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Abstract

UnifiedParallel C (UPC)is a parallel language thatusesa Sin-
gle Program Multiple Data (SPMD) modelof parallelism within
a globd address space Theglobal addressspaceis usedto sim-
plify programming especiallyon applicationswith irr egular data
structuesthat lead to fine-grained sharingbetweerthreads. Re-
centresultshaveshownthattheperformane of UPCusinga com-
merial compileris compaable to that of MPI [7]. In this pa-
per we describea portable opensouice compilerfor UPC. Our
goalis to achievea similar performancevhile enablingeasyport-
ing of the compiler and runtime and also provide a framavork
that allows for extensiveoptimizations. We identify someof the
challenges in compiling UPC and usea combindion of micro-
bendmarksandapplicationkernelsto showthatour compilerhas
low overheadfor basicopemations on shaed dataandis competi-
tive, and sometimes$asterthan,the commecial HP compiler We
also investigateseveral commuiication optimizations,and show
significantbenefitdy hand-ogimizingthe geneatedcode
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1. Intr oduction

Oneof the challengesacedby the applicationdevelopersfor
high performanceparallel systemsis the relatively difficult pro-
grammingernvironment. For large-scaleparallel machines,the
mostcomma modelis messagpassingpopuarizedin theMPI [20]
standardinterface. Relatve to competingprogrammingmodels
suchasOpenMP[19], threadsdataparallelismor automatigaral-
lelization, messag@assinghasthe advantagein scalability since
it runson distributed memorymultiprocessorsand performance
tunability, sincethe programme hasfull control over datalay-
out, communication, and load balance. The ubiquity of MPI on
parallelmachine, enabledn partby the portableMPICH imple-
mentationfrom the ArgonneNational Laboratory[17], hasbeen
animportantallurefor applicationdevelopeas, who know thatma-
chineswill chang fasterthanthe rate at which applicationscan
berewritten. Themajordravbackto messag@assinghowever, is
thatreprogramminga serialor sharednemoryparallelapplication
in MPI canbequitedifficult, andanecdal evidene suggestshat
someusershave been‘left behind”by theshift from vectorshared
memorymachinego distributedmemoryandclustercompuers.

To overcame thesedifficulties, somerecentefforts have fo-
cusedonexplicitly parallelprogramning paradigmaisingaglobal
addresspace(GAS) model,including UPC (8], Titanium (based
on Java) [10], and Co-Array Fortran[18]. Theselangua@sare
extensionsof popularsequentiaprogrammirg languages andthe
global addressspacemodelthatthey all shareprovides a middle
groundbetweerasharedandadistributedmemorymodel.In GAS
languags, a threadmay directly accessemotememorythrough
global pointersanddistributedarraysjust asit would in a shared
memorymodel. GAS languags thus offer a much more corve-
nient programmiry style thanmessaggassing,andgood perfor
mancecan still be achiezed becausgrogrammergetain explicit
control over datalayout, parallelism,and load balancing This
notion is well supportedin a recentstudy by the UPC group at
GeogeWashingtorUniversity; usingtheHP UPCcompileronHP
AlphaSerer, they demorstratedhattheperformancef UPCpro-
gramsis comparableo thatof MPI[7]. In additionto theHP com-
piler, several efforts are undervay to implementUPC compilers
for a variety of platforms,with compilerscurrently available for
SGlsharednemorysystemsthe Cray T3E,andtheCray X1. One
commonshortcomingof thesecompilers however, is thatthey are
specializedo the particularparallelmachinefor which they were
built. Ourgoalis thusto build a portablecompilerframework for
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Figure 1. The UPC memory model.
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UPC that also offers comparake performane to the commercial
UPC compilers;UPC will thenbe ableto matchMPI in perfor
manceand portability, while maintaininga clearedgein easeof
programming.

In this paperwe describethe Berkeley UPC compiler which
is designedor portability andhigh performarce. To supportboth
of thesegoals, we use a layereddesign so that the implemen-
tation can adaptto the functionality of differentcommunication

layers,globalpointerrepresentationgndprocessoarchitectures.

Specifically our compilergenerate<C code(which is thencom-
piled by a native compiler)thatcontainscallsto our UPCruntime
layer, which is implementedatop a languageindependat com-
municationlayer called GASNet[4]. We usea combinationof
micro-benchmeks andapplicationkernelsto demorstrateseveral
key featuresof our compiler:

e The modulardesignof our runtimeimplementatiormakes
it easyto changerepresentationfr pointersto shareddata.
We will describeandcomparewo of them.

e We usea novel optimizationfor pointersto shareddatathat
eliminateamostof thecostof blocked cyclic arraysfor com-
monspecialcases.

e For someprograns, the performanceof serial code from
our compileris comparake to thatof a native compilerthat
generdesassemblyanguag directly.

e Despitétslayereddesignourcompilergeneratefittl e over-
headonsharedchddresgalculationswith performanceival-
ing thatof acommercialUPCcompiler

e Our GASNetcommunication layer provides low-overhead
accesgo the network, giving the UPCapplicationprogram-
mercloseto maximalperformancechiezableontheunder
lying network.

A secondyoalof our paperis to studythe effectsof communi-
cationoptimizationson UPC performarte. Becausea threadcan
write and read sharedmemorydirectly, UPC encourags a pro-
grammingstylethatmayresultin mary smallmessagesA major
challengefor a UPC compileris thusto bridge the gap between
fine- and coarse-graiad stylesby providing automaticcommu-
nication optimizations. We explore several communicationop-
timizations suchas commurication pipelining, aggreation, and
overlapof communicationwith computation.Although theseop-
timizationsare not yet automaticallyperformedin our compiler
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P1 == private pointer
P2 == pointer-to-shared
P3 == shared pointer-to-shared

Figure 2. Types of pointer s in UPC

we areableto measureheir potentialbenefitby transformingthe
intermediatecode by hand,and the resultsindicatethat they are
generallyeffective in reducingthe communicatiorcost.

The restof this paperis organizedasfollows: In Section2,
we presenta brief overview of the languag andthe designof the
Berkeley UPCCompiler In Section3, we describeheexperimen
tal ervironmentaswell asthebenchmarkusedin theperformance
analysis.Section4 discusseshe potentialcompileroptimizations
thatcouldimprove theperformarceof thebenchmaks, while Sec-
tion 5 presentsheresults.Section6 concludcesthe paper

2. Background

UPC (Unified Parallel C) is a parallelextensionof the C pro-
gramminglanguag@ aimedat suppating high performancescien-
tific applications. The langua@ adoptsthe SPMD programming
model, so that every threadruns the sameprogrambut keepsits
own private local data; eachthreadhas a unique integer iden-
tity expressedas the MYTHREAD variables,and the THREADS
variablerepresentshe total number of threadswhich caneither
be a compile-timeconstantor specifiedat run-time. In addition
to eachthreads private addressspace,UPC provides a shared
memoryareato facilitatecommunicatioramongthreadsandpro-
grammersandeclarea sharedobjectby specifyingthe shar ed
type qualifier While a private objectmay only be accessetby its
owner thread,all threadscanreador write to datain the shared
addressspace.Becausdhe sharedmemoryspaceis logically di-
vided amongall threads,from a threads perspectie the shared
spacecan be further divided into a local sharedmemoryandre-
moteone. Datalocatedin athreads local sharedspacearesaidto
have “affinity” with thethread,andcompilerscanutilize this affin-
ity informationto exploit datalocality in applicationsto reduce
communicationoverhead Figure 1 illustratesthe UPC memory
model.

Pointersn UPCcanbeclassifiecbasedon thelocationsof the
pointersand of the objectsthey pointto. Accessedo the private
areabehae identically to regular C pointeroperationswhile ac-
cesse$o shareddataaremadethrougha specialpointerto-shared
construct. The speedof local sharedmemory accessg will be
lower than that of private accesseslue to the extra overheal of
determiningaffinity, andremoteaccessem turn aretypically sig-
nificantly slower becauseof the network overhead. Figure 2 il-
lustratesthree different kinds of UPC pointers: private pointers
pointing to objectsin the threads own private space(P1in the
figure), private pointerspointingto the sharedaddresspacegP2),



andpointerdliving in sharedspacehatalsopointto sharedbjects
(P3).

UPCgivestheuserdirectcontrol over dataplacementhrough
local memoryallocationanddistributedarrays.Whendeclaringa
sharedarray programmerganspecifya block sizein additionto
thedimensionandelementype, andthe systemusesthis valueto
distributethearrayelementdlock by blockin aroundrobinfash-
ion over all threads.For example,adeclarationof shar ed [ 2]

i nt ar[10] meansthatthe compiler shouldallocatethe first
two elementf ar on thread0, the next two on threadl, andso
on. If theblocksizeis omittedthevaluedefaultsto one(cyclic lay-
out), while alayoutof [] or[ 0] indicatesindefiniteblock size,
i.e., that the entire array should be allocatedon a single thread.
A pointerto-sharedhus needsthreelogical fields to fully repre-
sentthe addressof a sharedobject: addr ess, thread.id,
andphase. Thet hr ead.i d indicatesthethreadthatthe object
hasaffinity to, the addr ess field storesthe objects “local” ad-
dresson the thread,while the phase field givesthe offset of the
objectwithin its block. Figure 3 demonsrateshow thefieldsin a
pointerto-sharedareusedto accesa sharedvalue.

To simplify the task of parallelization,UPC also includesa
builtin upc_f oral | loop that distributes iterationsamongthe
threads.Theupc _foral | loop behaeslikeaC f or loop, ex-
ceptthatthe programme canspecifyanaffinity expressim whose
valueis examinedbeforeevery iterationof the loop. The affinity
expressiorcanbetwo differenttypes:if it is aninteger, theaffinity
testchecksif its value modulo THREADS is the sameastheid of
the executingthread;otherwise the expressionmustbe a shared
addressandtheaffinity testchecksf therunningthreadhasaffin-
ity to this addres. The affinity expressioncan also be omitted,
in which casethe affinity testis vacwusly true andthe loop be-
havesasif itisaCf or loop. A threadexecutesaniterationonly
if the affinity testsucceedsandtheupc_f oral | languag con-
structthusprovidesan easyto usesyntaxto distribute the compu-
tationloadto matchthe datalayoutpattern.Othernotablefeatures
of UPClanguagenclude dynamic allocationfunctions,synchro-
nizationconstructsanda choicebetweera strictor relaxed mem-
ory consisteng model;consultthe UPClanguag specificatiorfor
moredetails[8].

2.1 The BerkeleyUPC Compiler

The performarte analysesand optimizationsin this paperuse
theBerkeley UPC Compiler[3]. Figure4 shavs theoverall struc-
tureof thecompiler whichis dividedinto threemaincompaments:
the UPC-to-Ctranslatoy the UPC runtime system,andthe GAS-
Netcommurcationsystem.

During the first phaseof compilation,the Berkeley UPC com-
piler preprocesseandtranslate&JPCprogramsnto ANSI-compliant
C codein a platform-indepedentmanner with all of the UPC-
relatedparallelfeaturesconvertedinto callsto theruntimelibrary.
ThetranslatedC codeis thencompiledusingthetargetsystems C
compilerandlinkedto theruntimesystemwhich performsinitial-
izationtaskssuchasthreadgeneratiorandshareddataallocation.
The Berkeley UPC runtime delegatescommunication operations
suchasremotememoryaccesseto the GASNetcommunication
layer, which providesa uniform interfacefor low-level commun-
cationprimitiveson all networks.

Webelievethisthree-layedesignhasseseraladvantages First,
becauseof the choice of C as our intermediaterepresentation
our compilerwill be availableon mostcommonlyusedhardware

platformsthathave an ANSI-compliantC compiler;the currently
available UPC Compilers,suchasthe HP UPC or the SGI Gnu-
UPC compiler on the otherhand,only suppat specificsystems.
Thegainin portability doesnot meanthat performancehasto be
sacrificed: the baclend C compileris free to aggressiely opti-
mize on the intermediateC output, and the UPC-to-Ctranslator
canutilize its UPC-specifickknowledgeaboutsharedmemoryac-
cesspatternsto perform standardcommunicationoptimizations.
Moreover, thecommunicatioroverheal is generallylow sincethe
GASNetsystemcandirectly accesghe networking hardware in-
steadof goingthroughanothercommunicion layersuchasMPI,
andmary runtimeandGASNetoperationsareimplementedising
macrosor inline functionsto eliminatefunctioncall overhead.

3. Experimental Setup

Portabilityis oneof the majorgoalsof the Berkeley UPC com-
piler; sincethe compilertranslatesJPC programsinto C code, it
shouldrun on ary networking architectureshat GASNetcommu-
nicationinterfacesupports(GASNetalso hasthe ability to trans-
late network accessemto MPI calls, so our compilercanrun on
ary systemwith an MPI implementationof course,doing soin-
cursa performancepenalty). We performour experimentson an
HP supercompter locatedat Pittshurgh Supercompting Center
which consistsof 750 HP AlphaSerer ES45 nodes,with each
nodecontainingfour 1-GHzprocessts and4GBsof memory[13].
The nodesare conneted by a Quadricsinterconnect. We chose
this architecturebothbecauséhe GASNetimplementatiorfor the
Quadricsnetwork hasbeenperformarte tuned,and alsothatwe
could directly compare our compilers performarce with that of
the HP UPC compiler[6], oneof the mostmaturecompilerscur-
rently availablefor UPC.We usedHP UPC2.1-003 the latestre-
leaseof their compiler For simplicity, in all of our experimeris
we allocateexactly onethreadper node,so that communicatios
betweendifferentthreadsmustgo throughthe network. We use
theHP C 6.4compilerto compilethetranslatedC codeinto object
files; unlessotherwisenoted, all benchnarks are compiledwith
optimizationsenabled*-03").

3.1 Micr o-Benchmaks

Oneof thefirst stepsn evaluding the effectivenesof ourUPC
implementationis to measurethe execution costsof the various
UPClanguag constructsn the Berkeley UPC compilerandcom-
parethemto the numkers collectedfrom other UPC compilers;
the availability of suchinformation could be vital in helping us
identify and optimize partsof our compilerthatareimplemented
inefficiently. We thushave writtenanumker of micro-bentimarks
to time the overheadf the performarte-criticalUPCfeatures:

Pointer-to-shared operations: Sharedmemoryaccessesare
usuallytheperformarebottleneckfor communicg@ion-boundpro-
grams,asUPC encouagesa programming style of using pointer
dereferencesesultingin alargenumberof smallmessagesRointer
arithmeticon sharecaddressewill alsobeinevitably slovercom-
paredto their courterpartson regular C pointers,sincea pointer
to-sharedcontainsthreefields, all of which may be updateddur-
ing pointer manipulatiors. To combatthis overheal, the Berke-
ley UPC Compilerperformstwo major optimizations:“phasdess
pointers”andacompat pointerto-sharedepresentationAs men-
tionedin Section2, agenericpointerto-shareccontainsaphase
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field asindex into the block thatthe objectis located.For the fre-
quentlyusedcyclic pointerswhich have block sizeone,however,
the phase field canbe eliminatedsinceits valueis alwayszero.
Similarly, indefinitepointers(block size== 0) canomit their phase
sinceall elementgesidein a single block. Cyclic andindefinite
pointersare thereforenamed“phaseless”,and our compiler ex-
ploitsthisknowledgeto enablemoreefficient operationgor them.

The other Berkeley UPC optimizationis its suppat for both
a C structanda packed eight byte pointerto-sharedormat. The
pacledrepresentatiois preferredfor mostapplicationshecauset
enablesnoreefficientimplementation$or pointerto-sharedper
ationsandfits in theregistersof mary modernscientificplatforms;
only in therareoccasionsvhereanapplicationneeditheralarge
amountof sharednemory(> 4GB perthread)or morethanafew
thousandhreadsdoesa programmemeedto switchto the struct
representation.

UPC forall loops: Generallyaffinity testsfor upc_f or al |
loops are performedon every loop iteration, and they could in-
troducea substantialoverheadif implementednefficiently. We
have written a simple bendmarkto measurethe executiontime
of four loops, eachwith a differentkind of affinity expression
none (effectively a C f or loop), varying integer value, constam
sharedaddresgqby taking the addresof a sharedscalar),and fi-
nally dynamicsharedaddresgby takingtheaddres®f elementsn
asharedarray). Sincetheloop body only consistsof onevariable
update(necessaryo ensurethat the C compilerwould not opti-
mize away the loop), the running time of the loopsshouldclosely
reflectthe overheadof the affinity tests.

Dynamic allocation: UPCsupyortsthreedynamicsharednem-
ory allocationfunctions:upc_al | oc,upc_gl obal _al | oc,and
upc_al | ;al | oc. Thefirst functionactssimilarto mal | oc()
andallocatesasharedbjectthathasaffinity with thecallingthread,
while the othertwo take block-sizeandnumberof bytesperblock
asamgumentsand createa distributed sharedarray (equivalentto
shared [b] char a[b * nbl ocks], whereb is the ar-
ray’s block size). The differencebetweerthe lattertwo functions
is that the first is meantto be called by a single thread, while
upc_al | _al | oc is acollective operation Althoughthesefunc-
tions are unlikely to be performane bottlenecksthey do appear
with greatfrequeng in UPC applications,andit’s interestingto
know if our compilerimplementsthem efficiently, especiallythe
mostexpensveupc_al | _al | oc.

Platform-
independen

Translator Generated C Code

Network-
independen

Compiler-

independent
Language-
independent

Berkeley UPC Runtime System

Network Hardware

Figure 4. Architecture of the Berkeley
UPC Compiler

3.2 Syntheticand Application Benchmarks

To furtherevaluateour Berkeley UPCcompilers performarce,
we have implementedseveral syntheticbenchmarksand also ex-
amineda few UPCapplicationbenchnarksfrom [7]. Thefollow-
ing is thelist of benchmarksisedin our experiments:

vector add This simplebenchmak is intendedto gaugethe per
formanceof local sharedmemoryoperatiors. The program
usesaupc_f oral | looptoaddtwo distributedarraysele-
mentby element storingthe resultto anothe sharedarray
Thearraysarealignedin wayssuchthatno communication
is required,andeachthreadreceivesa fixed numberof ele-
ments.We alsoexperimentedwith differentblock sizesfor
thearraysto seeif the compilercould moreeffectively opti-
mizecertainblock sizes.

gupspair Thisbenchmarkmeasuretheoverheadfremoteshared

memory operations. The programconsistsof a loop that
processeasharedarrayof structswith two doute fields: on
every iteration,a numbe of randomarrayindexesaregen-
eratedand usedto accesslementdn a sharedarray Each
randomarrayindex correspordsto two readoperationsand
two floatingpointadditions andthe percentag of readshat
aremadeto remotesharednemorycanbe adjusted.

scale This benchmak is similar to gupspair exceptthatit also
updateshe sharedvariable,so eachiterationnow consists
of onesharedead,oneconstanmultiplicationonthevalue,
andonesharedwrite thatstoresbackthevalue.

ep This is the UPC versionof the embarrassinglyparallel (EP)
kernelfrom the NAS parallelbenchmark suite [1]. As its
namesuggeststhe programperformsvery litle communi-
cationand shouldscalewell with large numberof proces-
sors.We usedclassA workload astheinputsize.

is This benchnark is the integer sort (1S) kernelfrom the NAS
suite,andcommunicatiosaredoneviatheupc_nmenget ()
bulk memorytransfer ClassA workloadis used.

npbcg This benchmarkis the ConjugateGradient(CG) bench
mark (with ClassA input) from the NAS Suite. The UPC
codeis basedon a parallelsparsematrix-vectormultiplica-
tion in the Aztec[21] library and is not optimizedfor the



Benchmark| No. lines(UPC) | No. lines(translatedC) | CommunicatiorPattern
VectorAdd | 88 326 None

GupsPair | 92 210 SmallReads

Scale 92 208 SmallRead+ Write

EP 298 495 None

IS 1082 768 Bulk Memget

CG 757 1071 Mostly SmallReads SomeWrites
NPBCG 564 811 Bulk Memput

MG 1855 2596 Bulk Memput

Table 1. Characteristics of the benc hmarks

NAS matriceswith their randomnonzro pattern. It pro-
vides a goad test casefor UPC codesthat perform large
upc_menput operatiors.

cg This is anotherinstanceof the ConjugateGradientalgorithm,
but unlike npbcg it usesfine-grainedcommunication(sin-
gle elementreads)and matricesfrom thefinite elementdo-
main. This representshe performanceof a programwrit-
tenin a sharednemorystylewithout application-leel opti-
mizations.

mg This is the Multigrid (MG) benchmarkfrom the NAS paral-
lel benchmaks. ClassB inputswereusedin our tests.The
communicationin the applicationmainly consistsof ghost
region excharges,implementedisingupc_nenput opera-
tionsin UPC.

Tablel summarizeshesizeandcommunicationcharacteristics
for eachof thebenchmaks usedin the paper

4. Compiler Optimizations

At the time of this writing, the Berkeley UPC compiler does
not currentlyperformUPClanguag-specificoptimizations.Nev-
erthelessthebenchmarldatapresentedh this paperindicateghat
the performane of the codeproducedby our compileris compa-
rablewith the performane of the codeprodiwcedby commerdally
availableimplementation®f the UPClanguaye.

The resultsreportedin this paperrepresentan upper bound
on the total running time of the benchnarks and we expect per
formanceto improve significantlyoncewe incorporateaggressie
UPC-specificoptimizationsinto the translator In the restof this
sectionwe will presentsereral of thesespeculatie optimizations
andin Section5.2 we analyzetheir impact on performanceby
manuallyapplying thetransformationso simplebenchnarks.

4.1 Communication and Computation Overlap

The GASNetcommunicéion layerprovidessuppat for block-
ing andnon-bloking one-sidedemotememoryoperationge.g.,
putandget)with awide variety of synctronizationoptionswhich

areappropiatefor differentcodegeneratiorsituations.Onestraight-

forward translationof a remotememoryaccesss to generatea
non-blockng initiation call to the commurication subsystemfol-
lowedimmediatelyby a correspoding synchraizationcall to en-
sureits completion. In otherwords, a blocking remotememory

operationop() canbetranslatedntothesequerei nit _op();
sync.op(); .

In orderto hide commurication lateng, optimizing compil-
ersfor parallellanguags canleveragethe availability of anasyn-
chronows communicationinterfaceby performingcommunication
placemenbptimizations. The basicideais to move the initiation
andsynchroiizationcallsfor aremoteoperationasfar away from
eachotherin the programas possible while preservingdataand
control depenéncies. This minimizesthe chanceghat the syn-
chronizationcall will wastetime blocking for completion,andal-
lows othercommuricationandcomputatiorto be overlappedwith
thelateny of theremoteoperation.

Severalstudieq[5], [22]) presentompileralgorithmsthatper
form possible-placemermnalysisbothon basicblocksandwhole
programs. Code motion of communicationoperationsin UPC
needsto be supplemetedwith ananalysisto ensurethatthe new
scheduleof operationsdoesnot violate the memory consisteng
modelof thelangua@. Analyseswhich determindf sharedmem-
ory operationan SPMD programscanbe safelyreorderedwhile
preservinghe consisteng modelaredescribedn ([11], [12]).

The combinationof initiation/synchramization separationfor
remoteoperationsandcodemotionoptimizationgproducesacom-
municationpatternknonvn as messageipelining or commurca-
tion overlap. In Section5.2.1we analyzethe potentialimpactof
theseoptimizationson performance

4.2 Prefetchingof RemoteData

An initial study[9] of UPC suggeststhat bulk prefetchingof
datais animportantoptimizationfor achiezing good application
performance.The study suggetsthat programners and compil-
ersshouldfavor bulk transfersandreplicationof shareddataover
fine grainedcommunication This techniqueworks well under
programmercontrol for dense array-basedumericalcodeswith
good spatial locality; however, compile time transformationof
code with fine granularity communication into bulk transfersis
likely to be lesseffective. It is difficult to automatethis transfor
mationfor pointerbasedprogramswith irregular accesgatterns,
primarily becawsethecompilerlacksthe programmeé sknowledge
of the datausagepatternsandcurrentdatadepenéng/ andalias
analysesreoverly conserative or prohibitive in termsof compi-
lationtime.

Pointerbasedprefetchingtechniqies have beenwell investi-
gatedin the context of serialprograms.The Berkeley UPC com-
piler inheritsa working implementatiorof the pointerprefetching
describedn [15] from the Open64codebase however our trans-
lator doesnot currentlymake useof the generategrefetchhints.



In the nearfuture we planto specializethis optimizationfor UPC
programsby modifying the prefetchheuristicsto handleremote
memoryfetches.

We analyzethe potential benefitof dataprefetchingin Sec-
tion5.2.2.

4.3 Messag Coale<ing and Aggregation

The global-addessspacefeatureof the UPC languaye often
leadsto programswith afine-graineccommunicatiorpatterndom-
inatedby small messageendsandrecevesgeneratedy assign-
mentsandpointerdereferencedn the presencef alargenumber
of smallmessageghe software overheadof communicatiorand
network gapcanquickly becomea performarte bottleneck.Such
programscould enjoy a significantperformanceboostif we can
automatehe packingof multiple messagewith the samedestina-
tion into alarger messagéo amortizecommunicatioroverheals.

A recentstudy[2] shavsthatin mostcurrenthigh-performace
networks,the costof transmittingsmallmessageis greatlydomi-
natedby fixed permessag@verhealsratherthanbandwidthcost,
andthe aggreationof smallmessagemto larger onesgenerally
paysoff for messagsizesof up to afew hundredbytes.We eval-
uatetheimpactof messagaggreationin Section5.2.3.

4.4 Optimizing Accesto Local Shared Data

TheBerkeley UPCimplementatiorcurrentlyperformsall shared
memory accesseshrough GASNet, and we are likely to seea
substantialperformanceimprovementif the compiler can stati-
cally identify sharedlataaccessewhich arelocalto theaccessing
thread;thethreadcanthenperformsuchaccessedirectly through
a private pointer eliminatingthe overheal of runtimeaffinity de-
tection. [14] proposesan efficient type inferencesystemthat can
distinguishbetweenlocal pointersand global pointers,with the
former correspoding to pointersthat addressshareddata with
affinity to the currentthread. The designof the UPC language
malesit anideal targetfor the local qualificationinferencealgo-
rithm, asthe blocking factorof a staticallydeclaredsharedarray
is guaraneedto be a compile-timeconstan Otherlanguagefea-
turessuchasindefinitely blocked arraysand affinity expressions
in loopscanfurtherassisthe compilerin recognizingmemorylo-
cationsthat have affinity to the accessinghread. Section5.2.4
studiesthe effectsof suchoptimizationsin UPC.

5. Experimental Results

Figure5 presentghe costof sharedaddresscalculationsand
underscoreshe effectivenessof our two major optimizationson
pointerto-sharedphaselespointersanda pacledrepresentation
Notethattheresultsarecollectedwith variablesdeclared/ol ati | e,
sothe C compilerwould not attemptto optimize away the opera-
tion. Fromthefigureit is clearthatunopimized pointerto-shared
manipulationsincur a substantialoverheadcomparedto regular
C pointerarithmetic,especiallywhenincrementinga struct-based
genericpointerto-sharedy aninteger offset.

TheBerkeley UPCoptimizationshowever, significantlylower
thisperformanceenalty;cyclic pointerseasilyoutperformgeneric
onesthanksto the phase field not being adjusted. Indefinite
pointersbenefiteven morefrom the optimization,sincefor them
only the addr ess field needsto be updated Sincecyclic and

Cost of Shared Address Arithmetic

Egeneric
M cyclic
Oindefinite

Berkeley
Struct
HP
Berkeley
Struct
HP

ptr+int

Figure 5. Cost of pointer -to-shared arithmetic
(1 cycle = 1ns).

indefinite pointersboth appea with greatfrequercy in UPC pro-
grams(the former being the default block size and the latter in-
troducedby theupc_l ocal _al | oc call), we concludethatthe
phaseles®ptimizationis vital for good performane. Similarly,
the pacled representatiosubstatially reduceghe costof shared
addresgalculationsgspeciallyfor genericandcyclic pointers.As
aresult,we usethepacledrepresentatiofor all benchnarksin the
restof the paper

Also includedin Figure5 is the costof pointerto-sharedarith-
metic for the HP compiler HP UPC outperformsthe Berkeley
UPC'sstruct-basegointerto-sharedormat;thisis expectedsince
the HP compiler generatesassemblycode, while for portability
Berkeley UPCimplementgheoperationsn C. Thepacked format,
however, is soefficientthatit beatsHP UPC,againillustratingthe
effectivenesof our optimizations.

Figure6 and7 reportthe overheadof sharednemorystoresof
adouHe for thetwo compilers.For Berkeley UPCaccessew lo-
calshareddataareslightly slowerthanprivateloadandstoregtwo
cycles),dueto the extra overheadof verifying the objects affinity.
Remoteaccessem turn aretwo ordersof magnitudeslower than
local sharedaccessedueto network latencies Thesefiguressug-
gestthat in generalcompilersand programners should attempt
to make as much dataprivate as possibleby castingpointers-to-
sharednto private pointerswhen operatingon local shareddata;
cachingvaluesfor sharedvariablescanalsobe a rewardingcom-
piler optimization. When comparingthe performane of the two
compilers,we obsene that HP UPC is fasterfor local accesses,
while Berkeley UPCholdsthe edgein remoteaccesses.

Table2 presentshe overheadperiterationof performingaffin-
ity testsin aupc_f or al | loop. Not surprisingly the presencef
theaffinity expressimsintroducesxtraoverheador thef or al |
loop: for anemptyloop, aninteger affinity expressioncauseghe
runningtime to bethreetimeshigherthanwhenit’s absentwhile
an affinity teston a sharedaddresslows down theloop by about
70%. Thesemeasuremets, however, representhe upperbounds
on the real cost of affinity tests;in real prograns the f or al |
loops likely will containmary instructions,making the relative
costof performingaffinity testdessnoticeable Also, if theshared
addressisedastheaffinity expressiorcanbecalculatedatcompile
time,thecompilercanstaticallydetermineheresultof theaffinity
tests;similarly if theaffinity expressim is aninteger, the compiler
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canunroll the loop and eliminatethe affinity testin mostitera-
tions. We expectthe overheal of the affinity teststo be substan-
tially loweredoncesuchoptimizationsareaddel to our UPC-to-C
translator

Figure8 shavstheexecutiontime of callingupc_al | _al | oc
to allocatea 1KB of dataperthreadyvarying theallocationsizehas
no noticealte effect on performance.Becausaupc_al | _al | oc
is acollective call which broadcats theresultto all threadsijts ex-
ecutiontime naturally increasesas thereare more threads. The
cost of the operationcurrently grows linearly with the number
of threadsihis is subopimal asthe global communicatiorphase
couldbeimplementediy a O(lgN) treealgorithm,which we ex-
pectto addin the nearfuture. The surprisingfinding here,how-
ever, is theBerkeley UPC compileroutperformsHP UPCby more
thananorderof magnitudeandthe performancegapis consisteh
despitethe increasingnumberof threads.One possibleexplana-
tion is that the HP implementationimplicitly performsa barrier
beforeall threadsmay returnfrom the function, while underthe
Berkeley compilereachthreadneedsto only receve a broadcat
from thread0, with no barrierinvolved.

Figure 7. Performance of remote shared
memory accesses (1 cycle =1ns).

5.1 Performanceof the Application Benchmarks

In this subsetion, we comparethe performane of Berkeley
UPC compilerand HP UPC on larger benchmaks. The bench
marksexhibit differentcommunicaion patternsnone(vect or _add
andep), bulk readsi s), fine-grainedcg), andbulk writes(npbcg
andnyg). Thedifferencebetweenvect _add andep is thatlocal
sharedaccessedominatethe former, while only privateaccesses
arepresenin thelatter

Figure 9 shaws the runningtime of the vectoradditionbench
markon thetwo compilers;for Berkeley UPCtherunningtime is
shavn for both blocked and cyclic pointers(they have the same
runningtime underHP). Sincethe Berkeley implementationop-
timizesfor cyclic pointers,it runsfasterthangenericpointersas
expected HP UPCoutperformsheBerkeley compiler but neither
scaleswell dueto the overheadof affinity teststhatarecurrently
executedin every iteration of the loop. Optimizationsfor local
sharednemoryaccessewill beexploredin Section5.2.4.

Figure1l0reportgtherunningtimefor theEPbenchmak, which
usesminimal shareddataandrequiresnearlyno remoteaccesses.
Thefactthatthe Berkeley UPC compilerperformsaswell asHP
UPC indicatesthat the native C compiler can optimize the code
outputby our UPC-to-Ctranslatorjust asit would on normal C
code.Thisfinding is encouragng becaus it validatesthatour ap-
proachof lowering UPC codeinto C codedoesnot interferewith
theC compilers ability to optimizethe sequatial partof thecode.
Also, our compilerscalesaswell asHP UPCfor growing numker
of threadswhichis expectedconsideringherearealmostno com-
municationsor synchrorizations.

Figurel1lillustratesthe performanceof the IS benchmark, for
which bulk memoryoperationsconsumed5% of the commurica-
tion time. The two compilersperform aboutthe samefor small
numberof threads,which is not surprisingconsideing that the
speedof bulk memorytransfersis primarily limited by the net-
work. HP UPC however appeas to have difficulties scalingbe-
yond 16 threads.

Figure 12 presentghe performanceof the conjugategradient
benchmak. We usea positive symmetricdefinite matricesfrom
the Matrix Market [16], nos7.mtx(729 rows, 2673 nonzeroele-
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ments,1723iterationsto corvergewithouta preconditione). Here
theBerkeley compileroutperfamsHP UPC,with theperformance
gap growing with the increasingnumberof threads. HP UPC's
runningtime, however, is loweredsignificantly onceits software
cachingoption is enabled,asthe overheadof mostremotearray
referenceds eliminatedfrom cachehits. While redundnt re-
moteaccesseareunlikely to arisein well-optimizedcode,caching
could still improve the performane of fine-grainedprogramsby
prefetchingdatain the samecacheblock. Consequetty, we are
currently implementinga genericsoftware cachingschemethat
canadaptto differentmemoryconsisteng modelsin UPC.

Figures13 and 14 shov the performarte of our compileron
codethatinvolves mary bulk writes (NPBCG and MG). the HP
compileragaindoesnotscalewell*, while Berkeley UPCachieves
nearlinearscale-ugor MG.

5.2 Communication Optimizations

Theprevioussubsetion shavsthatevenwithoutimplementing
ary paralleloptimizations,the Berkeley UPC compileris ableto
performaswell asothercommerciallyavailable UPC compilers.
Thenaturalquestiorthisraisess how muchperformanegainone
canexped oncethe missingcommunicationroptimizationsarein
place. To answerthis question,we manuallymodify a subsetof
our benchmark in waysthatwe expecta good optimizing com-
piler would beableto achieve.

5.2.1 Messae Pipelining

We usethe scal e benchmak to illustrate the potentialsof
overlappingcommurication with more communication. Figure
15reportsthe performancémprovemens dueto messageipelin-
ing; insteadof doing oneread/writeat a time, we issuefive non-
blocking requestsat once and synchrotize all of them together
sothatoneoperations network latenciescanbe overlappedwith
anothers. The experimen wasdonewith four threads. The fig-
ure shows that while messagepipelining in generalis helpful in
reducingthe communicationcost of the benchmark, its benefits
appeatimited (around5%) anddo not seento be affectedby the
numberof outstanihg sendsandreceves. The Quadricsnetwork,
however, is notanidealtargetfor commuricationoverlapping be-
causgheminimumgaprequiredbetweerevery sendis largerthan
thesoftwareoverheadfor eachmessagecomputatioroverlapping
insteadis more valuatle becawseit will be ableto obtain more
CPUcycles[2]. this effectis larger(e.g.,Myrinet)

5.2.2 Data Prefetch and Overlappng Commuica-
tion with Compuation

To evaluatethepotertial of theUPClanguageandour compiler
in overlappingcommuricationwith computationwe modifiedthe
scalebenchnark so that eachiterationnow also performsa con-
figurableamouwnt of compuation. Insteadof aconstanmultiplica-
tion, thefetchedvalueis now usedto evaluatea polynomial, and
the resultedvalueis storedback. To hide communicationaten-
ciesby overlappingcommurication with compuation, we manu-
ally performedsoftware pipeliningon theloop, sothatthe remote
readof the currentiterationcanbe processedimultaneouslyvith
thecalculationsof thepreviousiteration. Figure16 shovsthe ben-
efit of softwarepipeliningonthe scalebenchnark for four threads

*The poor scalingof the HP compileron our exampleshasbeen
reportedto their compilerteamandmay be dueto a performance
bug

(theoptimizationis alsoeffective for differentnumbe of threads).
As the figure shaws, our optimizationsare effective, providing a
15 — 20% gainin performancavhenthereis a substantiaamourt

of remoteaccessegheincreasawill likely be greateiif we unroll

theloop to provide moreoperationgo beoverlappel.

5.2.3 Messge Aggregation

Next we usethegups pai r benchmak to studythe effects
of messageaggre@ation. The naive versionof the programper
formstwo remoteeight-bytereadsfrom consecutie addressem
the memoryspaceof the samethread. We manuallycombire the
two individual read operatiors into one operationthat fetchesa
doubleamountof data.Figurel7 shavs theresultedrunningtime,
andthe benefitof messageggregationis fairly appareh When
theratio of remoteaccessess high, the runningtime of the opti-
mized programis lower by about50% thanthe original version,
and the performancebenefitremainsconstan as the numter of
threadggrow. Thisimprovemeri canbeattributedto thereduction
in communicatioroverhead

5.2.4 EfficientAcces of Local Shaed Data

As Figure9 shavs, thendve vectoradditionbenchmarkwhich
accessesnly local shareddata)performspoorly dueto the over-
headof sharedaddresalculation,whosecostgetsmagnifiedbe-
causethe loop doesno computationexcept for an addition. In
particular thespeedp achievedin Berkeley UPCis notlineardue
to the costof affinity tests,introducedby a parallelforall loop to
ensurea threadcanonly performadditionon the elementst has
affinity to. Becauseheblock sizeof sharedarraysis a statictype
propertywhich is always known at compile time, the optimizer
could utilize this information to perform optimizationsspecifi-
cally for local shareddata. Figure 18 presentghe potentialbene-
fit of suchoptimizationson vectoradditionwith blocked pointers.
Opt 1 indicategheeliminationof affinity testsby transforminghe
upc_forall loopinto anequialentf or loop; this is possible
becausehe compilercanstatically determinethe affinity expres-
sions’valuesandthushow theiterationsaremappedo individual
threads.Opt 2 builds uponopt 1 by usingprivate pointersto ac-
cesslocal shareddata;the pointerto-shareds castinto a regular
C pointerbeforeenteringtheloop. Thefigure shavs a substantial
improvementin performancewith theseoptimizations.especially
with opt 2 exhibiting an order of magnitudespeedp (note the
log scaleon they axis). While theresultsrepresentshe bestcase
scenariadueto the simplicity of the benchmarkthey still signify
theimportanceof convertinglocal sharedaccessesto privateac-
cessesvherepossible.

6. Conclusion

We presentecdh descriptionof the Berkeley UPC compiler a
portablehigh-performace compilerfor the UPC langua@. Our
resultsshaw that,in spiteof the modularityusedto suppat porta-
bility, the compiler performswell in both absoluteand relative
terms. In an absolutesense the communicationperformarce is
very closeto thatof the lowestlevel networking layer on the ma-
chine,with very little overheadfrom GASNet,the UPCruntime,
or the translator The serialperformances closeto that of serial
codecompiledby a venda compiler even thoughour compiler
targetsC insteadof machinecode. In a relative sensepur com-
pileris competitve with acommercialJPCcompiler with neither
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clearly dominging the otheracrossall of the performancemea-
sures. As both compilersare still maturing, we expectthemto
improve significantlyover the next few monthsin codegeneration
quality andin the useof moresophisticateaptimizations.

Specificfeaturef theBerkeley UPCcompilerthatwe believe
areimportantin achieving high performancenclude the use of
“phaseless’pointersto lower the costof generablock-gyclic data
layoutsin importantspecialcasesand a compactpointer repre-
sentatiorthatreducegheoverheadf pointerto-sharedarithmetic
and comparison.At the runtimelevel, GASNet$s layereddesign
allows for platform-specificimplementationsof basic primitives
suchas put and get when they are supportedin the networking
hardware.Ourcompilerperformsaswell asHP UPCfor programs
whosecommunicationpatternsconsistof bulk memorytransfers
or few memoryoperatiors, andsignificantlybetterfor applications
thatrely on small messagéraffic. Thisimpliesthatapplications
written in a sharedmemorystyle arewell-supportedby our com-
piler, with their performancdimited primarily by the underlying
network. We thus conclude that for UPC portability is possible
without makingmajor conassionn performarce.

Finally, we evaluatedthe potential of several compiler opti-
mizationsin reducingthe commurcation overheadfor UPC pro-
grams. Preliminaryresultsfrom synthetichenchmark suggest
that optimizationssuchas messageaggreation, privatizing local
sharedhccessesndoverlappingcompuationandcommunication
arepromisingin their ability to hide the latenciesassociatedvith
remote sharedaccesses.Incorporating theseoptimizationsinto
thecompilerwill directlyimprove the programmabity of thelan-
guageby moving someof the performanceuningtransformations
from the applicationprogramners’ handsinto the compiler
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