
ALPHABETS \

K 1
LANGUAGES

Edgar H. Sibley
Panel Editor

In the Arab world the need for bilingual microcomputer systems is ever
increasing. In addition to the ability to process the Arabic and English scripts,
an ideal system should support the use of existing applications with Arabic
data and the access to the system facilities through Arabic interfaces. The
integrated Arabic System (IAS) was developed to study the feasibility of
building such systems using existing microcomputers and software solutions.

BUILDING BILINGUAL
MICROCOMPUTER SYSTEMS

Murat Tayli and Abdulla I. AI-Salamah

Arabic, one of the five official languages of the United
Nations, is the mother tongue of some 200 million peo-
ple in 21 countries [6]. The Arabic alphabet and script
are also used, with minor variations, to write other
languages like Farsi, Urdu, and Malay markedly ex-
tending the geographical and economical impact of this
language. In all of these countries, a wide range of com-
puting tools, originally designed to process Latin-based
scripts, have been in use for decades despite the lin-
guistic barriers and inadequacy of their user interfaces.

In addition to the need for ad hoc peripherals capable
of handling Arabic script, the computer profession re-
quires, at almost all its levels, an additional qualifica-
tion: a proficiency in the English language. This added
burden restricts many who would benefit from com-
puters if the facilities were available to them in their
own language, particularly at entry levels. One can eas-
ily imagine the potential problems if computer opera-
tors, in the United States for example, had to control
their machines by using Japanese commands coded
with Kanji characters. In many countries, the invest-
ment in linguistic training and the use of specialized
input/output units have been relatively successful
when the operation of computing tools have been iso-
lated from the production environment. For instance,
many organizations equipped with mainframe systems
have managed to serve large user communities with a
relatively limited number of well-trained specialists.
The advent of microcomputer systems on the market,
however, has radically altered this remote man-
machine relationship and placed the end-users in the
front line.

To meet the pressing needs of the Arab market, sev-
eral companies that operate mainly in the Middle East,
have developed a wide range of products for available
microcomputer systems. In addition to Arabic versions
of popular business-oriented applications, a number of
software tools and utility programs [l, 8, 14, 15, 181

01990 ACM OOOl-078'2/90/0500-0495 $1.50

have been provided to process Arabic and bilingual
data with standard input/output units of these systems.

Although all these products helped to boost popular
usage, the language problem remained largely un-
solved. The installation and operation of such products
still required the knowledge of the English language.
Furthermore, the case-by-case search for particular so-
lutions resulted in the proliferation of different norms
that often conflicted with each other and led to the
severe incompatibility problems. Whatever their scope,
all the efforts invested to incorporate the Arabic lan-
guage in computer systems have been commonly re-
ferred to as the arabization of computer systems or in its
abbreviated form the arabization process. The contex-
tual semantics of this term is redefined in various parts
of the article.

This article presents the design principles and archi-
tecture of a bilingual system called the Integrated Arabic
System. This experimental system, built around the IBM
Personal Computer family, is also used as a framework
to introduce and discuss problem areas of the arabiza-
tion process at the workstation, operating system, and
application levels.

MOTIVATIONS AND OBJECTIVES
This study has been designed to answer the following
question:

Can an existing microcomputer system, designed
to operate in Latin-based environments, be trans-
formed to an Arabic system, with bilingual script-
processing capabilities and still keep most of its
original assets?

If an affirmative answer is the aim, the objectives that
must be achieved include:

l the building of a system which operates in Arabic
and which supports bilingual (Arabic-English] script-
processing capabilities, and in which the linguistic

May 1990 Volume 33 Number 5 Communications of the ACM 495

http://crossmark.crossref.org/dialog/?doi=10.1145%2F78607.78610&domain=pdf&date_stamp=1990-05-01

ALPHABETS
&
UAGES

\
LANG

issues are treated with a coherent and unified set of
solutions;

l the provision of a series of development tools,
whereby those interested could rapidly build new Ar-
abic and bilingual applications;

l the usage of existing applications, designed to process
Latin-based scripts, with Arabic and bilingual data;

l the operation and usage of existing Latin-based pack-
ages, without any modification or restriction.

DESIGN GUIDELINES
To delineate the framework of the bilingual system a
number of design guidelines, (depending on more or
less heuristic considerations) were set. These were:

l for economic reasons, the arabization process had to
rely mainly on software solutions and let the user
exploit basic capabilities of the system without re-
striction;

l to address a large audience, the core of the bilingual
system had to be a popular and relatively powerful
workstation;

4 to dissociate hardware dependent issues from higher
abstraction levels (operating system and application
layers), problems inherent to the arabization of in-
put/output functions had to be solved, whenever
possible, at the workstation level;

l to support complex layout design requirements of the
display unit and allow its sharing, basic capabilities of
the workstation had to include advanced display
management and resource multiplexing mechanisms;

l to provide a complete Arabic processing environ-
ment, the operating system of the workstation had to
support Arabic user interfaces; and

l to meet the functional objectives, the final system
had to include bilingual development tools and pro-
gramming interfaces to existing languages, at its ap-
plication layer.

PROBLEMS OF BILINGUAL TYPESETTING
The initial phase in building a bilingual system is to
look for appropriate solutions to represent selected lan-
guages accurately on the target computing media and
secure their coexistence with minimal compromise. In
the context we define, problems to overcome fall into
three categories:

(1) issues related to the representation of the Arabic
script;

(2) inconsistencies resulting from typesetting mixed
language layouts;

(3) selection or definition of an appropriate bilingual
character code set that satisfies both international
standards and requirements of the specified system.

Typesetting of the Arabic script on computing media
originally designed to process Latin texts constitutes the
first challenging step in the arabization process. Diffi-
culties stem not only from fundamental dissimilarities
between the Arabic and Latin scripts, but also from the
lack of well-established standards for the automation of

Arabic typesetting. Problems of automatic processing of
the Arabic script and bilingual typesetting are thor-
oughly covered in [5] and [12]. The following sections
summarize characteristics of the Arabic script and
highlight problem areas of the arabization process.

Characteristics of Arabic Script
To the uninitiated, Arabic script exhibits a number of
unusual and confusing features. The basic alphabet
consists of a set of 28 letters, representing mainly the
consonants and a few long vowels. It is extended to
some 90 elements by additional shapes, marks, and
vowels formally recognized in the Arabic morphology.
Arabic letters, written in elegant cursive forms, .do not
differentiate between upper and lower case figures (Fig-
ure la).

A large number of diacritical signs, which are similar
to accent marks of European languages, are used to

4 4
5

4 ;o. 4

a

h

d

r

n

Figure la. A sample of 5 letters displays cursive
forms adopted in Arabic Calligraphy. Frames and pen
strokes placed around characters mark the slopes
and scaling factors.

496 Communications of the ACM May 1990 Volume 33 Number 5

ALPHA n ETS
&

LANGU
\

AGES

0 / P

sa
/

su si

ssa ssu ssi

Figure lb. Phonetic value of basic elements of the
Arabic alphabet are extended by a rich collection of
diacritical marks. The letter ‘3” is shown in a
number of configurations altering its sound.

Figure lc. Shapes of Arabic letters depend on their
context. Rectangular frames mark various shapes of
the Arabic letter “G”, when used at the beginning, in
the middle, and at the end of a word.

I

Figure Id. Some Arabic letters can be fused to form
new shapes. A compulsory case is that of three let-
ters (from right to left): the Lam, Hamza-Fathah, and
Hamza-Sukoun generating the shape the Lam-Mad
character.

mark short vowels and emphasize or loosen a letter’s
sound. These marks can be mixed and written above or
below the characters to produce composite phonetic ef-
fects (Figure lb).

Arabic script, which evolved in contemplation of the
traditions of handwriting, is context sensitive. The
shape of most of the characters depends on their posi-
tion within a word and the characters adjacent to them.
Each character may be represented up to four different
ways of which only one would be correct in a particu-
lar situation (Figure lc). Moreover, many of these inter-
mediary forms depend on the adopted calligraphic
style. As an extreme case of contextual reshaping, Ara-
bic script allows ligatures between characters. In other
words, adjacent letters can be fused to produce new
graphical forms. In order to emulate handwriting, ap-
proximately 400 ligatures are available, yet only three
of them have mandatory usage (Figure Id).

Orientation of the Arabic script is from right to left,
but Arabic numerals are written and read from left to
right (Figure le). Unlike Latin-based alphabets, ele-
ments of the Arabic script convey directional seman-
tics, which control the orientation of a typesetting pro-
cess (a more detailed discussion is presented in the
coming sections).

Arabic calligraphy adopted a sloping and curved con-
catenation model as opposed to the flat baseline of
Latin-based scripts. This flowing style, along with dia-
critical marks, contextual shapes, and ligatures, form
essential decorative elements of the Arabic handwrit-
ing. Nevertheless, the resolution of conventional com-
puter display media is often a limiting factor that
prevents accurate reproduction of complex forms. Au-
tomatic typesetting of the Arabic script on nonspecial-
ized equipment becomes, rather, an approximation of
an original calligraphic style (Figure If).

Typesetting of Mixed Scripts
Arabic and Latin-based scripts have opposite direction-
alities. A composite text, including a mixture of these
scripts, can be typeset in two different ways considering
one or the other language as the host context. The type
of the host, which imposes the default orientation of
the layout, is to be fixed explicitly by external agents
when no implicit indication is available. Elements of
the guest script are treated as counterflow insertions to
the mainstream. Punctuations and non-alphabetical
characters common to both types of script can cause
contextual confusions and contribute to the complexity
of bilingual typesetting.

Typesetting of mixed scripts is somewhat analogous
to bidirectional typesetting of Arabic literals and nu-
merals. Provisions can be made to try to handle both
cases with a common set of mechanisms. Nevertheless,
mixed typesetting maybe a recursive process and be-
come intractable when nested insertions occurs, i.e.,
the insertion of an Arabic text that includes some Latin
script, within a Latin host.

The basic constraint in the automation of mixed
script typesetting is the exclusion of all solutions that

May 1990 Volume 33 Number 5 Communications of the ACM 497

ALPHABETS
&

LANGUAGES

1ncomi:ng Character Arabic Text Layout
none (initial state) ~ $Jb J&l

Y (3) y* &&J
t (4) y CfJL,! J&l
7 (numeric comma> VA @L”- J&I

A (8) w AA &d&l

Y (2) rt, hY* CSJLWWI

I- (m) /t, AY &+ J&l

Figure le. Arabic literals and numerals have opposite directionalities. Orientation of the Arabic script is from
right to left, but numerals are written and read from left tab right. Triangular mark visualizes position of the cur-
sor, and its movements on the advent of various types of characters.

I

Figure If. Representation of Arabic script on conventional computer media is often an approximation of a
calligraphic style. Differences between handwriting and printer output become especially noticeable when
adjacent letters can be stacked on top of each other.

use special formatting characters along with the origi-
nal text. In other words, in order to guarantee the port-
ability of existing software, decisions on the direction of
the layout have to rely only on the semantics of charac-
ter codes, not the presence of extra directional idiosyn-
crasies in the stored text.

Bilingual Character Set
The character set is one of the elementary, yet critical,
features of a computer system. Its ability to represent
the language correctly and be accepted readily by users
are primary criteria to measure the adequacy of its de-
sign. To the designers from English speaking countries,
the availability of well-established international stan-
dards, such as the ASCII and EBCDIC codes, imposes
de facto norms and eliminates the need to consider the
definition of new sets. Where languages are written
with Latin-based scripts, slightly modified versions of
these codes can be easily provided at the cost of minor

compromises. Even where non-Latin scripts are used,
provisions have been made to fit national code sets
within these 7 or 8 bits frames in order to ensure the
portability of existing hardware and software compo-
nents [8]. Nevertheless, more complex coding schemas
are necessary to portray several Middle Eastern and
Asiatic languages accurately. For example, the use of
extended coding schemas has been recommended to
censure the originality of the Chinese and Arabic cal-
ligraphies [4, 13, 171. Consequently, for the designers
from these countries, the decision to adopt an interna-
tional character code standard or define a better na-
tional set determines whether existing products may or
may not be integrally used.

ARCHITECTURE OF THE INTEGRATED ARABIC
SYSTEM
The Integrated Arabic System (IAS) is organized around
a kernel consisting of an arabized workstation called

498 Communications of the ACM May 1990 Volume 33 Number 5

A 1, P H A II E T S
&

LANGUAGES

1 IBMBIO. COM 1

IBMDOS . COM 1

l-iiEE-b

i I

APPLICATION
LAYER

I

Ext. DOS cmds.

+&$-ii&,

a). Original system , b). Components of the IAS

Figure 2. Architecture of the INTEGRATED ARABIC SYSTEM

the Intelligent Arabic Workstation (IAW) and the Ara-
bized Operating System (AOS). It also includes a series
of tools, facilities, and interfaces to assist users in the
development of new applications and the arabization of
existing ones. Figure 2 depicts IAS architecture as com-
pared to the reference system. Shaded boxes represent
new modules implementing bilingual processing func-
tions and extensions carried out on the original system
to augment its basic capabilities.

INTELLIGENT ARABIC WORKSTATION
The IBM Personal Computer, equipped with an En-
hanced Graphics Adaptor (EGA) [9], was selected to be
the target workstation. The rationale of this adoption
depended mainly on IAS’s design guidelines. First of
all, the IBM-PC is a popular and widely available ma-
chine with numerous clones. A relatively large number
of models exists that correspond to various systems
with different power. Furthermore, it has an open ar-
chitecture and can be used as a building block to form

more complex systems through various networking
strategies.

Conforming to our design principles, arabization of
most of the input/output functions has been carried
out at the workstation level. In addition to linguistic
extensions, the Basic Input Output System (BIOS) of the
workstation has been modified to redefine the video
display unit as a logical and multiplexible resource.
Furthermore, an alternative display typesetting mecha-
nism, the Asynchronous Display Transformation Facil-
ity (ADTF), has been added to the workstation’s arsenal
in order to meet special layout requirements.

Bilingual Character Set
The IAW has been provided with a nonstandard, &bit,
ASCII-like bilingual character set [19]. The new set was
designed to comply with IAS’s objectives, as existing
national [2, 31 and international standards [lo, 111 did
not satisfactorily meet the specified requirements.

In the new set, Latin characters keep their original

May 1990 Volume 33 Number 5 Communications of the ACM 499

ALPHABETS
&z .

L A N C

positions in the first half of the codes [8]. The second
half, codes from 128 to 255, is devoted to the Arabic
alphabet and its associated shapes. A sufficient number
of diacritical marks is included in the set to improve
the accuracy of the Arabic script representation.

Two special codes, i.he numeric space and the nu-
meric comma (traditionally used as the Arabic equiva-
lent of the decimal point) have also been added to the
set in order to ensure proper visualization of numerals
and Arabic literals including numeric characters. This
double coding for the comma and space characters is
due to both the bidirectional orientation of the Arabic
script and our decision not to include directional idio-
syncrasies in the stored text. For example, the string
“869-7440” represents either two distinct numbers sep-
arated by a space in Latin-based scripts or a numeral
formatted in a special way, such as a telephone num-
ber. The right semantics of the string is deduced from
the context in which it occurs. As for the Arabic, the
numeral has the same representation as its Latin coun-
terpart, but numbers 869 and 7440, which are separated
by a space, are written as “7440-869”, given the right-
to-left orientation of its script. As the same series of
characters, “8-6-9---7-4-4-O,” is presented to the system
for both cases, only th.e semantics of the space charac-
ter can be used to decide on the correct Arabic layout.
Similar considerations are also valid for a number of
other separators such as the comma, hyphen (also used
to represent the minus sign), parentheses, and brackets.

Bilingual Typesetting
IAW adopted Arabic as the host language, setting the
native direction of the output media from right to left.
Latin characters and .4rabic numerals, gathered in a
single subset, are treated in the insertion mode with no
provisions for nested operations. Most of the punctua-
tion and non-alphabetical characters form a neutral
subset, thus having no impact on the orientation of the
layout. Variable shapes of Arabic characters are dy-
namically generated through a context analysis by sub-
stituting provided codes with their proper alternatives.
In addition, the screen layout is automatically read-
justed to render the correct typesetting. For instance, to
preserve the logical orientation of the line and mark
the position of the next character on the display, the
cursor is set: to the left of an Arabic literal or to the
right of a numeral or a Latin string. In the latter case,
the advent of an Arabic character causes the cursor to
skip over the entire string and be placed to the left end
of the current line (Figure le). Conversely, a destruc-
tive backspace function is expected to restore the pre-
vious visual effect.

The above paradigm along with the adopted charac-
ter set established a workable typesetting model in
which the use of extra directional codes is avoided.
Users are provided with a transparent working environ-
ment where they feed their input to the system in the
natural order and where stored data is processed and
transmitted in the chronological sequence [19]. Never-
theless, IAS also requires the definition of an additional

500 Communications of the ACM

UAGES

typesetting schema in order to run off-the-shelf prod-
ucts without modification and use them with Arabic
data. This complementary model, which has to handle
composite scripts and a mixture of host contexts, is left
to the control of the unorthodox ADTF mechanism pre-
sented in the following sections.

Advanced Display Management Mechanisms
The interactive nature of the IAS environment evoked
the idea that the extension of IAW’s capabilities by a
number of elaborated display management mechanisms
would be a judicious investment to promote future de-
velopments. Observations revealed that designers often
face two categories of problems in the definition of
their screen layouts:

l the restrictions imposed by the physical limits of the
output media, and

l the need for dynamic formatting of displayed frames.

Similar problems also exist at the operating system
level and are emphasized by the need to create multi-
ple instances of this non-sharable resource. In order to
meet the requirements of both the operating system
and application layers, capabilities of the IAW have
been extended to support two new objects: the virtual
screens and the windows. The semantics of thes? com-
plementary objects and visual effects resulting from
their simultaneous use are sketched in Figure 3.

The virtual screen mechanism allows the creation
and concurrent use of a number of logical screens
whose dimensions may exceed physical limits of the
display unit. A given application is allowed to create, a
priori, an unlimited number of virtual screens (in real-
ity limited by the available memory) and write simulta-
neously on all of them. Nevertheless, only one of the
virtual screens can be displayed at a time. Based on the
position of the cursor and its subsequent movements,
the selected virtual screen is mapped on the physical
unit. If the cursor reaches the limits of the output me-
dia, the view is automatically reframed by a number of
columns or lines in the indicated direction.

Dynamic formatting of the display unit is carried out
by better-known objects: the windows. As opposed to
virtual screens, windows are assigned to fixed coordi-
nates on the physical unit and keep their position until
they are cancelled. Their size might be equal to or less
than the display unit. Like virtual screens, any number
of them can be created and used simultaneously, sub-
ject to the same memory restrictions. Unlike virtual
screens, all the windows are concurrently displayed,
covering each other fully or partially. The visibility of
the windows is controlled by a simple mechanism,
which queues the reference of created objects in a sys-
tem list and builds the screen image by overlapping
listed items in sequence. The resulting view becomes,
by default, a pile of windows stacked in chronological
order. The reference list is, however, a global IAW ob-
ject. It can be accessed by the rest of the system and
reorganized at will. The operating system and applica-
tions have the liberty to define their own window hier-

May 1990 Volume 33 Number 5

A L P H A 1) E T S
&

LANGUAGES

System and ------ application
processes

+L- \ I’ ’ --- -x,~---~--i--‘~--------------- I

Active virtual screen Display
objects

Intelligent
Arabic

workstation

Figure 3. Hierarchy of Virtual Screens and Windows

Figure 4. Logic of the Asynchronous Display Transmutation Facility

May 1990 Volume 33 Number 5 Communications of the ACM 501

ALPHABETS
&

. LANG

archy such as trees and circular queues by reordering
the reference list and obtain automatically correspond-
ing visual effects.

IAW’s support for the virtual screens and windows is
kept limited to basic control functions and text-editing
primitives common to both categories [Zl]. At the ini-
tialization of the system, IAW redefines the display unit
as the default virtual screen, with a permanent life
span. Other display objects are created, activated, and
destroyed on request ,ss needed by the operating system
and running applications. Processes access and share
display objects through unique identifiers and can ask
for the redirection of output requests toward other ob-
jects. IAW does not impose a priori policies on the utili-
zation of display objects. Decisions such as: how much
of the screen is devoted to a window; how and when an
object is resized; whether windows overlap or are laid
out as tiles; and where keystrokes are directed, are rel-
egated to higher levels such as “Screen or Presentation
Managers” or specialized applications.

Asynchronous Display Transmutation Facility
IAW’s typesetting mechanisms described so far, guaran-
tee the arabization and proper functioning of most of
the existing applications. Nevertheless, a number of
packages would still produce incorrect or scrambled
layouts when used with Arabic data. They correspond
to a category, which can be qualified as irregular, ac-
cessing the display memory directly and bypassing all
standard system interfaces. Consequently, as neither
the operating system nor the BIOS control the flow of
the operations, arabization procedures integrated to
them are also ineffective as shown in Figure 4. The
ADTF is used for the arabization of such packages and
the control of special typesetting needs that are not
supported by IAW’s native mechanisms. One such spe-
cial case is the mixture of Arabic and English scripts,
both used as host contexts in the same screen layout.
The situation occurs when off-the-shelf, Latin-based ap-
plications such as word processors or database manage-
ment systems, which usually format the screen in data
and command fields, are used with Arabic data. A rea-
sonable user expectation is to see command fields kept
in their original form and data typeset in Arabic.
ADTF’s basic function is to transform displayed images
according to those specific layouts, without being no-
ticed either by the application or the user.

ADTF is implemented as part of EGA services and
operates asynchronously from the rest of the processes
in the system. It is periodically activated by the inter-
rupts of the EGA that, as Figure 4 shows, are generated
at the end of each vertical retrace cycle. Once opera-
tional, ADTF periodically scans the display memory,
rearranges, and typesets its contents according to a pre-
scribed layout. The implementation of the ADTF, as a
phantom process at IAW level, provides a transparent
and application-independent mechanism. Another inte-
gration policy, such as its inclusion at the application
level or in the operating system, would have failed to
guarantee the same degree of reliability and transpar-

UAGES

ency. For example, the scheduling of the ADTF activi-
ties would have depended on the system clock (a heav-
ily used system resource) and caused a potential threat
to critical time-dependent operations. Moreover, asyn-
chronous accesses by the ADTF and EGA to the display
memory also would have produced flickering and
snowing effects on a number of video units [g].

ARABIZED OPERATING SYSTEM
The unusual term “Arabized Operating System,” which
we use, refers to a system that:

l interacts with the users through Arabic interfaces,
l identifies system objects, i.e., logical and physical

units, directories, and files, with Arabic names, and
l implements bilingual script processing capabilities on

various input/output devices.

IBM-PC DOS, the de facto market standard for this
line of personal computers, was selected to form the
core of the AOS. Its adoption depended on a series of
considerations, similar to those involved in the selec-
tion of the workstation. The segmented architecture of
DOS shown in Figure 2a helped to isolate problem
areas and ease the development process. The loading
sequence of DOS modules in the memory corresponds
somewhat to abstraction levels of the objects in this
system. The first module that is loaded at system ini-
tialization (IBMBIO.COM) consists of low-level func-
tions to interface the physical machine and the BIOS.
It is followed by the file management system
(IBMDOSCOM) and the command processor (COM-
MAND.COM), which carries out the majority of user
dialogues. A series of independent utilities, called “ex-
ternal DOS commands,” complete the operational envi-
ronment of IBM-PC DOS.

The arabization of IBM-PC DOS relied basically on
the guidelines and procedures defined in this system
for the implementation of customized solutions [7]. It
consisted of the development of a series of device driv-
ers and a new command processor as shown in Fig-
ure 2b. External DOS commands have been treated as
special application programs and arabized by means of
similar mechanisms.

Bilingual Device Drivers
Architecture of IBM-PC DOS includes provisions for the
installation of user-defined device drivers. AOS exploits
this feature to implement two different services. First,
it installs new drivers that control input/output units
according to the semantics of bilingual typesetting
rules. Second, it names logical and physical system ob-
jects such as line printers, system consol unit, and in-
put/output ports in Arabic [20].

IAW’s display management mechanisms provide sub-
stantial support in the development of bilingual device
drivers, especially for output units. The simulation of
device data buffers by means of virtual screens lets
IAW’s input/output primitives handle the complex bi-
lingual typesetting task. For example, AOS printer driv-
ers consist of two layers. A generic layer, common to all

Communications of the ACM May 1990 Volume 33 Number 5

A 1, P H A Ii E T S
&

I, A N G U A G E S

printer types, creates a virtual screen for each printer.
It has the dimensions of one line and a number of
columns representing the width of the printer. Outputs
to printers are first directed to associated virtual
screens for bilingual typesetting. A second layer,
formed by device dependent modules, maps the con-
tents of these virtual screens on corresponding physical
devices.

In addition to Arabic mnemonics, AOS also preserves
original English denominations of system objects. This
dual naming schema helps to assign different behav-
ioral patterns for some devices. For example, a printer
equipped with a proper bilingual character set produces
outputs according to the Arabic layout when addressed
to by its Arabic name and acts in its native mode
(Latin) when the corresponding English mnemonic is
used.

Arabic Command Processor
The user interface of IBM-PC DOS resides in its com-
mand processor. In AOS, this processor is replaced by a
fully compatible and functionally equivalent module,
the Arabic Command Processor (ACP). The ACP accepts
commands entered in Arabic or in English, but replies
exclusively in Arabic. As with the original module,
multiple copies of the ACP can be activated simultane-
ously or invoked from application programs. ACP can
also be interleaved with the original command proces-
sor when necessary [20].

The major functional difference between the two
command modules resides in their memory utilization
policy. While the ACP is a single-resident module fol-
lowing other DOS segments in the memory, the original
command processor splits itself into two segments. A
small resident segment relocates the rest of the code to
the other end of the memory. This larger segment,
transferred in the user area, is occasionally overwritten
by the running applications. The decision to implement
the ACP as a single resident segment depended on ob-
vious technical considerations. First of all, a transient
segment of some 20Kb does not constitute a substantial
memory saving, given the large memory configurations
of today’s microcomputers. Further, the necessity to re-
load a frequently used system segment is a cumber-
some and time consuming process. Finally, the use of a
nonreentrant module is a major drawback when multi-
ple copies of the command processor have to be in-
voked simultaneously.

ure 4). This facility is particularly useful when a given
screen layout requires the mixture of both the Arabic
and Latin scripts as host contexts. For example, a
spreadsheet or a word processing program arabized
with the help of ADTF would provide, by default, re-
versed screen images suitable to the Arabic script, in
which the upper left corner of the image is mapped to
the upper right corner of the screen and vice versa. Yet,
parts of these images, such as header and trailer lines,
and command menus are reserved to system messages
and are likely to be coded in English. To keep the
original orientation and formatting of these areas,
ADTF must be guided with specific, case-dependent
templates, which are dynamically associated with the
current application. In its simplest form, a template
consists of a boolean array that defines the native ori-
entation of the lines on the screen. ADTF refers to this
vector to determine the host context and lessen the
ambiguities inherent in the bidirectional typesetting of
mixed scripts (as presented in earlier sections). In prac-
tice, it has been shown that most applications require
only a limited number of such templates. Once gener-
ated, these can be filed for future use. The association
of templates with the applications is done in a number
of ways. For frequently used packages, the layout de-
sign facility generates an encapsulation code to load the
concerned template and start the selected program.
Users run their application by invoking encapsulation
codes. A template can also be explicitly loaded using
appropriate system commands. For casual cases, a hot-
key service allows users to display and change the cur-
rent template interactively.

APPLICATION LAYER
The IAS application layer includes a number of pro-
gramming tools, system utilities and arabized versions
of the most frequently used external DOS commands.
The development of new applications is supported by a
series of program libraries containing system interface
routines for Pascal, C, and Macro Assembler languages
[21]. An Arabic line editor helps in the preparation of
bilingual text files and elementary documents.

A screen layout design utility is provided to prepare
user-defined templates for the ADTF mechanism (Fig-

The Arabic Operating System is a functional replicate
of DOS. As such, it does not present a more user
friendly interface than the original system. Users, de-
spite their interaction with the system in Arabic, still
have to deal with the line-oriented syntax of DOS com-
mands and their even less obvious parameters. In an
effort to reduce the syntactical diversity of system com-
mands and assist non-sophisticated users, IAS was
equipped with an optional system interface: the Arabic
Command Interface (ACI). AC1 aims to ease operation
of the system through the use of single key stroke ac-
tions, appropriate command menus, and a display of
current information on the operational context [20].
Unlike other user-defined shells it is tightly integrated
with the underlying system. To execute a command,
which requires the support of the operating system,
AC1 passes the request to a resident command proces-
sor instead of invoking another copy of it. The AC1
represents a typical example of an application that ex-
ploits the facilities offered by IAW’s display manage-
ment mechanisms to fullest extent. The main menu is a
virtual screen on top of which command dependent
windows are popped. Before transferring the control to
the selected program, AC1 activates the default virtual
screen, making it possible for the application to run in
the original context and create others. At the comple-
tion of the execution, AC1 regains the control and re-
sumes its operations by restoring its initial virtual
screen. Like other applications, this facility may be dis-

May 1990 Volume 33 Number 5 Communications of the ACM 503

ALPHABETS

SC-

LANGUAGES

continued at will, leaving the user in direct contact
with the native operating system interface.

4. Archer, N. P., et al. A Chinese-English microcomputer system.
Commun. ACM 31, 8 (Aug. 19881, 977-982.

5. Becker. J. D. Arabic word processing. Commun. ACM 30. 7 (July
1987). 600-610.

CONCLUDING REMARKS
The IAS became operational at the end of 1986, and
about one hundred copies have been distributed for
assessment. Hardware requirements of the IAS remain
modest and limited to a display adaptor with a down-
loadable character generator and some 70Kb of memory
for resident parts of the system. The performance of the
system and especially that of the workstation did not
show measurable degradation despite the complexity of
the bilingual typesetting algorithms and sophisticated
display management mechanisms.

The IAS project has shown that it is feasible to build
bilingual systems using currently available microcom-
puters and software solutions. Although English and
Arabic were considered in this investigation, the con-
cepts are applicable to other language pairs that do not
necessarily belong to the same linguistic family. The
conversion that allowed the microcomputer system to
operate in a language other than and quite different
from the one for which it had been designed was fur-
ther complicated by pragmatic considerations. First,
there was a desire to preserve the native assets of the
original system. Moreover, the necessity to port existing
applications on the new system and use them with
either language or a mixture of the two created a num-
ber of additional challenges. IAS’s layered architecture
helped to overcome many of these issues. Thus, for
example, the problems encountered in the design of
common linguistic interfaces to output media, which
result from the use of different alphabets (and, there-
fore, different character sets) have been contained at
the workstation level. Similarly, the differences in type-
setting rules (including orientation of the script, liga-
tures, and diacritical marks) have also been solved at
this level. The operating system was mainly involved in
the translation process, and components at the applica-
tion layer provided the necessary logistic support for
the new environment.

6. Dempsey, M. W. Atlas of fhe Arab World. Facts on File Pub., New
York. 1983.

7. International Business Machines, Inc. DOS Technical Reference ~3.1.
No. 6138536. 1985.

8. International Business Machines, Inc. Personal Computer National
Supplement Arabic. No. 8223445. 1985

9. International Business Machines, Inc. EGA Technical Reference: Op-
fions and Adaptors. No. SS34-000700. 1986.

10. International Organization for Standardization. Information process-
ing-Arabic 7-bit coded character set for information interchange.
ISO/TC 97, IS0 9036 Tech. Rep, 1987.

11. International Organization for Standardization. Information process-
ing-8-bit single-byte coded graphic character sets-Part 6: Latin/
Arabic alphabet. ISO/TC 97, IS0 8859-6 0. Tech. Rep., 1987.

12. MacKay, P. Typesetting problem scripts. Byte II, 2 (Feb. 1986),
201-218.

13. Manzer, M., and Mahmoud, N. N. A special purpose computer for
Arabic text processing. In Proceedings of Tenth National Compufer
Conference [Jeddah, Saudi Arabia, Feb. Z&March 2). 1988. pp.
679-688.

14. Microsoft MSDOS User’s Guide Arabic Supplemenf. Microsoft, 1988.
15. 01 Systems 1THA User’s Guide and Advanced Programmers Reference

ReI. 3.0. Bahrain, 1988.
16. Saad, H.. Adnan, N., and Mohammed S. Recent experience in the

development of a standard Arabic information processing glossary.
In Proceedings’of Eleventh Nafional Computer Conference (Dharan,
Saudi Arabia, Mar. 4-7). 1989, pp. 373-381.

17. Sakamura, K. BTRON: The business-oriented operating system. IEEE
Micro, 7 (Apr. 1987). 53-65.

18. Saudi Soft. AL MUSSAED AL ARABI. Jeddah, Saudi Arabia, 1986.
19. Tayli, M., and N&ah, M. Intelligent Arabic workstation. In Proceed-

ings of the Ninth National Computer Conference (Riyadh. Saudi Arabia,
Sept. 23-27). 1986, pp. 10-2-l to 10-2-8.

20. Tayli, M. Integrated Arabic system. In Proceedings of the Firsf KSU
Symposium on Computer Arabization (Riyadh, Saudi Arabia, Apr. 6-9).
1987, pp. 135-143.

21. Tayli, M. Integrated Arabic system technical information and pro-
gramming manual. College of Computer & Inf. Sci., King Saud Univ.,
Saudi Arabia, 1988.

CR Categories and Subject Descriptors: CO [General]: Hardware/
Software Interfaces; D.4.7 [Organization and Design]: Interactive Sys-
tems: D.4.9 [System Programs and Utilities]: Command and control
Languages; H.4.1 [Information Systems Applications]: Office Automa-
tion-equipment; 1.7.1 [Text Processing]: Text Editing: J.5 [Computer
Aoolicationsl: Arts and Humanities-IinPuisfics

-kenera Terms: Design, Experiment&n
Additional Key Words and Phrases: Arabic operating systems, Arabic

script, automatic shape determination, bilingual typesetting, bilingual
workstations, display transmutation, virtual screens, windows

In retrospect, the fundamental problems faced during
the IAS project resulted mainly from:

ABOUT THE AUTHOR:

l the inadequacy of existing bilingual character code
sets (including the one adopted by the IAS) to
accurately represent the Arabic language,

l the lack of appropriate bilingual keyboard layout
standards, and

MURAT TAYLI is an associate professor in the Department of
Information Systems at King Saud University, Riyadh, Saudi
Arabia. His current research interests include distributed and
real-time operating systems and the setup of their testbeds on
transputers.

l the quasi-absence of proper Arabic computer termi-
nology and the nonstandard nature of current techni-
cal vocabulary [16], issues that have been conscien-
tiously kept beyond the scope of the investigation.

ABDULLAH I. AL-SALAMAH is an assistant professor in the
Department of Information Systems at King Saud University,
Riyadh, Saudi Arabia. His current research interests include
office automation systems, programming languages, and com-
puter arabization.

REFERENCES
1. Appropriate Technology Ltd. APTEC Arabic Ufilifies Programming

Manual ~2. London, 1984.

Authors’ Present Address: College of Computer and Informa-
tion Sciences, P.O. Box 51178, Riyadh 11543, Saudi Arabia.
email for M. Tayli: f60c002@saksuOO.bitnet.

2. Arab Standards and Metrology Organization. Data processing 7-bit Permission to copy without fee all or part of this material is granted
coded Arabic character set for information interchange. ASMO 449 provided that the copies are not made or distributed for direct commer-
Tech. Rep., Amman Jordan, 1982. cial advantage, the ACM copyright notice and the title of the publication

3. Arab Standards and Metrology Organization. &bit coded Arabic/ and its date appear. and notice is given that copying is by permission of
Latin character set for information interchange. ASMO DS 708 the Association for Computing Machinery. To copy otherwise, or to
Tech. Rep., 1985. republish, requires a fee and/or specific permission.

504 Communications of the ACM May 1990 Volume 33 Number 5

