skip to main content
10.1145/781606.781630acmconferencesArticle/Chapter ViewAbstractPublication PagesspmConference Proceedingsconference-collections
Article

Discretization of functionally based heterogeneous objects

Published:16 June 2003Publication History

ABSTRACT

The presented approach to discretization of functionally defined heterogeneous objects is oriented towards applications associated with numerical simulation procedures, for example, finite element analysis (FEA). Such applications impose specific constraints upon the resulting surface and volume meshes in terms of their topology and metric characteristics, exactness of the geometry approximation, and conformity with initial attributes. The function representation of the initial object is converted into the resulting cellular representation described by a simplicial complex. We consider in detail all phases of the discretization algorithm from initial surface polygonization to final tetrahedral mesh generation and its adaptation to special FEA needs. The initial object attributes are used at all steps both for controlling geometry and topology of the resulting object and for calculating new attributes for the resulting cellular representation.

References

  1. Adzhiev, V., Kartasheva, E., Kunii, T., Pasko, A., Schmitt, B. Cellular-functional modeling of heterogeneous objects, Proc. ACM Solid Modeling and Applications 2002 Symposium, Saarbryucken, Germany, Ed. Kunwoo Lee, N. Patrikalakis, ACM Press, 2002, 192--203 Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Biswas, A., Shapiro, V., Tsukanov, I. Heterogeneous material modeling with distance fields, Technical Report SAL 2002-4, University of Wisconsin-Madison, June, 2002.Google ScholarGoogle Scholar
  3. Bloomenthal, J. An Implicit Surface Polygonizer, Graphics Gems IV, Academic Press, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Chen, M., Tucker, J. Constructive volume geometry, Computer Graphics Forum, 19(4), 2000, 281--293.Google ScholarGoogle ScholarCross RefCross Ref
  5. Frank, K., Lang, U. Gradient and curvature approximation in data-dependent surface simplification, Computing and Visualization in Science, 2(4), 2000, 221--228Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Freitag, L., Ollivier-Gooch, C. Tetrahedral mesh improvement using swapping and smoothing, Int. J. Numer. Meth. Eng., 40, 1997, 3937--4002.Google ScholarGoogle ScholarCross RefCross Ref
  7. Frey, P.J., Borouchaki, H., Geometric surface mesh optimizasion, Computing and Visualization in Science, 1(3), 1998, 113--121Google ScholarGoogle ScholarCross RefCross Ref
  8. Frey, P.J., George, P.-L. Mesh Generation: Application to Finite Elements - HERMES Science Europe, OXFORD & PARIS, 2000, 814p. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Garland M., Heckbert, P.S. Surface simplification using error metrics, Computer Graphics (Proceedings of SIGGRAPH'97), 209--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hartmann, E. A marching method for the triangulation of surfaces, The Visual Computer, 14(3), 1998, 95--108.Google ScholarGoogle ScholarCross RefCross Ref
  11. Jackson, T. R., Liu, H., Patrikalakis, N. M., Sachs, E. M., and Cima, M. J. Modeling and designing functionally graded material components for fabrication with local composition Control, Materials and Design, 20(2/3), 1999, 63--75.Google ScholarGoogle ScholarCross RefCross Ref
  12. Karkanis, T., Stewart, A. J. Curvature-dependent triangulation of implicit surfaces, IEEE Computer Graphics and Applications, 21(2), 2001, 60--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kobbelt, L. √3-Subdivision, Computer Graphics (Proceedings of SIGGRAPH'2000), 103--112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kobbelt, L., Botsch, M., Schwanecke, U., Seidel, H.-P. Feature sensitive surface extraction from volume data, Computer Graphics (Proceedings of SIGGRAPH 2001), 57--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kumar,V., Dutta, D. An approach to modeling multi-material objects, Fourth Symposium on Solid Modeling and Applications, ACM SIGGRAPH, 1997, 336--345. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kumar, V., Burns, D., Dutta, D., Hoffmann, C. A framework for object modeling, Computer-Aided Design, 31(9), 1999, 541--556.Google ScholarGoogle ScholarCross RefCross Ref
  17. Liu, A., Joe, B. On the shape of tetrahedra from bisection, Math. Comp., 63, 1994, 141--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Liu, A., Joe, B. Quality local refinement of tetrahedral meshes based on bisection, SIAM J. Sci. Comput., 16, 1995, 1269--1291. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lohner, R. Automatic unstructured grid generators, Finite Elements in Analysis and Design, 25, 1997, 114--134 Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lorensen, W., Cline, H. Marching Cubes: a high resolution 3D surface construction algorithm, Computer Graphics, 21(4), 1987, 163--169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Martin, W., Cohen, E. Representation and extraction of volumetric attributes using trivariate splines: a mathematical framework, Sixth ACM Symposium on Solid Modeling and Applications, D. Anderson, K. Lee (Eds.), ACM Press, 2001, 234--240. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Nielson, G., Hamann, B. The asymptotic decider: resolving the ambiguity in Marching Cubes, Proceedings of Visualization '91, IEEE Computer Society Press, October, 1991, 29--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Ohtake, Y., Belyaev, A., Pasko, A. Dynamic meshes for accurate polygonization of implicit surfaces with sharp features, Shape Modeling International 2001, IEEE Computer Society, 2001, 74--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ohtake Y., Belyaev A., Dual/primal mesh optimization for polygonized implicit surfaces, ACM Solid Modeling, K. Lee and N. Patrikalakis (Eds.), ACM Press, 2002, 171--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Owen, S. J., A survey of unstructured mesh generation technology, Proceedings 7th International Meshing Roundtable, Dearborn, MI, October 1998Google ScholarGoogle Scholar
  26. Park, S. M., Crawford, R., Beaman, J. Volumetric multi-texturing for functionally gradient material representation, Sixth ACM Symposium on Solid Modeling and Applications, D. Anderson, K. Lee (Eds.), ACM Press, 2001, 216--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Pasko, A., Adzhiev, V., Sourin, A., Savchenko, V. Function representation in geometric modelling: concepts, implementation and applications, The Visual Computer, 11(8), 1995, 429--446.Google ScholarGoogle ScholarCross RefCross Ref
  28. Pasko, A., Adzhiev, V., Schmitt, B., Schlick, C. Constructive hypervolume modelling, Graphical Models, a special issue on volume modeling, 63(6), Academic Press, 2001, 413--442. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Pasko, A., Pilyugin, V., Pokrovskiy, V. Geometric modeling in the analysis of trivariate functions, Communications of Joint Institute of Nuclear Research, P10-86-310, Dubna, USSR, 1986 (in Russian). English translation: Computers and Graphics, 12(3/4), 1988, 457--465.Google ScholarGoogle ScholarCross RefCross Ref
  30. Rivara, M., Levin, C. A 3D refinement algorithm suitable for adaptive and multi-grid techniques, J. Comp. and Appl. Math., 8, 1992, 281--290.Google ScholarGoogle Scholar
  31. Schmidt, M. Cutting cubes - visualizing implicit surfaces by adaptive polygonization, The Visual Computer, 10(2), 1993, 101--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sethian, J. A., Level Set Methods and Fast Marching Methods, Cambridge, 1999.Google ScholarGoogle Scholar
  33. Sheffer, A., Model simplification for meshing using face clustering, CAD, 33(13), 2001, 925--934Google ScholarGoogle ScholarCross RefCross Ref
  34. V. Shapiro, V., Tsukanov, I. Meshfree simulation of deforming domains, Computer Aided Design, 31(7), 1999, 459--471.Google ScholarGoogle ScholarCross RefCross Ref
  35. Shin, K., Dutta, D. Constructive representation of heterogeneous objects, Journal of Computing and Information Science in Engineering, 1(3), 2001, 205--217.Google ScholarGoogle ScholarCross RefCross Ref
  36. Wyvill, G., McPheeters, C., Wyvill, B. Data structure for soft objects, The Visual Computer, 2:4, 1986, 227--23.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Discretization of functionally based heterogeneous objects

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Conferences
              SM '03: Proceedings of the eighth ACM symposium on Solid modeling and applications
              June 2003
              362 pages
              ISBN:1581137060
              DOI:10.1145/781606

              Copyright © 2003 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 16 June 2003

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • Article

              Acceptance Rates

              SM '03 Paper Acceptance Rate43of80submissions,54%Overall Acceptance Rate86of173submissions,50%

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader