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Abstract

UnifiedParallel C (UPC)is a parallel languagethatusesa Sin-
gle Program Multiple Data (SPMD)modelof parallelism within
a global address space. Theglobal addressspaceis usedto sim-
plify programming, especiallyon applicationswith irregular data
structuresthat lead to fine-grainedsharingbetweenthreads.Re-
centresultshaveshownthattheperformanceof UPCusinga com-
mercial compiler is comparable to that of MPI [7]. In this pa-
per we describea portable opensource compiler for UPC. Our
goal is to achievea similar performancewhileenablingeasyport-
ing of the compiler and runtime, and also provide a framework
that allows for extensiveoptimizations. We identify someof the
challenges in compiling UPC and usea combination of micro-
benchmarksandapplicationkernelsto showthatour compilerhas
low overheadfor basicoperations on shareddataandis competi-
tive, andsometimesfasterthan,thecommercial HP compiler. We
also investigateseveral communication optimizations,and show
significantbenefitsby hand-optimizingthegeneratedcode.
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1. Intr oduction

Oneof the challengesfacedby the applicationdevelopersfor
high performanceparallel systemsis the relatively difficult pro-
grammingenvironment. For large-scaleparallel machines,the
mostcommonmodelismessagepassing, popularizedin theMPI [20]
standardinterface. Relative to competingprogrammingmodels
suchasOpenMP[19], threads,dataparallelismor automaticparal-
lelization,messagepassinghastheadvantagein scalability, since
it runson distributedmemorymultiprocessors,andperformance
tunability, since the programmer has full control over data lay-
out, communication,and load balance.The ubiquity of MPI on
parallelmachines, enabledin partby theportableMPICH imple-
mentationfrom the ArgonneNationalLaboratory[17], hasbeen
animportantallurefor applicationdevelopers,whoknow thatma-
chineswill change fasterthan the rateat which applicationscan
berewritten. Themajordrawbackto messagepassing,however, is
thatreprogrammingaserialor sharedmemoryparallelapplication
in MPI canbequitedifficult, andanecdotal evidencesuggeststhat
someusershavebeen“left behind”by theshift from vectorshared
memorymachinesto distributedmemoryandclustercomputers.

To overcome thesedifficulties, somerecentefforts have fo-
cusedonexplicitly parallelprogramming paradigmsusingaglobal
addressspace(GAS) model,includingUPC[8], Titanium(based
on Java) [10], and Co-Array Fortran [18]. Theselanguagesare
extensionsof popularsequentialprogramming languages,andthe
global addressspacemodelthat they all shareprovides a middle
groundbetweenasharedandadistributedmemorymodel.In GAS
languages, a threadmay directly accessremotememorythrough
globalpointersanddistributedarraysjust asit would in a shared
memorymodel. GAS languages thusoffer a muchmoreconve-
nient programming style thanmessagepassing,andgood perfor-
mancecanstill be achieved becauseprogrammersretainexplicit
control over data layout, parallelism,and load balancing. This
notion is well supportedin a recentstudy by the UPC group at
GeorgeWashingtonUniversity;usingtheHPUPCcompileronHP
AlphaServer, they demonstratedthattheperformanceof UPCpro-
gramsis comparableto thatof MPI[7]. In additionto theHPcom-
piler, several efforts areunderway to implementUPC compilers
for a variety of platforms,with compilerscurrentlyavailablefor
SGIsharedmemorysystems,theCrayT3E,andtheCrayX1. One
commonshortcomingof thesecompilers,however, is thatthey are
specializedto theparticularparallelmachinefor which they were
built. Our goal is thusto build a portablecompilerframework for
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UPC that alsooffers comparable performance to the commercial
UPC compilers;UPC will thenbe able to matchMPI in perfor-
manceandportability, while maintaininga clearedgein easeof
programming.

In this paperwe describethe Berkeley UPC compiler, which
is designedfor portability andhigh performance. To supportboth
of thesegoals,we usea layereddesign, so that the implemen-
tation can adaptto the functionality of different communication
layers,globalpointerrepresentations,andprocessorarchitectures.
Specifically, our compilergeneratesC code(which is thencom-
piled by a native compiler)thatcontainscallsto our UPCruntime
layer, which is implementedatop a language-independent com-
municationlayer called GASNet [4]. We usea combinationof
micro-benchmarks andapplicationkernelsto demonstrateseveral
key featuresof our compiler:

� The modulardesignof our runtimeimplementationmakes
it easyto changerepresentationsfor pointersto shareddata.
We will describeandcomparetwo of them.

� We usea novel optimizationfor pointersto shareddatathat
eliminatesmostof thecostof blocked cyclic arraysfor com-
monspecialcases.

� For someprograms, the performanceof serial code from
our compileris comparable to thatof a native compilerthat
generatesassemblylanguagedirectly.

� Despiteits layereddesign,ourcompilergenerateslittl eover-
headonsharedaddresscalculations,with performancerival-
ing thatof a commercialUPCcompiler.

� Our GASNetcommunication layer provides low-overhead
accessto thenetwork, giving theUPCapplicationprogram-
mercloseto maximalperformanceachievableon theunder-
lying network.

A secondgoalof our paperis to studytheeffectsof communi-
cationoptimizationson UPCperformance. Becausea threadcan
write and readsharedmemorydirectly, UPC encourages a pro-
grammingstylethatmayresultin many smallmessages.A major
challengefor a UPC compiler is thus to bridge the gapbetween
fine- and coarse-grained stylesby providing automaticcommu-
nication optimizations. We explore several communicationop-
timizationssuchas communication pipelining, aggregation, and
overlapof communicationwith computation.Although theseop-
timizationsarenot yet automaticallyperformedin our compiler,

we areableto measuretheir potentialbenefitby transformingthe
intermediatecodeby hand,and the resultsindicatethat they are
generallyeffective in reducingthecommunicationcost.

The rest of this paperis organizedas follows: In Section2,
we presenta brief overview of the language andthedesignof the
Berkeley UPCCompiler. In Section3,wedescribetheexperimen-
tal environmentaswell asthebenchmarksusedin theperformance
analysis.Section4 discussesthepotentialcompileroptimizations
thatcouldimprovetheperformanceof thebenchmarks,while Sec-
tion 5 presentstheresults.Section6 concludesthepaper.

2. Background

UPC (Unified ParallelC) is a parallelextensionof the C pro-
gramminglanguage aimedat supporting high performancescien-
tific applications.The language adoptsthe SPMD programming
model,so that every threadruns the sameprogrambut keepsits
own private local data; eachthreadhas a unique integer iden-
tity expressedas the MYTHREAD variables,and the THREADS
variablerepresentsthe total number of threads,which caneither
be a compile-timeconstantor specifiedat run-time. In addition
to eachthread’s private addressspace,UPC provides a shared
memoryareato facilitatecommunicationamongthreads,andpro-
grammerscandeclarea sharedobjectby specifyingtheshared
typequalifier. While a privateobjectmayonly beaccessedby its
owner thread,all threadscan reador write to datain the shared
addressspace.Becausethesharedmemoryspaceis logically di-
vided amongall threads,from a thread’s perspective the shared
spacecanbe further divided into a local sharedmemoryandre-
moteone.Datalocatedin a thread’s local sharedspacearesaidto
have“affinity” with thethread,andcompilerscanutilize thisaffin-
ity information to exploit datalocality in applicationsto reduce
communicationoverhead. Figure1 illustratesthe UPC memory
model.

Pointersin UPCcanbeclassifiedbasedon thelocationsof the
pointersandof the objectsthey point to. Accessesto the private
areabehave identically to regular C pointeroperations,while ac-
cessesto shareddataaremadethrougha specialpointer-to-shared
construct. The speedof local sharedmemoryaccesses will be
lower than that of private accessesdue to the extra overhead of
determiningaffinity, andremoteaccessesin turn aretypically sig-
nificantly slower becauseof the network overhead. Figure 2 il-
lustratesthreedifferent kinds of UPC pointers: private pointers
pointing to objectsin the thread’s own private space(P1 in the
figure),privatepointerspointingto thesharedaddressspace(P2),



andpointersliving in sharedspacethatalsopoint to sharedobjects
(P3).

UPCgivestheuserdirectcontrolover dataplacementthrough
local memoryallocationanddistributedarrays.Whendeclaringa
sharedarray, programmerscanspecifya block sizein additionto
thedimensionandelementtype,andthesystemusesthis valueto
distributethearrayelementsblock by block in around-robin fash-
ion over all threads.For example,a declarationof shared [2]
int ar[10] meansthat the compiler shouldallocatethe first
two elementsof ar on thread0, thenext two on thread1, andso
on. If theblocksizeis omittedthevaluedefaultsto one(cyclic lay-
out), while a layout of [] or [0] indicatesindefiniteblock size,
i.e., that the entire arrayshouldbe allocatedon a single thread.
A pointer-to-sharedthusneedsthreelogical fields to fully repre-
sentthe addressof a sharedobject: address, thread id,
andphase. Thethread id indicatesthethreadthattheobject
hasaffinity to, theaddress field storesthe object’s “local” ad-
dresson the thread,while thephase field givestheoffsetof the
objectwithin its block. Figure3 demonstrateshow thefields in a
pointer-to-sharedareusedto accessa sharedvalue.

To simplify the task of parallelization,UPC also includesa
builtin upc forall loop that distributes iterationsamongthe
threads.Theupc forall loop behaveslike a C for loop, ex-
ceptthattheprogrammer canspecifyanaffinity expression whose
valueis examinedbeforeevery iterationof the loop. Theaffinity
expressioncanbetwo differenttypes:if it is aninteger, theaffinity
testchecksif its valuemoduloTHREADS is thesameasthe id of
the executingthread;otherwise,the expressionmustbe a shared
address,andtheaffinity testchecksif therunningthreadhasaffin-
ity to this address. The affinity expressioncanalso be omitted,
in which casethe affinity test is vacuously true andthe loop be-
havesasif it is a C for loop. A threadexecutesaniterationonly
if theaffinity testsucceeds,andtheupc forall language con-
structthusprovidesaneasyto usesyntaxto distributethecompu-
tationloadto matchthedatalayoutpattern.Othernotablefeatures
of UPClanguageincludedynamic allocationfunctions,synchro-
nizationconstructs,andachoicebetweena strictor relaxedmem-
ory consistency model;consulttheUPClanguagespecificationfor
moredetails[8].

2.1 The BerkeleyUPC Compiler

Theperformanceanalysesandoptimizationsin this paperuse
theBerkeley UPCCompiler[3]. Figure4 shows theoverall struc-
tureof thecompiler, which is dividedinto threemaincomponents:
the UPC-to-Ctranslator, the UPCruntimesystem,andthe GAS-
Netcommunicationsystem.

During thefirst phaseof compilation,theBerkeley UPCcom-
pilerpreprocessesandtranslatesUPCprogramsinto ANSI-compliant
C codein a platform-independentmanner, with all of the UPC-
relatedparallelfeaturesconvertedinto callsto theruntimelibrary.
ThetranslatedC codeis thencompiledusingthetargetsystem’sC
compilerandlinkedto theruntimesystem,whichperformsinitial-
izationtaskssuchasthreadgenerationandshareddataallocation.
The Berkeley UPC runtimedelegatescommunicationoperations
suchasremotememoryaccessesto the GASNetcommunication
layer, which providesa uniform interfacefor low-level communi-
cationprimitiveson all networks.

Webelievethisthree-layerdesignhasseveraladvantages.First,
becauseof the choice of C as our intermediaterepresentation,
our compilerwill beavailableon mostcommonlyusedhardware

platformsthathave anANSI-compliantC compiler;thecurrently
availableUPC Compilers,suchasthe HP UPC or the SGI Gnu-
UPC compiler, on the otherhand,only support specificsystems.
Thegain in portability doesnot meanthat performancehasto be
sacrificed: the backend C compiler is free to aggressively opti-
mize on the intermediateC output, and the UPC-to-Ctranslator
canutilize its UPC-specificknowledgeaboutsharedmemoryac-
cesspatternsto perform standardcommunicationoptimizations.
Moreover, thecommunicationoverhead is generallylow sincethe
GASNetsystemcandirectly accessthe networking hardware in-
steadof goingthroughanothercommunication layersuchasMPI,
andmany runtimeandGASNetoperationsareimplementedusing
macrosor inline functionsto eliminatefunctioncall overhead.

3. Experimental Setup

Portabilityis oneof themajorgoalsof theBerkeley UPCcom-
piler; sincethecompilertranslatesUPCprogramsinto C code,it
shouldrun on any networking architecturesthatGASNetcommu-
nicationinterfacesupports(GASNetalsohasthe ability to trans-
latenetwork accessesinto MPI calls,so our compilercanrun on
any systemwith an MPI implementation;of course,doing so in-
cursa performancepenalty). We performour experimentson an
HP supercomputer locatedat Pittsburgh Supercomputing Center,
which consistsof 750 HP AlphaServer ES45nodes,with each
nodecontainingfour 1-GHzprocessorsand4GBsof memory[13].
The nodesareconnected by a Quadricsinterconnect.We chose
thisarchitecturebothbecausetheGASNetimplementationfor the
Quadricsnetwork hasbeenperformance tuned,andalso that we
could directly compareour compiler’s performance with that of
theHP UPCcompiler[6], oneof themostmaturecompilerscur-
rently availablefor UPC.We usedHP UPC2.1-003, thelatestre-
leaseof their compiler. For simplicity, in all of our experiments
we allocateexactly onethreadper node,so that communications
betweendifferent threadsmustgo throughthe network. We use
theHPC 6.4compilerto compilethetranslatedC codeinto object
files; unlessotherwisenoted,all benchmarksare compiledwith
optimizationsenabled(“-O3”).

3.1 Micr o-Benchmarks

Oneof thefirst stepsin evaluating theeffectivenessof ourUPC
implementationis to measurethe executioncostsof the various
UPClanguageconstructsin theBerkeley UPCcompilerandcom-
parethem to the numbers collectedfrom other UPC compilers;
the availability of suchinformation could be vital in helping us
identify andoptimizepartsof our compilerthatareimplemented
inefficiently. Wethushavewrittenanumberof micro-benchmarks
to time theoverheadof theperformance-criticalUPCfeatures:

Pointer-to-shared operations: Sharedmemoryaccessesare
usuallytheperformancebottleneckfor communication-boundpro-
grams,asUPCencouragesa programming style of usingpointer
dereferences,resultingin alargenumberof smallmessages.Pointer
arithmeticonsharedaddresseswill alsobeinevitably slowercom-
paredto their counterpartson regularC pointers,sincea pointer-
to-sharedcontainsthreefields,all of which may be updateddur-
ing pointermanipulations. To combatthis overhead, the Berke-
ley UPCCompilerperformstwo majoroptimizations:“phaseless
pointers”andacompactpointer-to-sharedrepresentation.Asmen-
tionedin Section2, a genericpointer-to-sharedcontainsaphase
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field asindex into theblock thattheobjectis located.For thefre-
quentlyusedcyclic pointers,which have block sizeone,however,
thephase field canbe eliminatedsinceits valueis alwayszero.
Similarly, indefinitepointers(blocksize== 0) canomit theirphase
sinceall elementsresidein a singleblock. Cyclic andindefinite
pointersare thereforenamed“phaseless”,and our compiler ex-
ploits thisknowledgeto enablemoreefficientoperationsfor them.

The otherBerkeley UPC optimizationis its support for both
a C structanda packed eight byte pointer-to-sharedformat. The
packedrepresentationis preferredfor mostapplicationsbecauseit
enablesmoreefficient implementationsfor pointer-to-sharedoper-
ationsandfits in theregistersof many modernscientificplatforms;
only in therareoccasionswhereanapplicationneedseitheralarge
amountof sharedmemory( � 4GB perthread)or morethana few
thousandthreadsdoesa programmerneedto switch to the struct
representation.

UPC forall loops: Generallyaffinity testsfor upc forall
loops are performedon every loop iteration, and they could in-
troducea substantialoverheadif implementedinefficiently. We
have written a simplebenchmark to measurethe executiontime
of four loops, eachwith a different kind of affinity expression:
none(effectively a C for loop), varying integer value,constant
sharedaddress(by taking the addressof a sharedscalar),andfi-
nally dynamicsharedaddress(by takingtheaddressof elementsin
a sharedarray).Sincetheloop bodyonly consistsof onevariable
update(necessaryto ensurethat the C compilerwould not opti-
mizeaway theloop), therunning time of theloopsshouldclosely
reflecttheoverheadof theaffinity tests.

Dynamic allocation: UPCsupportsthreedynamicsharedmem-
oryallocationfunctions:upc alloc,upc global alloc, and
upc all alloc. The first function actssimilar to malloc()
andallocatesasharedobjectthathasaffinity with thecallingthread,
while theothertwo take block-sizeandnumberof bytesperblock
asarguments,andcreatea distributedsharedarray(equivalentto
shared [b] char a[b * nblocks], whereb is the ar-
ray’s block size).Thedifferencebetweenthe lattertwo functions
is that the first is meantto be called by a single thread,while
upc all alloc is a collective operation. Although thesefunc-
tions areunlikely to be performance bottlenecks, they do appear
with greatfrequency in UPC applications,and it’s interestingto
know if our compiler implementsthemefficiently, especiallythe
mostexpensiveupc all alloc.

3.2 Syntheticand Application Benchmarks

To furtherevaluateourBerkeley UPCcompiler’sperformance,
we have implementedseveral syntheticbenchmarksandalsoex-
amineda few UPCapplicationbenchmarksfrom [7]. Thefollow-
ing is thelist of benchmarksusedin our experiments:

vector add This simplebenchmark is intendedto gaugethe per-
formanceof local sharedmemoryoperations. Theprogram
usesaupc forall loop to addtwo distributedarraysele-
mentby element,storingtheresultto another sharedarray.
Thearraysarealignedin wayssuchthatno communication
is required,andeachthreadreceivesa fixednumberof ele-
ments.We alsoexperimentedwith differentblock sizesfor
thearraysto seeif thecompilercouldmoreeffectively opti-
mizecertainblock sizes.

gupspair Thisbenchmarkmeasurestheoverheadof remoteshared
memoryoperations. The programconsistsof a loop that
processesasharedarrayof structswith two doublefields:on
every iteration,a number of randomarrayindexesaregen-
eratedandusedto accesselementsin a sharedarray. Each
randomarrayindex correspondsto two readoperationsand
two floatingpointadditions,andthepercentageof readsthat
aremadeto remotesharedmemorycanbeadjusted.

scale This benchmark is similar to gupspair except that it also
updatesthe sharedvariable,so eachiterationnow consists
of onesharedread,oneconstantmultiplicationonthevalue,
andonesharedwrite thatstoresbackthevalue.

ep This is the UPC versionof the embarrassinglyparallel (EP)
kernel from the NAS parallelbenchmark suite [1]. As its
namesuggests,the programperformsvery little communi-
cationandshouldscalewell with large numberof proces-
sors.WeusedclassA workload astheinput size.

is This benchmark is the integer sort (IS) kernel from the NAS
suite,andcommunicationsaredonevia theupc memget()
bulk memorytransfer. ClassA workloadis used.

npbcg This benchmarkis the ConjugateGradient(CG) bench-
mark (with ClassA input) from the NAS Suite. The UPC
codeis basedon a parallelsparsematrix-vectormultiplica-
tion in the Aztec[21] library and is not optimizedfor the



Benchmark No. lines(UPC) No. lines(translatedC) CommunicationPattern
VectorAdd 88 326 None
GupsPair 92 210 SmallReads
Scale 92 208 SmallRead+ Write
EP 298 495 None
IS 1082 768 Bulk Memget
CG 757 1071 Mostly SmallReads,SomeWrites
NPBCG 564 811 Bulk Memput
MG 1855 2596 Bulk Memput

Table 1. Characteristics of the benc hmarks

NAS matriceswith their randomnonzero pattern. It pro-
vides a good test casefor UPC codesthat perform large
upc memput operations.

cg This is anotherinstanceof theConjugateGradientalgorithm,
but unlike npbcg, it usesfine-grainedcommunication(sin-
gle elementreads)andmatricesfrom thefinite elementdo-
main. This representsthe performanceof a programwrit-
tenin a sharedmemorystylewithout application-level opti-
mizations.

mg This is the Multigrid (MG) benchmarkfrom the NAS paral-
lel benchmarks. ClassB inputswereusedin our tests.The
communicationin the applicationmainly consistsof ghost
region exchanges,implementedusingupc memput opera-
tionsin UPC.

Table1 summarizesthesizeandcommunicationcharacteristics
for eachof thebenchmarks usedin thepaper.

4. Compiler Optimizations

At the time of this writing, the Berkeley UPC compilerdoes
not currentlyperformUPClanguage-specificoptimizations.Nev-
ertheless,thebenchmarkdatapresentedin thispaperindicatesthat
theperformance of thecodeproducedby our compileris compa-
rablewith theperformanceof thecodeproducedby commercially
availableimplementationsof theUPClanguage.

The resultsreportedin this paperrepresentan upper bound
on the total running time of the benchmarksandwe expectper-
formanceto improve significantlyoncewe incorporateaggressive
UPC-specificoptimizationsinto the translator. In the restof this
sectionwe will presentseveralof thesespeculative optimizations
and in Section5.2 we analyzetheir impact on performanceby
manuallyapplying thetransformationsto simplebenchmarks.

4.1 Communication and Computation Overlap

TheGASNetcommunication layerprovidessupport for block-
ing andnon-blocking one-sidedremotememoryoperations(e.g.,
put andget)with a wide varietyof synchronizationoptionswhich
areappropriatefor differentcodegenerationsituations.Onestraight-
forward translationof a remotememoryaccessis to generatea
non-blocking initiation call to thecommunicationsubsystem,fol-
lowedimmediatelyby acorrespondingsynchronizationcall to en-
sureits completion. In otherwords,a blocking remotememory

operationop() canbetranslatedinto thesequenceinit op();
sync op();.

In order to hide communication latency, optimizing compil-
ersfor parallellanguages canleveragetheavailability of anasyn-
chronouscommunicationinterfaceby performingcommunication
placementoptimizations.Thebasicideais to move the initiation
andsynchronizationcallsfor a remoteoperationasfar away from
eachotherin the programaspossible,while preservingdataand
control dependencies. This minimizesthe chancesthat the syn-
chronizationcall will wastetime blockingfor completion,andal-
lowsothercommunicationandcomputationto beoverlappedwith
thelatency of theremoteoperation.

Severalstudies([5], [22]) presentcompileralgorithmsthatper-
form possible-placement analysis,bothonbasicblocksandwhole
programs. Code motion of communicationoperationsin UPC
needsto besupplementedwith ananalysisto ensurethat thenew
scheduleof operationsdoesnot violate the memoryconsistency
modelof thelanguage. Analyseswhich determineif sharedmem-
ory operationsin SPMDprogramscanbe safelyreorderedwhile
preservingtheconsistency modelaredescribedin ([11], [12]).

The combinationof initiation/synchronization separationfor
remoteoperationsandcodemotionoptimizationsproducesacom-
municationpatternknown asmessagepipelining or communica-
tion overlap. In Section5.2.1we analyzethe potentialimpactof
theseoptimizationson performance.

4.2 Prefetchingof RemoteData

An initial study[9] of UPC suggeststhat bulk prefetchingof
datais an importantoptimizationfor achieving goodapplication
performance.The studysuggeststhat programmersandcompil-
ersshouldfavor bulk transfersandreplicationof shareddataover
fine grainedcommunication. This techniqueworks well under
programmercontrol for dense,array-basednumericalcodeswith
good spatial locality; however, compile time transformationof
codewith fine granularitycommunication into bulk transfersis
likely to be lesseffective. It is difficult to automatethis transfor-
mationfor pointer-basedprogramswith irregularaccesspatterns,
primarily becausethecompilerlackstheprogrammer’sknowledge
of thedatausagepatterns,andcurrentdatadependency andalias
analysesareoverly conservative or prohibitive in termsof compi-
lation time.

Pointer-basedprefetchingtechniques have beenwell investi-
gatedin the context of serialprograms.TheBerkeley UPCcom-
piler inheritsa working implementationof thepointerprefetching
describedin [15] from theOpen64codebase,however our trans-
lator doesnot currentlymake useof thegeneratedprefetchhints.



In thenearfuturewe planto specializethis optimizationfor UPC
programsby modifying the prefetchheuristicsto handleremote
memoryfetches.

We analyzethe potential benefitof dataprefetchingin Sec-
tion 5.2.2.

4.3 Message Coalescing and Aggregation

The global-addressspacefeatureof the UPC language often
leadsto programswith afine-grainedcommunicationpatterndom-
inatedby small messagesendsandreceivesgeneratedby assign-
mentsandpointerdereferences.In thepresenceof a largenumber
of smallmessages,thesoftwareoverheadsof communicationand
network gapcanquickly becomea performancebottleneck.Such
programscould enjoy a significantperformanceboostif we can
automatethepackingof multiplemessageswith thesamedestina-
tion into a largermessageto amortizecommunicationoverheads.

A recentstudy[2] showsthatin mostcurrenthigh-performance
networks,thecostof transmittingsmallmessages is greatlydomi-
natedby fixedper-messageoverheadsratherthanbandwidthcost,
andthe aggregationof small messagesinto larger onesgenerally
paysoff for messagesizesof up to a few hundredbytes.We eval-
uatetheimpactof messageaggregationin Section5.2.3.

4.4 Optimizing Access to Local Shared Data

TheBerkeley UPCimplementationcurrentlyperformsall shared
memory accessesthrough GASNet, and we are likely to seea
substantialperformanceimprovementif the compiler can stati-
cally identify shareddataaccesseswhicharelocal to theaccessing
thread;thethreadcanthenperformsuchaccessesdirectly through
a privatepointer, eliminatingtheoverhead of runtimeaffinity de-
tection. [14] proposesan efficient type inferencesystemthat can
distinguishbetweenlocal pointersand global pointers,with the
former corresponding to pointersthat addressshareddatawith
affinity to the current thread. The designof the UPC language
makesit an ideal target for the local qualificationinferencealgo-
rithm, asthe blocking factorof a staticallydeclaredsharedarray
is guaranteedto bea compile-timeconstant. Otherlanguagefea-
turessuchasindefinitely blocked arraysandaffinity expressions
in loopscanfurtherassistthecompilerin recognizingmemorylo-
cationsthat have affinity to the accessingthread. Section5.2.4
studiestheeffectsof suchoptimizationsin UPC.

5. Experimental Results

Figure5 presentsthe costof sharedaddresscalculationsand
underscoresthe effectivenessof our two major optimizationson
pointer-to-shared:phaselesspointersanda packedrepresentation.
Notethattheresultsarecollectedwith variablesdeclaredvolatile,
so theC compilerwould not attemptto optimizeaway theopera-
tion. Fromthefigureit is clearthatunoptimizedpointer-to-shared
manipulationsincur a substantialoverheadcomparedto regular
C pointerarithmetic,especiallywhenincrementinga struct-based
genericpointer-to-sharedby anintegeroffset.

TheBerkeley UPCoptimizations,however, significantlylower
thisperformancepenalty;cyclic pointerseasilyoutperformgeneric
onesthanksto the phase field not being adjusted. Indefinite
pointersbenefiteven morefrom the optimization,sincefor them
only the address field needsto be updated. Sincecyclic and
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0
10
20
30
40
50
60
70
80
90

B
er

ke
le

y
S

tr
uc

t

B
er

ke
le

y
P

ac
ke

d H
P

B
er

ke
le

y
S

tr
uc

t

B
er

ke
le

y
P

ac
ke

d H
P

ptr+int ptr ==ptr

N
um

be
r 

of
 C

yc
le

s

generic
cyclic
indefinite

Figure 5. Cost of pointer -to-shared arithmetic
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indefinitepointersboth appear with greatfrequency in UPCpro-
grams(the former being the default block sizeand the latter in-
troducedby theupc local alloc call), we concludethat the
phaselessoptimizationis vital for goodperformance. Similarly,
thepacked representationsubstantially reducesthecostof shared
addresscalculations,especiallyfor genericandcyclic pointers.As
aresult,weusethepackedrepresentationfor all benchmarksin the
restof thepaper.

Also includedin Figure5 is thecostof pointer-to-sharedarith-
metic for the HP compiler. HP UPC outperformsthe Berkeley
UPC’sstruct-basedpointer-to-sharedformat;thisisexpectedsince
the HP compiler generatesassemblycode,while for portability
Berkeley UPCimplementstheoperationsin C.Thepacked format,
however, is soefficient thatit beatsHPUPC,againillustratingthe
effectivenessof our optimizations.

Figure6 and7 reporttheoverheadof sharedmemorystoresof
a double for thetwo compilers.For Berkeley UPCaccessesto lo-
calshareddataareslightly slowerthanprivateloadandstores(two
cycles),dueto theextraoverheadof verifying theobject’saffinity.
Remoteaccessesin turn aretwo ordersof magnitudeslower than
local sharedaccessesdueto network latencies.Thesefiguressug-
gest that in generalcompilersand programmers shouldattempt
to make asmuchdataprivateaspossibleby castingpointers-to-
sharedinto privatepointerswhenoperatingon local shareddata;
cachingvaluesfor sharedvariablescanalsobea rewardingcom-
piler optimization. Whencomparingthe performance of the two
compilers,we observe that HP UPC is fasterfor local accesses,
while Berkeley UPCholdstheedgein remoteaccesses.

Table2 presentstheoverheadperiterationof performingaffin-
ity testsin aupc forall loop. Not surprisingly, thepresenceof
theaffinity expressionsintroducesextraoverheadfor theforall
loop: for anemptyloop, an integeraffinity expressioncausesthe
runningtime to bethreetimeshigherthanwhenit’s absent,while
anaffinity teston a sharedaddressslows down the loop by about�����

. Thesemeasurements,however, representtheupperbounds
on the real cost of affinity tests; in real programs the forall
loops likely will containmany instructions,making the relative
costof performingaffinity testslessnoticeable.Also, if theshared
addressusedastheaffinity expressioncanbecalculatedatcompile
time,thecompilercanstaticallydeterminetheresultof theaffinity
tests;similarly if theaffinity expression is aninteger, thecompiler
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can unroll the loop and eliminatethe affinity test in most itera-
tions. We expect the overhead of the affinity teststo be substan-
tially loweredoncesuchoptimizationsareadded to ourUPC-to-C
translator.

Figure8 showstheexecutiontimeof callingupc all alloc
to allocatea1KB of dataperthread;varying theallocationsizehas
no noticeable effect on performance.Becauseupc all alloc
is acollectivecall whichbroadcaststheresultto all threads,its ex-
ecutiontime naturally increasesas thereare more threads. The
cost of the operationcurrently grows linearly with the number
of threads;this is suboptimal astheglobal communicationphase
couldbeimplementedby a 	�

������� treealgorithm,which we ex-
pectto addin the nearfuture. The surprisingfinding here,how-
ever, is theBerkeley UPCcompileroutperformsHPUPCby more
thananorderof magnitude,andtheperformancegapis consistent
despitethe increasingnumberof threads.Onepossibleexplana-
tion is that the HP implementationimplicitly performsa barrier
beforeall threadsmay return from the function, while underthe
Berkeley compilereachthreadneedsto only receive a broadcast
from thread0, with no barrierinvolved.

5.1 Performanceof the Application Benchmarks

In this subsection, we comparethe performance of Berkeley
UPC compilerand HP UPC on larger benchmarks. The bench-
marksexhibit differentcommunicationpatterns:none(vector add
andep), bulk reads(is), fine-grained(cg), andbulk writes(npbcg
andmg). Thedifferencebetweenvect add andep is that local
sharedaccessesdominatethe former, while only privateaccesses
arepresentin thelatter.

Figure9 shows therunningtime of thevectoradditionbench-
markon thetwo compilers;for Berkeley UPCtherunningtime is
shown for both blocked andcyclic pointers(they have the same
running time underHP). Sincethe Berkeley implementationop-
timizesfor cyclic pointers,it runsfasterthangenericpointersas
expected.HPUPCoutperformstheBerkeley compiler, but neither
scaleswell dueto the overheadof affinity teststhat arecurrently
executedin every iteration of the loop. Optimizationsfor local
sharedmemoryaccesseswill beexploredin Section5.2.4.

Figure10reportstherunningtimefor theEPbenchmark, which
usesminimal shareddataandrequiresnearlyno remoteaccesses.
The fact that theBerkeley UPCcompilerperformsaswell asHP
UPC indicatesthat the native C compilercanoptimize the code
outputby our UPC-to-Ctranslatorjust as it would on normalC
code.This finding is encouraging because it validatesthatour ap-
proachof loweringUPCcodeinto C codedoesnot interferewith
theC compiler’sability to optimizethesequential partof thecode.
Also, our compilerscalesaswell asHP UPCfor growing number
of threads,whichis expectedconsideringtherearealmostnocom-
municationsor synchronizations.

Figure11 illustratestheperformanceof theIS benchmark,for
which bulk memoryoperationsconsume��� � of thecommunica-
tion time. The two compilersperformaboutthe samefor small
numberof threads,which is not surprisingconsidering that the
speedof bulk memorytransfersis primarily limited by the net-
work. HP UPC however appears to have difficulties scalingbe-
yond16 threads.

Figure12 presentsthe performanceof the conjugategradient
benchmark. We usea positive symmetricdefinitematricesfrom
the Matrix Market [16], nos7.mtx(729 rows, 2673 nonzeroele-



Loop Type C For Loop UPCForall,integeraffinity Forall, constantaddr Forall, dynamicaddr
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Table 2. Overhead of affinity tests per iteration in UPC Forall loops, in cycles (1 cycle = 1ns)
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ments,1723iterationsto convergewithoutapreconditioner). Here
theBerkeley compileroutperformsHPUPC,with theperformance
gapgrowing with the increasingnumberof threads. HP UPC’s
runningtime, however, is loweredsignificantlyonceits software
cachingoption is enabled,asthe overheadof most remotearray
referencesis eliminatedfrom cachehits. While redundant re-
moteaccessesareunlikely to arisein well-optimizedcode,caching
could still improve the performance of fine-grainedprogramsby
prefetchingdatain the samecacheblock. Consequently, we are
currently implementinga genericsoftware cachingschemethat
canadaptto differentmemoryconsistency modelsin UPC.

Figures13 and14 show the performance of our compileron
codethat involvesmany bulk writes (NPBCGandMG). the HP
compileragaindoesnotscalewell � , while Berkeley UPCachieves
nearlinearscale-upfor MG.

5.2 Communication Optimizations

Theprevioussubsection showsthatevenwithoutimplementing
any paralleloptimizations,the Berkeley UPC compiler is ableto
performaswell asothercommerciallyavailableUPC compilers.
Thenaturalquestionthisraisesis how muchperformancegainone
canexpect oncethe missingcommunicationoptimizationsarein
place. To answerthis question,we manuallymodify a subsetof
our benchmarks in waysthat we expecta goodoptimizing com-
piler would beableto achieve.

5.2.1 Message Pipelining
We usethe scale benchmark to illustrate the potentialsof

overlappingcommunication with more communication. Figure
15reportstheperformanceimprovementsdueto messagepipelin-
ing; insteadof doing oneread/writeat a time, we issuefive non-
blocking requestsat onceand synchronize all of them together,
so that oneoperation’s network latenciescanbe overlappedwith
another’s. The experiment wasdonewith four threads.The fig-
ure shows that while messagepipelining in generalis helpful in
reducingthe communicationcost of the benchmark, its benefits
appearlimited (around5%) anddo not seemto beaffectedby the
numberof outstanding sendsandreceives.TheQuadricsnetwork,
however, is notanidealtargetfor communicationoverlapping,be-
causetheminimumgaprequiredbetweeneverysendis largerthan
thesoftwareoverheadfor eachmessage;computationoverlapping
insteadis more valuable because it will be able to obtain more
CPUcycles[2]. this effect is larger.(e.g.,Myrinet)

5.2.2 Data Prefetch andOverlapping Communica-
tion with Computation

To evaluatethepotential of theUPClanguageandourcompiler
in overlappingcommunicationwith computation,wemodifiedthe
scalebenchmark so that eachiterationnow alsoperformsa con-
figurableamount of computation.Insteadof aconstantmultiplica-
tion, the fetchedvalueis now usedto evaluatea polynomial, and
the resultedvalue is storedback. To hide communicationlaten-
ciesby overlappingcommunicationwith computation,we manu-
ally performedsoftwarepipeliningon theloop,sothattheremote
readof thecurrentiterationcanbeprocessedsimultaneouslywith
thecalculationsof thepreviousiteration.Figure16showstheben-
efit of softwarepipeliningon thescalebenchmark for four threads

� The poor scalingof the HP compileron our exampleshasbeen
reportedto their compilerteamandmaybedueto a performance
bug

(theoptimizationis alsoeffective for differentnumber of threads).
As the figure shows, our optimizationsareeffective, providing a� ����� ��� gainin performancewhenthereis asubstantialamount
of remoteaccesses; theincreasewill likely begreaterif we unroll
theloop to provide moreoperationsto beoverlapped.

5.2.3 MessageAggregation
Next we usethegups pair benchmark to studythe effects

of messageaggregation. The näıve versionof the programper-
forms two remoteeight-bytereadsfrom consecutive addressesin
thememoryspaceof thesamethread.We manuallycombine the
two individual readoperations into one operationthat fetchesa
doubleamountof data.Figure17showstheresultedrunningtime,
andthe benefitof messageaggregation is fairly apparent. When
theratio of remoteaccessesis high, the runningtime of theopti-
mizedprogramis lower by about � ��� thanthe original version,
and the performancebenefitremainsconstant as the number of
threadsgrow. This improvement canbeattributedto thereduction
in communicationoverhead.

5.2.4 EfficientAccess of LocalShared Data
As Figure9 shows,thenäıvevectoradditionbenchmark(which

accessesonly local shareddata)performspoorly dueto theover-
headof sharedaddresscalculation,whosecostgetsmagnifiedbe-
causethe loop doesno computationexcept for an addition. In
particular, thespeedup achievedin Berkeley UPCis not lineardue
to the costof affinity tests,introducedby a parallelforall loop to
ensurea threadcanonly performadditionon the elementsit has
affinity to. Becausetheblock sizeof sharedarraysis a statictype
propertywhich is always known at compile time, the optimizer
could utilize this information to perform optimizationsspecifi-
cally for local shareddata.Figure18 presentsthepotentialbene-
fit of suchoptimizationson vectoradditionwith blockedpointers.
Opt1 indicatestheeliminationof affinity testsby transformingthe
upc forall loop into an equivalentfor loop; this is possible
becausethecompilercanstaticallydeterminetheaffinity expres-
sions’valuesandthushow theiterationsaremappedto individual
threads.Opt2 builds uponopt1 by usingprivatepointersto ac-
cesslocal shareddata;the pointer-to-sharedis castinto a regular
C pointerbeforeenteringtheloop. Thefigureshows a substantial
improvementin performancewith theseoptimizations,especially
with opt2 exhibiting an order of magnitudespeedup (note the
log scaleon they axis). While theresultsrepresentsthebestcase
scenariodueto thesimplicity of thebenchmark, they still signify
theimportanceof convertinglocalsharedaccessesinto privateac-
cesseswherepossible.

6. Conclusion

We presenteda descriptionof the Berkeley UPC compiler, a
portablehigh-performancecompiler for the UPC language. Our
resultsshow that,in spiteof themodularityusedto support porta-
bility, the compiler performswell in both absoluteand relative
terms. In an absolutesense,the communicationperformance is
very closeto thatof the lowestlevel networking layeron thema-
chine,with very little overheadfrom GASNet,the UPCruntime,
or the translator. The serialperformanceis closeto that of serial
codecompiledby a vendor compiler, even thoughour compiler
targetsC insteadof machinecode. In a relative sense,our com-
piler is competitivewith acommercialUPCcompiler, with neither
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clearly dominating the otheracrossall of the performancemea-
sures. As both compilersare still maturing,we expect them to
improvesignificantlyover thenext few monthsin codegeneration
quality andin theuseof moresophisticatedoptimizations.

Specificfeaturesof theBerkeley UPCcompilerthatwebelieve
are important in achieving high performanceinclude the useof
“phaseless”pointersto lower thecostof generalblock-cyclic data
layoutsin importantspecialcases,anda compactpointer repre-
sentationthatreducestheoverheadof pointer-to-sharedarithmetic
andcomparison.At the runtimelevel, GASNet’s layereddesign
allows for platform-specificimplementationsof basicprimitives
suchas put and get when they are supportedin the networking
hardware.Ourcompilerperformsaswell asHPUPCfor programs
whosecommunicationpatternsconsistof bulk memorytransfers
or few memoryoperations,andsignificantlybetterfor applications
that rely on small messagetraffic. This implies that applications
written in a sharedmemorystylearewell-supportedby our com-
piler, with their performancelimited primarily by the underlying
network. We thusconclude that for UPC portability is possible
without makingmajorconcessionson performance.

Finally, we evaluatedthe potential of several compiler opti-
mizationsin reducingthecommunicationoverheadfor UPCpro-
grams. Preliminary resultsfrom syntheticbenchmarks suggest
that optimizationssuchasmessageaggregation,privatizing local
sharedaccesses,andoverlappingcomputationandcommunication
arepromisingin their ability to hide the latenciesassociatedwith
remotesharedaccesses.Incorporating theseoptimizationsinto
thecompilerwill directly improve theprogrammability of thelan-
guageby moving someof theperformancetuningtransformations
from theapplicationprogrammers’handsinto thecompiler.
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