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ABSTRACT 
In this paper a graph-based method is presented which not only 
characterizes topological classification of the tessellated surfaces 
but also simultaneously generates the substantial circles or 
generators on the surface. Canonical polygons cannot always be 
mapped back to the original surface in terms of the edges of the 
given triangles. Hence, instead of applying canonical 
transformation to the initial "word", an associated graph is 
constructed using the unique vertices in the word. The graph is 
then decomposed into its constituent loops and paths. Based on 
the type of edges present, the loops are classified into three types. 
The number of loops of each type in the graph is then used for 
counting the rank or genus and classification of the given surface 
as being open or closed, orientable or non-orientable. The 
image of the loops and paths on the original surface give the 
substantial circles and arcs on the surface respectively.   

Categories and Subject Descriptors 
I.3.5 [Computer Graphics]: Computational Geometry and 
Object Modeling – geometric algorithms, languages and systems. 
G.2.2 [Discrete Mathematics]: Graph Theory – graph labeling, 
path and circuit problems. 

General Terms 
Algorithms. 

Keywords 
Computational topology, simplical complex, surface 
classification, characterization, cut lines. 

1. INTRODUCTION 
A tessellated surface as a representation is simple and versatile in 
the sense that it can represent surfaces of arbitrary topology. 
However, the topological nature of the surface is generally 
implicit which calls for its topological verification for modeling 
or topology identification for surface parameterization as in 
reverse engineering [1,10,13,16,17,26,29,33]. Topology 
identification makes geometric computations more efficient and 
meaningful [6,7,27]. 

Characterization of manifold surfaces involves identification of 
the topological invariants associated with a class of surface. This 
has been carried out in literature by using sphere-handle 
convention [5], Betti numbers and Euler characteristics [12,28], 

Morse theory, Reeb graph and polygon schema [14], substantial 
arc/circles [5] etc. Euler characteristic relates the geometric 
features (vertex, edge, face) of a closed orientable surface with its 
global topological nature (genus, components etc.) and is 
applicable mostly for polyhedral solids.  Morse theory relates 
local differential geometric attributes of a closed smooth surface 
and its global topological nature. Canonical polygon based 
characterization in some sense is more general in that it 
characterizes both orientable and non-orientable closed 2-
manifolds [14]. Substantial arc/circles based characterization of 
surfaces [5] considers the set of non-homoeomorphic 
curves/surfaces on the surface whose counts are used to identify 
the invariants associated with a class of surface. This method is 
suitable for characterizing even open surfaces. Application of 
topology in geometric modeling has been mostly done for 
validating a model using Euler characteristics [12,28]. 
Computational topology based modeling schemes have been 
suggested in [2,11,19,20,21,32]. Utility of topological information 
in different fields including robotics, computer aided drug design, 
genetics, chemical synthesis, flow visualization etc. has been 
indicated in [3,6,25]. Hilga et al. [22] employed a Reeb graph 
based approach to 3D shape recognition problems. 

Extraction of topological features of geometric models is 
computationally challenging. Vegter and Yap [34] presented an 
O(n log n) algorithm for computation of canonical polygonal 
schema of a tessellated surface, where n is the total number of 
vertices, edges and faces on the surface. Kartasheva [23] 
considered a cell complex in 3D consisting of tetrahedrons which 
makes it applicable only for solids (oriented, closed boundary 
surface). Also, the surface based algorithms also can be extended 
to determine the cutting sections that, in any case, cannot be 
guaranteed to be planar. Lazarus et al. [24] gave a O(gn) 
algorithm for the closed orientable surfaces, where g is the genus 
of the surface. The method marches through all the triangles in 
the surface for construction of a spanning tree. The map of the 
generators on the surface is very complex and non-intuitive. A 
still improved O(n) algorithm for construction of non-canonical 
but optimal sized polygonal schema and O(n + k log g) algorithm 
for detection null-homotopy cycles of size k is proposed in [8]. 
Apart from that one can find work concerning extraction and 
application of topological information based on Morse theory [4, 
31], knot theory [15] etc. Application of topological dissection to 
homeomorphically deforming (flattening) the surface is reported 
in [10,33] which could in turn be used for global parameterization 
of surfaces in reverse engineering. In [9,30] it is theoretically 
proved that the problem of topological equivalence could be 
reduced to a problem of graph isomorphism for general (non-
manifold) 2-complexes. However, such objects are sparingly 
encountered in practice; graph isomorphism test in itself is 
difficult and the necessity to consider all the triangles for 
constructing the graph is likely to make algorithms resource 
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intensive. There is a need for simpler methods for topological 
analysis of surfaces for their wider applicability. 

Although Euler characteristic, Betti numbers and Morse numbers 
all characterize compact 2-manifolds, it is the polygonal schema 
and substantial arc based characterizations which can actually 
construct the homeomorphism as a step towards global 
parameterization, texture mapping etc. Even though substantial 
arcs/circles provide a geometrically simple, direct and more 
general way of classifying surfaces, computationally identifying 
the best of these characteristic curves (minimum cut [10]) on the 
surface is difficult (NP-hard). On the other hand, although 
canonical words under polygonal schema give a simple method 
for classifying closed 2-manifolds and generation of a word 
polygon is conceptually straight forward, reducing it to canonical 
form is difficult because it involves a great deal of pattern search 
and symbolic manipulation of the word. Even more difficult is the 
process of mapping the canonical polygon on the given surface. In 
this paper we propose to unify the two concepts in a single 
characterization by using a graphs associated with any word [14], 
a non-canonical polygon, for identification of generators on the 
surface. Edges in the graph are coloured. The number of circuits 
with different kinds of edges in the graph completely 
characterizes the given surface because their image on the given 
surface correspond to the substantial or boundary circles; the 
paths not participating in any circuit correspond to the 
substantial arcs on an open surface. 

2. CONVENTIONAL SURFACE 
CLASSIFICATION SCHEMES 
Topological classification of surfaces requires identification of 
homeomorphism among surfaces. Two surfaces are considered 
topologically equivalent (homeomorphic) if there is a continuous 
transformation that is continuously invertible [5].  As given in 
[14], any smooth, compact, connected surface (without boundary) 
is homeomorphic (and diffeomorphic) either to a sphere with g 
handles, where g≥0, or to a sphere with k cross-caps, where k>0; 
a surface of the first type cannot be homeomorphic to one of the 
second type, nor can surfaces with different values of g or k be 
homeomorphic. Also, since a handle on a non-orientable surface 
is equivalent to two cross-caps [14], a sphere with x handles and 
y>0 cross-caps, is homeomorphic to a sphere with 2x+y cross-
caps. 

2.1 Substantial Arcs and Circles for Surface 
Characterization 
A substantial arc is a cut line that does not separate the surface 
into unconnected domains. On a closed surface, the corresponding 
entity is called a substantial circle [5].  The maximum number of 
substantial arcs/circles that can be simultaneously present on a 
surface, without separating it, is called the rank of the surface. 
Two surfaces are homeomorphic if and only if they have the same 
rank, same number of boundary circles and are either both 
orientable or both non-orientable. When a surface is cut along the 
maximum number of substantial arcs/circles, it becomes 
equivalent to a disc. The bounding circle of this disc contains 
pairs of segments (mates), which are parts of the substantial 
arcs/circles. As one traverses the edges of the disc (indicated with 
an arrow in Fig.1(b)), if the end vertices of an edge and its mate is 
found to occur in the same order, the surface is non-orientable, 

otherwise it is orientable. Rank of closed orientable surfaces is 
even; half rank is called the genus of the surface, which is same as 
the number of handles on a sphere. 

2.2 Canonical Polygon Schema for Closed 
Surface Characterization 
Every smooth compact 2-manifold (surface) can be triangulated 
with finitely many triangles. Providing a sense to these triangles 
and cutting the surface along these edges we get a set of triangles 
with oriented edges. Two triangles with a matching edge can be 
glued together to get a polygon (quadrilateral); other triangles in 
the set can be glued to the polygon in a recursive fashion by 
identifying one of the edges of a triangle with a boundary edge of 
the polygon. Marking the edges of the polygon with a label the 
polygon can be coded as a "word". Using a sequence of symbolic 
transformations involving grouping, reordering, renaming and 
removal of edges [13,34] any word can be reduced to one of the 
following three canonical forms. 

(1) W=aa-1, 
(2) W=a1b1a1

-1b1
-1...agbgag

-1bg
-1, 

(3) W= c1c1c2c2... ckck, 
where g and k are positive numbers. 

Here, (1) corresponds to a sphere, (2) corresponds to a sphere 
with g handles and (3) corresponds to a sphere with k cross-caps. 
A word expressed in its canonical form is also referred to as 
canonical polygon in this paper. 

2.3 Relationship Between Substantial Circles 
and Word Polygons 
The canonical polygon corresponding to the canonical word 
consists of even number of edges with duplication of edge labels. 
These labels either occur adjacent to each other, when their 
traversal in the polygon is in the same sense, or alternate with 
another edge, when their traversal in the polygon is in the 
opposite sense. When these edges are glued together respecting 
the sense, each mated edge in the word manifest as a substantial 
circle on the surface with the specialty that all substantial circles 
are mapped distinctly on the surface but for one point, which is 
shared by all of them. However, a general set of substantial circles 
on a given surface has a wide variety of topological relationship, 
as discussed in section-3.2 below. On the other hand, dealing with 
a given tessellated surface, there may not be any vertex with 
enough number of edges incident on them, or such a vertex may 
not belong to the canonical polygon. A triangulated double torus 
requires at least one vertex with degree eight which may not be 
available (Fig.4(a)). This implies that computationally mapping 
the canonical polygon on the surface using the edges of the given 
tessellation is difficult and sometimes impossible. 

3. GRAPH BASED CHARACTERIZATION 
In the following a method is described which, by using a graph of 
the word, obtains the substantial arcs and circles in terms of the 
original edges of the triangles representing the surface S, from a 
word in its non-canonical form and classifies the surface using the 
features of the graph. The graph simplification algorithm 
minimizes the lengths of the cut lines in terms of the number of 
edges in them. The methods use only the connectivity information 
of the constituent triangles. 



3.1 Word and Associated Graph 
Word Polygon: To construct the word, first the polygon is 
constructed as a sequence of vertices. Edges are identified using 
two consecutive vertices in a triangle or a polygon. We start from 
any triangle as the starting polygon and glue an edge of an 
adjacent triangle to it to get the updated polygon, which in effect 
adds a vertex in the polygon. At each step we eliminate redundant 
edges as identified by occurrence of the vertex pattern, ...x,y,x... 
in the polygon adjacent the newly added vertex to maintain the 
polygon of minimum length. When all the triangles have been 
added, we have the required polygon (Fig.1(b)). 

Edge Classification: As we traverse the polygon (indicated with 
an arrow in Fig.1(b)), the first occurrence of an edge is considered 
positive. Subsequent occurrence of the edge is considered positive 
if the delimiting vertices appear in the same order, negative 
otherwise. 

Graph of a Word: For a word polygon P, the graph, G(V,E),  is 
defined as follows: the set of  unique vertices in P gives V and E 
is constructed by using pairs of vertices that are adjacent in P. 
Let, W be the word represented as the sequence of edges of P with 
appropriate classification. Thus G is completely defined by 
keeping only the unique edges in W. The edges in G are coloured 
by using a tag indicating the nature of its occurrence in W. This 
we call the order of the edge. Since we are not assuming the 
given surface to be a closed manifold, in W an edge may occur 
once or twice where the second occurrence may have either 
positive or negative classification. If an edge appears only once in 
W, its order is 0; if an edge appears twice with opposite sense, its 
order is -1 and if an edge appears twice with same sense, its order 
is 1. Fig.1(c) illustrates the graph construction for a triangulated 
Möbius strip. 

3.2 Graph and the Characteristic Curves on a 
Surface 
Mapping: There are three types of characteristic curves on a 
surface: substantial arcs, substantial circles and boundary circles. 
Since the graph has been created from the word without bringing 
it to the canonical form, the vertices and edges in the graph, G, 
can be easily identified on the original surface, S. It is easy to see 
in Fig.2 that homologous substantial circles on S, can be 

identified with the circuits in G. In the case of open surfaces 
(Fig.2(h),(i)), the boundary circles also get mapped to the circuits 
of G and the homologous substantial arcs can be mapped to the 
cut edges [18] of G (Fig.2(i)) or to paths not participating any of 
the circuits identified (Fig.1(c)).  

Relationship Among Characteristic Curves: When the 
maximum number of substantial circles/arcs or cut-lines are 
introduced on a surface, the surface is homologous to a disk, 
which in turn is homologous to the canonical polygon. However, 
there are many different ways the cut-lines can be introduced, 
each with a probably different topological relationship among the 
arcs of the circles. Fig. 2 shows some of the different ways the 
cut-lines can be introduced on a torus and a double-torus along 
with the graph of the cut-lines. It can be observed that, even 
though the graph has different number of vertices and edges 
(hence non-isomorphic), the number of independent cycles in the 
graph is same for the homologous objects and is equal to the 

 Surface S with cut-lines Graph of cut-lines 
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Figure 2: Relationship among characteristic curves 

Figure 1: Graph construction for an open non-orientable 
surface, Möbius strip 
c



number of substantial circles the surface can accommodate. When 
the surface has boundary, the boundary circles would also appear 
as cycles in the graph. Thus the type of cycle/circles is an 
independent information. 

Graph Simplification: The purpose of graph simplification is to 
reduce the lengths of the circuits so as to get the shortest 
characteristic curves on the surface. The idea is, if in a circuit, 
two consecutive edges belong to the same triangle, the graph can 
be modified by introducing the third edge of the triangle and 
modifying the previous graph. As shown in Fig.3, the 
modification can be performed in two ways: by vertex deletion 
and edge swap. If the degree of the vertex common to the two 
earlier edges is two, the vertex and the two earlier edges can be 
deleted. In the second case, where the degree of the vertex 
common to the two earlier edges is more than two, the vertex 
cannot be deleted but one of the earlier edges can be deleted. This 
is called edge swap and it is performed if the operation increases 
the degree of some vertex or it facilitates a vertex deletion in the 
next step. The graph, G, in Fig.4(c) is simplified to the graph, G*, 
in Fig. 4(d) with shortest substantial circles (in terms of number of 
edges rather than their geometric length) in the present case. 

Classification of Fundamental Circuits: Since edges of S are 
shared at most twice, G is always planar [18] even though S is 
topologically non-planar [4]. Hence the number of fundamental 
circuits, in G is e-v+1, where v and e are the number of vertices 
and edges in G. These fundamental circuits are classified as 
follows:  order 0 circuits are circuits with all edges of order 0; an 
order -1 circuit does not have order 1 edges but it has at least one 
order -1 edge; an order 1 circuit has at least one order 1 edge. 

Extraction of Fundamental Circuits: The fundamental circuits 
of G can be extracted by constructing the minimum spanning tree 

(MST) for G and then adding the remaining edges, RE. We needed 
an algorithm which extracts the circuits in the order of 0-order 
circuits, order -1 circuits and then order 1 circuits. Since standard 
methods of cycle decomposition does not guarantee such specific 
decomposition we adopted a special traversal strategy. 
For extraction of 0-order circuits, traversal is allowed only along 
0-order edges in MST. A 0-order edge is picked up from RE and 
added in MST to start the process of circuit construction from its 
two ends. If at any point a 0-order edge is not available in the 
MST for traversal, we refer RE and more 0-order edges are picked 
up to complete the circuit. All but one of the 0-order edges used is 
replaced back in RE to prevent duplication of circuits extracted in 
subsequent stages. Used edges in RE are marked in order to 
prevent initiation of another 0-order circuit extraction using these 
edges. After all 0-order circuits are extracted; each edge in RE is 
used to extract a circuit in the usual manner and are classified 
based on the type of edges in the circuit. 

3.3 Surface Characterization 
Let, in G, C0, C1, C2 be the number of circuits of orders 0,   -1 and 
1 respectively. When S is open, then union of C0, C1, C2 may not 
give all the edges in G. The remaining edges in G are then 
grouped together using simple linear traversal to construct paths. 
Edges in a path cannot be order-0; they are either all of order 1 or 
all of order -1. Let L1 and L2 be the number of paths of order -1 
and 1 respectively. Using C0, C1, C2, L1 and L2 surfaces can be 
classified as follows. 
1. C0 = 0 implies there is no boundary circle; hence the surface 

is closed and L1 = L2 = 0; otherwise the surface is open. 
2. C2 = 0 and L2 = 0 imply there is no order 1 edge in G; hence 

the surface is orientable 
3. C2 ≠ 0 or L2 ≠ 0 imply the surface is non-orientable. 
4. For orientable surfaces (C2 = 0 and L2 = 0), 

a. C0=0 and C1=0 imply the surface is homeomorphic to a 
sphere; 

b. C0 ≠0 and C1=0 imply the surface is homeomorphic to a 
planar surface with C0 boundary circles and L1 = C0–1 
substantial arcs; in particular, C1=1 implies the surface is 
a disc; 

c. C1 ≠ 0 then C1=2g where g is the genus of the surface; the 
surface is homeomorphic to a sphere with C1/2=g handles, 
C0 boundary circles and L1 substantial arcs; 

5. For non-orientable surfaces (C2 ≠0 or L2≠0), since adding a 
handle is equivalent to adding two cross-caps to a sphere [13], 
we consider k= C1+C2; then 
a. C0 =1, and either k+ L2 =1, or L1 =1, imply the surface is 

a Möbius strip. 
b. C0=0 and k≠0 imply the surface is self-intersecting, 

closed and homeomorphic to a sphere with k cross-caps; 
in addition, 

i. k=1 implies the surface is a map of the projective plane; 
ii. k=2 implies the surface is a map of the Klein's bottle; 

c. C0≠0 and k≠0 imply surface is open and homeomorphic to 
a sphere with k cross-caps and C0 boundary circles and 
L1+L2 substantial arcs; 

In all the cases above, the actual geometric description of the 
substantial arcs/circles and boundary circles is obtained by 
mapping C0, C1, C2 circuits and L1 L2 paths on the surface. This, in 
turn, is easily done by using the coordinate of the points 
associated with the vertices in G. 

 
Figure 3. Graph simplification 

 

 
Figure 4: Graph construction and simplification for a double 
Torus 



4. ILLUSTRATIVE EXAMPLES 

The methodology described above has been implemented using 
C++ and the graphical output is generated using OpenGL. The 
results are shown in a tabulated form for the sake of brevity in 
Table 1. The dark lines in the graphics indicate the detected 
substantial arcs/circles and the lighter lines indicate the detected 
boundary circles. Two boundary circles sharing one point are 
interpreted as part of a single circle. Input data file is in the format 
of indexed triangles: first coordinates of the vertices are specified 
followed by a list of triplets of vertex indices. In the examples 
shown, data for open surfaces are generated by omitting one or 
more triangles from the input data file. Program can handle any 
single component manifold surface: closed, open, orientable, and 
non-orientable. 

Discussion: The program has been tested for all standard surfaces 
such as sphere, Möbius strip, torus and their various combinations 
obtained by surgery. It is interesting to observe that in example 7, 
the surface obtained from two Klein's bottles can result in a 
orientable surface, which is a self-intersecting embedding of a 
Torus. For a torus containing about 15000 triangles, it took about 
8 seconds for word formation and 1.5 seconds for classification 
and graph simplification on a Pentium-4 PC. Work is underway to 
extend the method for handling non-manifold surfaces. 

 

 

Table 1 Illustrative Examples 

 Object with characteristic curves Curves 
count Identification 

1 

 

C0=0 
C1=4 
C2=0 

Closed 
Orientable 
Genus 2 
(Double Torus) 

2 

 

C0=2 
C1=4 
C2=0 

Open 
Orientable 
Two boundary 
Circles 
Genus 2 

3 

 

C0=2 
C1=10 
C2=0 

Open 
Orientable 
Sphere with 5 
handles 2 
boundary 
circles 

4 

 

C0=0 
C1=0 
C2=1 

Closed Non-
orientable 
Sphere with 1 
cross-cap 
(Projective 
plane) 

5 

 

C0=1 
C1=1 
C2=1 

Open Non-
orientable 
Sphere with 2 
cross-caps 1 
boundary 
(Klein's Bottle) 

6 

 

C0=2 
C1=2 
C2=2 

Open Non-
orientable 
Sphere with 4 
cross-caps, 2 
boundary 
Circles. (2 
Klein's Bottles 
Joined along 1 
circle) 

7 
C0=2 
C1=2 
C2=0 

Open 
Orientable 
Sphere with 
one Handle 
(two Klein's 
Bottles Joined 
along Two 
circles) 

5. CONCLUSIONS 

The paper presented a novel graph based methodology for 
topological analysis of any triangulated 2-manifold. The method 
constructs a graph out of the non-canonical word polygon 
obtained by sequential gluing of the triangles. The edges of the 
graph are classified according to their occurrence in the word and 
the circuits in the graph are classified based on the types of edges 
they contain. These circuits along with the paths that do not 
participate in the circuits are then used to characterize the surface. 
Since the edges in the word are only used for characterization, 
which is orders of magnitude less compared to the total number of 
triangle and edges in the surface, the procedure is efficient. Since 
the required graph decomposition can be done efficiently, the 
implementation is simple. Most importantly the validity of the 
method can be easily verified geometrically because it unifies the 
two traditional concepts of surface characterization based on 
canonical words and substantial arc/circles. The efficacy of the 
method has been demonstrated with a number of illustrative 
examples. 
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