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ABSTRACT
The prediction of collisions amongst N rigid objects may be re-
duced to a series of computations of the time to first contact for all
pairs of objects. Simple enclosing bounds and hierarchical par-
titions of the space-time domain are often used to avoid testing
object-pairs that clearly will not collide. When the remaining pairs
involve only polyhedra under straight-line translation, the exact
computation of the collision time and of the contacts requires only
solving for intersections between linear geometries. When a pair
is subject to a more general relative motion, such a direct collision
prediction calculation may be intractable. The popular brute force
collision detection strategy of executing the motion for a series of
small time steps and of checking for static interferences after each
step is often computationally prohibitive. We propose instead a less
expensive collision prediction strategy, where we approximate the
relative motion between pairs of objects by a sequence of screw
motion segments, each defined by the relative position and orienta-
tion of the two objects at the beginning and at the end of the seg-
ment. We reduce the computation of the exact collision time and of
the corresponding face/vertex and edge/edge collision points to the
numeric extraction of the roots of simple univariate analytic func-
tions. Furthermore, we propose a series of simple rejection tests,
which exploit the particularity of the screw motion to immediately
decide that some objects do not collide or to speed-up the predic-
tion of collisions by about 30%, avoiding on average 3/4 of the
root-finding queries even when the object actually collide.
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Figure 1: Collisions between a moving an object A, the block
with a through hole, and a static object B, the L-shaped extru-
sion. A moves from right to left along a screw and its intermedi-
ate instance shows it at the moment of first collision with B for
two different configurations: a face of A collides with a vertex
of B (top) and an edge of A collides with an edge of B (bottom)

Introduction
The calculation of collisions amongst moving 3D objects and be-
tween moving objects and static obstacles has challenged anima-
tion experts and medical engineers for more than two decades [1,
7, 10, 38, 27, 32]. It has also been extensively studied in robotics
[36]. We focus here on rigid bodies, and more precisely on poly-
hedra, and do not address collisions of deformable models [48, 2].
When complex 3D motions are involved, the poses (position and
orientation) of each moving object are usually evaluated using a se-
ries of small time increments. At each stage of this simulation, the
transformed instance of each object is tested against the instances
of other objects using a static interference test [37]. Simple contain-
ing bounds [44], convex decompositions [3, 18, 19], hierarchical
models [4, 9, 42, 22, 25, 26, 29, 35, 39, 41], and minimal distance
computation [6, 15, 23, 37, 43] and tracking [13, 14, 5, 24] tech-
niques have been used to reduce the frequency and the complexity
of the interference tests [17, 20, 21, 31]. When an interference is
detected, the last interval may be refined adaptively, until an accu-
rate interval around the initial collision time is isolated. Even when
instantaneous velocities or bounds on velocities are used to esti-
mate the duration of collision-free intervals [11, 21], the number
of interference test that are necessary to guarantee that all colli-
sions are detected imposes limits on the performance of these col-
lision detection approaches. By contrast to the above approaches,
which are based on series of static interference tests, we propose a
collision prediction approach, in which we compute the time and



location of collisions directly from the relative motion of pairs of
objects. Instead of computing swept volumes[36, 28, 34, 46, 49],
or intersecting four-dimensional models swept by the moving ob-
jects in the space-time domain [12], we detect all occurrences of
face/vertex and edge/edge collisions [16], and report the first one
to occur. When both objects move along straight-line translations
[10, 11] or both are rotating around the same axis [47], these direct
collisions calculations may be reduced to the evaluation of a series
of linear or quadratic expressions.

For more general motions where linear translation and rotation
about different axes are allowed, trigonometric functions in the col-
lision equation cannot be removed if the rotation angle and the
translation displacement are interpolated as a linear function of a
single parameter. In [17, 33, 47] these trigonometric functions were
removed by nonlinear interpolation of the rotation angle, resulting
in cubic or higher order polynomials. These nonlinear interpola-
tions on angle can be considered to approximate linear ones, when
the rotation angle is small. However, note that if the center of the
rotation is far from the geometric center of the object, nonlinear in-
terpolation on rotation produces a distorted trajectory, which may
be quite different from the linear one. Thus, care must be taken in
choosing the center of rotation.

Instead, to obtain a simple formulation of the exact collision pa-
rameters, we propose in this paper to approximate the relative mo-
tion1 between any two objects by a continuous series of screw mo-
tion segments. For each screw motion segment, we compute the
times of collision between all vertices of the first object and the
faces of the other, between the faces of the first object and the ver-
tices of the other, and between each edge of the first object and each
edge of the second object. We report the smallest of these times.
We assume of course that objects are initially disjoint.

Furthermore, to reduce the overall computational costs, we have
developed fast interference tests between simple three-dimensional
or parametric bounds. We use them to quickly reject most object
pairs, vertex/face pairs, and edge/edge pairs that do not collide.
The collision test and the computation of the time of first collision
for each one of the remaining vertex/face and edge/edge pairs re-
quire solving a low-degree trigonometric equation in one variable.
Once the minimal time of collision is found, we compute the colli-
sion point. Our direct collision computation techniques and simple
rejection tests could of course be combined with hierarchical ap-
proaches that have been mentioned earlier. In the next section, we
briefly explain how the screw motions are computed. Then, we
present the simple rejection tests. Finally, we provide the details of
the exact time to collision calculations and present implementation
results.

Approximating screw motions
We propose to use a direct screw motion2 to approximate the mo-
tion of an objectA relative to a possibly moving objectB. The
screw motion interpolates the relative pose (position and orienta-
tion) of A at the beginning and ending of a given time interval,
which we parameterize witht varying between 0 and 1. The reader
further interested in screw theory and pose interpolation can refer
to [28, 40, 50]. An interpolating, direct, screw motion is unique,
except for the special case of 180◦ rotation between the starting
and ending poses. By definition, it interpolates any two poses by
a combination of a minimal angle rotation with a shortest vector
translation. Note that the rotation axis is parallel to the translation

1The ralative motion of an objectA with respect to a moving object
B is the motion ofA in the body coordinate system ofB
2A screw motion with samllest angle.

vector. The interpolation is independent of the choice of coordi-
nate system, thus the roles ofA andB may be interchanged without
affecting the results.

Because the maximum error3 of a screw approximation of a mo-
tion segment is expensive to evaluate exactly for all points of an
object, we advocate the following conservative estimation. We ex-
press the discrepancy motion,D(t), as the product of the approx-
imating screw motion by the inverse of the original motion. We
then applyD(t) to the eight vertices of an axis aligned4 block con-
tainingA. The error is bounded by the maximum distance between
the original position of each one of these vertices and its image by
D(t), ast varies between 0 and 1. Hence, we have reduced the er-
ror estimation problem to one of computing geometric bounds on
the trajectory of several isolated points. When the error estimate
exceeds a predetermined tolerance, the time interval is split in two
and the motion split into two screw-motion segments continuously
joined at the time where the two intervals meet.

The parameters of the direct screw motion may be computed eas-
ily for each segment. Assume that at instantt, the pose of objectA
is represented by a transformation that is the composition of a rota-
tion RA(t), which is represented by a 3×3 matrix, with a transla-
tion by a vectorvA(t). Assume that the pose of objectB is similarly
represented by a rotationRB(t) and a translationvB(t). We can ex-
press the relative motion ofA with respect toB as the combination
of a rotationR(t) with a translation by a vectorv(t). R(t) may
be represented by a 3×3 matrix that results from the multiplica-
tion of the transpose of the matrix ofRB(t) by the matrix ofRA(t).
The vectorv(t) is the difference betweenvA(t), transformed by the
transpose of the matrix ofRB(t), andvB(t).

The parameters for a direct screw motion that interpolates the
relative position of the two objects at times 0 and 1 may be simply
derived from the matrixRT(0)R(1) and from the vectorv(1)−
v(0). These parameters define the directions, a fixed pointp, a
translation distanced alongs, and the angleb of a rotation around
the axis parallel tosand passing throughp.
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Figure 2: Screw parameters s,p,d,b

Computation of Screw Parameterss, p, d and b

Suppose that two poses of an object at time timet = 0 to t = 1 are
given and we want to find a screw motion that interpolates them.
In this section, we briefly discuss computing such screw parame-
ters. Full description of computing pose interpolating screw pa-

3The error is defined for each point of an object at a given time
as the distances between its images in original and approximating
poses.
4Aligned to the axes of global coordinate system.



rameters can be found in [45]. LetRx(t),Ry(t),Rz(t) represent
respectively the first, second, and third columns ofR(t) and let
∆Rx,y,z ≡ (Rx,y,z(1)−Rx,y,z(0)). Fig. 3 illustrates these vectors.
Then the rotation axis and rotation angle can be computed as

s= s̃/|s̃| ,where s̃= ∆Rx×∆Ry +∆Ry×∆Rz+∆Rz×∆Rx

b = 2sin−1 |∆Rx|/2
|s×Rx(0)|

(1)

We have expressed̃s as the sum of three cross-products, so as to
guarantee that the formula works in all situations and gives the
maximum accuracy. Note however that at most one of∆Rx, ∆Ry,
or ∆Rz can be null and therefore at most two of the cross-products
can be null. Therefore, if∆Rx and∆Ry are both not null, we could
also computẽs as∆Rx×∆Ry.

After computing the screw axis direction vectors and rotation
angleb, a point on the screw axisp and translationd can be com-
puted. Consider a pointo in the object. Leto(t) be the position of
o at timet. Since poses of timet = 0 andt = 1 are given,o(0) and
o(1) are also given. From Fig. 3,d andp can be simply computed
by

d = (o(1)−o(0)) ·s

p =
1
2

(
o(1)+o(0)+

s× (o(1)−o(0))
tan(b/2)

)
(2)
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Figure 3: Computation of screw parameters s,p,d,b

Early Rejection Tests
In this section, we propose a series of simple tests for identifying
situations where collision is clearly impossible. We assume that,
in a direct pose interpolating screw motions, the magnitude of the
rotation angleb is less thanπ, without loss of generality. When
expressed in a relative coordinate of B, objectA moves along a
relative screw motion and objectB is static. We assume for sim-
plicity that the boundaries of both objects have been triangulated
and that the objects are initially disjoint. (The latter conditions
may be tested using a static interference test.) We must test for
vertex/triangle, triangle/vertex, and edge/edge collisions. Since the
triangle/vertex case can be converted to a vertex/triangle case by
swapping the roles ofA andB, or equivalently by invertings, there
are only two different cases to consider. If the two objects have
n and m vertices,O(nm) pairs of entities need to be tested. We
describe here quick rejection tests. They could be combined with
hierarchy based algorithms, such as those for example based on
sphere hierarchies [30].

Initial position of
bounding sphere ofA
Center:oA = q0
Radius:rA

Bounding Sphere ofB
Center:oB
Radius:rB

Sphere bounding swept
volume ofA
Center:oS = p′ +d/2 s
Radius:rS = rA +

√
d2/4+ |oA−p′ |2

p′ = p+
−→
pq0 ·s s

s

d

|p′ −oA|

p− −→
oBp ·s s

∣∣∣ −→oBp −(
−→
oBp ·s)s

∣∣∣

−→
oBq0 ·s+d/2

Figure 4: Trivial rejections: cylinder/sphere collision

Rejection Tests for Entire Objects
• We first check the collision between the bounding sphere,

Sph(oB, rB), of B and the sphere,Sph(oS, rS), that encloses
the volume swept by a bounding sphere ofA. The symbols
o andr with the appropriate subscripts represent respectively
the centers and radii of these spheres. As is illustrated in
Fig. 4, center and radius ofSph(oS, rS) are computed asoS=
p′+d/2 s andrS = rA +

√
d2/4+ |oA−p′|2. The rejection

condition is|os−oB|> rB + rS

• If the two bounding spheres are intersecting, we check whether
the sphere aroundB and the infinite cylinder centered around
the axis of the screw and containing theSph(oA, rA) intersect.
First, the distance between the screw axis and the center of
the bounding sphere ofB is computed. The rejection condi-
tion is

| −→oBp− −→
oBp ·s s|> |oA−p′|+ rA + rB (3)

If |p′ −oA| is larger thanrA, the following condition can also
be used as a rejection test, identifying the cases whereB lies
inside a shrunken version of the cylinder.

| −→oBp− −→
oBp ·s s|< |oA−p′|− rA− rB (4)

• Finally, the planes that cap the finite cylinder that contains
the volume swept by the sphere aroundA are considered. If
|(oB−oS) ·s|> d/2+ rA + rB, there is no intersection.

Vertex/Triangle rejection tests
If the above tests fail to reject the pair of objects, we test for colli-
sion between the individual pairs of elements of their boundaries.
First we test all vertex/triangle and triangle/vertex pairs. As de-
picted in Fig. 5, the following rejection situations for a vertex and
triangle pair are considered.

• After projecting the vertices of a triangle to the screw axis,
the distances to the cylinder that contains the helix along
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Figure 5: Trivial rejections: vertex/triangle

which q moves are tested. If(q0− vi) · s > 0,∀i = 1,2,3
or (q0−vi) ·s<−d,∀i = 1,2,3, then there is no collision.

• Rejection is also possible when the triangle lies inside the
cylinder. If |(vi−p) ·s|< |(q0−p) ·s|,∀i = 1,2,3, then there
is no collision.

• Trivial rejection is also possible when the triangle is out of
the angle swept by the vertex as projected on a plane per-
pendicular to the screw axis. From the plane equations that
include the screw axis,q0 andq1, if 0 ≤ b≤ π,(q0−p)×
s· (vi −p) < 0,∀i = 1,2,3 or (q1−p)×s· (vi−p) < 0,∀i =
1,2,3, there is no collision. Ifπ < b < 2π, the six conditions
must be satisfied at the same time,i.e., if (q0−p)×s· (vi −
p) < 0 and(q1−p)×s· (vi −p) > 0,∀i = 1,2,3, there is no
collision.

Edge/edge rejection tests
Finally, we develop rejection tests for edge/edge pairs. Assume

d

s

a1

a2 = a1 + la

b1
b2 = b1 + lb

p′ = p+
−→
pa1 ·s s

b′i = p+
−→
pbi ·s s

Figure 6: Trivial rejections: edge/edge

that an edge ofA having verticesa1 anda2 is moving along a screw
segment. Letb1 andb2 be vertices of an edge of static objectB.
For convenience, define the two radii asrmin = min((a1,2−p) · s)
andrmax = max((a1,2−p) ·s).

• If the projected line segment does not intersect with the cylin-
drical annulus, there is no collision. The rejection condition
is (a1,2−b1,2) ·s> 0 or (a1,2−b1,2) ·s<−d.

• When the edgeb1b2 is inside the annulus, there is no colli-
sion. The rejection condition is|(b1,2−p) ·s|< rmin.

• When the minimum distance between the edgeb1b2 and the
screw axis is larger thanrmax, there is no collision. Letn =
s× lb/|s× lb| be the common normal of the screw axis and
b1b2. Then the minimum distance isγ for somet andβ that
can satisfy the equationp + ts+ nγ = b1+ lbβ . The reject
condition is|γ |= |(b1−p)×s· lb/(n×s· lb))|> rmax.

Collision Time and Contact Calculation
As justified above, when the trivial rejection test fail, we need to
test for the following collision cases: vertex/triangle and edge/edge.
For each case, the collision condition is formulated as a function of
time and is solved numerically using a Newton’s iterative method
with the careful choices of initial guesses.

Screw Trajectory in Analytic Form
Each point of an object undergoing a screw motion moves along a
helix around the screw axis, which contains a fixed pointp and has
the directions as illustrated in Fig. 7. Our deterministic collision
prediction is based on the Rodrigues equations [8]. Letq0 be the

q′(t)

q(t)

q0 = q(0)

p

p′

−→
pq0

−→
p′q0

−→
p′q0 ×s

tb

ds

s

r

r sin(tb)

r cos(tb)

Figure 7: Rotation and projection of a point q0

initial position andq(t) be the position at timet. Let p′ be an
orthogonal projection ofq0 onto the screw axis andq′ beq0 rotated

abouts by the angletb. We first derive
−→
p′q′= q′ −p′, which is the

rotational motion of vector fromp′ to q0 abouts by the angletb.
Assuming|s|= 1, from Fig. 7,

−→
p′q′= q′(t)−p′ = r cos(tb)

−→
p′q0

r
+ r sin(tb)

−→
p′q0 ×s

r

= cos(tb)
−→

p′q0 +sin(tb)
−→

p′q0 ×s

(5)

The vector fromp to q′(t) can be computed as

−→
pq′ =

−→
p′q′ +(

−→
pq0 ·s)s

= cos(tb)
−→
pq0 +sin(tb)

−→
pq0 ×s+(1−cos(tb))(

−→
pq0 ·s)s

≡ ~φ (
−→
pq0,tb)

(6)

where we defined a new notation~φ(a,tb) as a vectora rotated about

the screw axis by the angletb. From (5),q′(t) = p+
−→
pq′= p +

~φ(
−→
pq0,tb). The screw trajectoryq(t) can be obtained by adding

the translation vectortds.

q(t) = tds+q′(t) = p+ tds+~φ (
−→
pq0,tb) (7)



Vertex/Triangle Case
The plane that contains a triangle is defined by a unit normalns and
a signed distanceds from the origin. Any pointq in this plane equa-
tion satisfiesds+q ·ns= 0. The intersection between this plane and
the screw trajectory can be calculated by substituting equation (7)
into this plane equation.

0 = ds+p ·ns+ td(s·ns)+~φ (
−→
pq0,tb) ·ns (8)

We can rewrite (8) in the following form

f (t) = c0 +c1t +c2 cos(tb)+c3 sin(tb)
= c0 +c1t +Acos(tb−θ )

(9)

Where the coefficients are given by5

c0 = p ·ns+(
−→
pq0 ·s)(s·ns)+ds , c1 = d s·ns

c2 =
−→
pq0 ·ns+(

−→
pq0 ·s)(s·ns) , c3 = (

−→
pq0 ×s) ·ns

A =
√

c2
2 +c2

3 , θ = tan−1
2 (c3,c2)

(11)

Since f (t) does not have an analytic solution, we use Newton it-
erations. Consider extremal points off (t) where f ′(t) = 0. Since
f (t) is monotonic between these points, if the signs of at two con-
secutive extremal points are identical, there is no solution between
them. If the signs are different, there is one solution. The extremal
points computed from the conditionf ′(t) = c1−Absin(bt−θ ) = 0
are

t = (θ +(−1)mα +mπ)/b , α = sin−1
( c1

Ab

)
(12)

wherem is integer. Definem1 to be the smallestmsuch thatt > t0.
Thenm1 can be calculated as

m1 = min

(
2

⌈−θ −α +bt0
2π

⌉
,2

⌈−θ +α +bt0
2π

− 1
2

⌉)
(13)

where it is assumed thatb > 0 without loss of generality. Once we
find m1, we can increase it by one to calculate the next extremal
point and then compare the signs off (t) at these two points. If
the signs are different there is one solution and we need to perform
Newton iterations starting with the reflection points as the initial
guess, which can be computed fromf ′′(t) =−Ab2cos(bt−θ ) = 0
that yieldsbt− θ = nπ + π/2 wheren is integer. We have the
reflection points at

t =
θ +nπ +π/2

b
(14)

We start our root-finding process withn1, the smallestn such that
t ≥ 0, which is computed as

n1 =
⌈
−1

2
− θ

π

⌉
(15)

Note that in pose interpolating screw motion,b∈ [−π,π] and there
could be up to two reflection points in the interval and we need
to start from these two points. Also, note that Newton iteration in
general converges in three to four iterations.

Whenever a new helix/plane intersection point is found, a trian-
gle containnment test is performed to ensure that the vertex actually
5These coefficients can also be derived in the local coordinate sys-
tem (i, j ,k,o) of the screw, whereo = p′,k = s, andi is parallel to
p′q0. The screw trajectory isq(t) = |q0|cos(tb)i + |q0|sin(tb)j +
tdk. The screw intersects planeds+qns = 0 for values oft satis-
fying

ds+(|q0|cos(tb), |q0|sin(tb),td) ·ns = 0 (10)
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Figure 8: Vertex/Triangle collision.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

2.5

t

f(
t)

p 

s 

Triangle 

Vertex

Figure 9: Triangle/Vertex collision.

collides with the triangle. If the intersection lies inside the triangle,
the search is stopped. Fig. 8 and 9 show the trajectory and collision
points in 3D on the right and the plot of thef (t) with its two roots
in the left. Once the solution is found, only the roots that pass the
the triangle inside test are accepted. If more than two roots passes
the inside test, we choose the one with smallestt since only the first
collision is interesting.

Edge/Edge Collision Case
Let (a1,a2) be an edge ofA and (b1,b2) be an edge ofB. Let
la = a2− a1 and lb = b2− b1. We express a point on the edge
of A asa1 + α la and a point on the edge ofB asb1 + β lb, where
0≤ α,β ≤ 1. Let qα(t,α) be the pointa1 + α la transformed by
the screw motion at timet. Then, the collision detection problem
amounts to finding three variablest,α andβ for which qα(t,α) =
b1 +β lb. qα can be calculated by substitutinga1 +α la into (7),

qα(t,α) = qa(t)+α~φ (la,tb) (16)

whereqa(t) and~φ (la,tb) are defined as

qa(t) = p+ tds+~φ (a1,tb)
~φ(la,tb) = cos(tb)la +sin(tb)la×s+(1−cos(tb))la ·s s

(17)

Note that~φ(la,tb) is the transformedla at time t. The collision
condition is

qα(t,α) = qa(t)+α~φ (la,tb) = b+β lb (18)

To eliminateα, we take the cross product with~φ(la,tb), yielding
qa×~φ(la,tb) = b×~φ(la,tb)+β lb×~φ(la,tb) and then we take the
dot product withlb resulting inqα ×~φ (la,tb) · lb = b×~φ (la,tb) · lb.
Using the vector identityu×v ·w = u ·v×w, this can be written as

f (t)≡ (qa−b1) · (~φ (la,tb)× lb) = 0 (19)
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Figure 10: Edge/Edge collision.

Using vector identities6 and assuming|s| = 1, f (t) can be simpli-
fied to the following form

f (t) = c0 +(c1 +c3 t)cos(tb)+(c2 +c4 t)sin(tb) (20)

with the coefficients7

c0 =
−→
pb1 ·(lb×s)(la ·s)+ −→

pa1 ·(la×s)(lb ·s)
c1 = (

−→
pa1 ·s s−

−→
pb1) · (la× lb)− (

−→
pa1 +

−→
pb1) · (lb×s)(la ·s)

c2 =− −→
pa1 ·(la× (lb×s))+

−→
pb1 ·(lb× (la×s))

c3 = ds· la× lb
c4 = d(la×s) · (lb×s)

(21)

To find the solution, we perform Newton iterations with initial
guesses that uniformly sample the search interval at a frequency
five times larger thanb/2π, the period in f (t). Note that since
b∈ [−π,π] for pose interpolating screw motion, we may need up
to three initial guesses. Once a solution is found,α andβ can be
computed as

α =
((b1−qa)× lb) ·

(
~φ(la,tb)× lb

)
|~φ(la,tb)× lb|2

β =

(
qa +α~φ (la,tb)−b1

)
· lb

|lb|2

(22)

We are only interested in solutions wheret,α,β ∈ [0,1]. Note that
singular situations such as zero length edge or parallel edge may
be ignored since they are detected by vertex/triangle collision. Fig.
10 shows an example of a collision between two edges. In the left
figure, red pluses are the initial guesses and red hexagons are the
solutions found. Among these solutions, only the ones that satisfy
0≤ α,β ≤ 1 are accepted as valid contacts. Finally, the one with
smallestt is reported as the collision time.

Results
To report the execution times and the benefits of our rejection tests,
50,000 random cases were generated and tested on an Pentium4
2.5GHz PC. The two polyhedra shown in Fig. 1 were used. The
object A is placed at the origin att = 0 and moves along a fixed
screw trajectory with parametersp = [3,3,3], d = 6, b = 2π, and
s = [1,1,1]/

√
3. The objectB is placed in arbitrary orientations

6 u · (v×w) = (u×v) ·w , u× (v×w) = (u ·w)v− (u ·v)w , and
(u×v) · (u×w) = v ·w− (u ·v)(u ·w)

7Similarly to (10), these coefficient can be computed after the rel-
evant transformation that alignss with z axis anda1 onto x axis.
Note thatqa and~φ(la,tb) area1 andla at timet.

and positions in the cube of size 15, centered at the origin, but
outside of a cube of size 5 centered at the origin, to avoid ini-
tial interference withA. A has 80 vertices, 156 triangles and 234
edges. B has 85 vertices, 166 triangles and 249 edges. There-
fore, there are 13,280 vertex/triangle, 13,260 triangle/vertex and
58,266 edge/edge pairs. If we treat the triangle/vertex case as ver-
tex/triangle, there are 26,540 triangle/vertex pairs.
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Figure 11: Left: with all types of rejections when objects may
or mat not collide. Right: with vertex/triangle and edge/edge
rejections when objects collide.

The left plot in Fig. 11 shows the timings for all colliding and
non-colliding cases including the sphere/cylinder rejection. This
results show that 50% of the cases were rejected by our cylin-
der/sphere object-pair rejection test. The execution time of these
cylinder/sphere test is negligible. Right plot in Fig. 11 is results
only for the cases when a collision actually occurred between the
two objects. In these cases, 50.5% of the vertex/triangle and 66%
of the edge/edge tests were rejected thanks to the corresponding
rejection tests discussed earlier. The early rejection results in a
speedup of 55%. The average execution time for rejection tests
on 26,540 veltex/triangle and 58,266 edge/edge pairs was 32.8ms,
which yields about 0.39µs for a single pair. If all the rejection tests
failed, Newton iteration is performed. The execution time for com-
puting an exact contact points by root finding is 9.5µs in average.

Conclusions
The closed form expression of the trajectory of a point under a
screw motion is used to predict the collision time and contact point
between two polyhedra, whose relative motion is approximated
by one or several screw motion segments. Univariate equations
for collision conditions are derived for the vertex/triangle and the
edge/edge collision cases. Several trivial rejection cases are pro-
posed that exploit the properties of screw motions. Our tests show
that early rejection tests speed up the computation by 55% in cases
where a collision occurs.
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