � �

model always
yields highly accurate models, while the Gilbert model only
performs best for a subset of the network parameter space.

Next, we examine the model choices for an � ����� value of
0.4 (see Figure 15). In this DAP diagram, there are three op-
timal regions. In the “optimal-Gilbert” region, the mean ���

value for the Gilbert model is 0.99. Table 6 shows the mean
��� values for the other models in this “optimal-Gilbert” re-
gion. The MTA model performs the best over the largest re-
gion of the plot, with a mean ��� value for the model of 0.98.
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Figure 13. Mean burst length versus exponen-
tial distribution function parameter.
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Figure 14. Optimal model for ������� =0.2.
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Figure 15. Optimal model for � ����� =0.4.
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Figure 16. Optimal model for � ����� =0.7.

The other models in this “optimal-MTA” region have mean
��� values of less than or equal to 0.96, which indicates that
they are inaccurate representations for these regions. For
the “optimal-M

�
”, the mean ��� value for the model is 0.97,

while the other models for this region have mean ��� values
of less than 0.93 (i.e., they are inaccurate models for this
region).

Finally, we examine the model choices for a high value
of ������� , 0.7. For this high value, almost the entire DAP
diagram consists of an “optimal-M

�
” region with a mean ���

value for the model of 0.98. In this region, the MTA model’s
mean ��� value was 0.97, which is also very good, while both
the Gilbert and HMM perform very poorly. We believe that
this result can be explained as the inability of traditional
models to capture the long error bursts inside lossy states.
In contrast, the data preconditioning models are capable of
accurately capturing both low and high error densities inside
lossy states.

9 Conclusion

As we have shown in this paper, accurate network path
modeling can enable the creation of both models and artifi-
cial traces that are statistically indistinguishable from traces
from real networks. We believe that such models can pro-
vide both predictive and descriptive power and can yield a
better understanding of network’s and their characteristics.
These models can also be used in network path simulators
and emulators to optimize both new and existing protocols.
We have developed two data preconditioning approaches to
network modeling that are better able to model some net-
work paths and metrics of interest than classic models.

The main contribution of this paper is to aid network and
application protocol developers in developing and choosing
appropriate models for simulation of network conditions.
As such, in this paper, we have proposed the characteriza-
tion of network conditions using a triplet of values to ex-
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Optimal Model Region
������ = 0.2 ������� = 0.4 ������� = 0.7

Model Gilbert M
�

Gilbert MTA M
�

MTA M
�

Gilbert 0.99 0.96 0.99 0.96 0.91 0.90 0.92
HMM 0.90 0.92 0.89 0.91 0.92 0.64 0.77
MTA 0.89 0.82 0.97 0.98 0.91 0.99 0.97
M

�
0.98 0.97 0.96 0.96 0.97 0.99 0.98

Table 6. Correlation coefficient for each � ����� value (0.2, 0.4, 0.7) and each optimal region.

press the lengths of error-free and lossy regions and the
error rate in the lossy region. We also propose a simple
methodology for evaluating model accuracy and choosing
the best models for characterizing a network.

The primary conclusion from our analyses is that classic
modeling techniques work well for some, but importantly,
not all wired networks. However, when modeling delay and
losses in wireless networks, the data preconditioning ap-
proaches are more accurate. Another important conclusion
is that more work remains to be done in the search for ac-
curate models, as our evaluation shows that all models have
accuracy limitations depending on the characteristics of the
network under measurement.
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