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INTERFACE DESIGN ISSUES FOR 
ADVICE-GIVING EXPERT SYSTEMS 

Advice giving could become the first successful domain for intelligent 
interfaces. 

JOHN M. CARROLL and JEAN McKENDREE 

Two empirical phenomena h.ave structured much 
recent research on human-computer interaction; 
these are (1) that people have considerable trouble 
learning to use computer systems (e.g., [60, 63]), and 
(2) that their skill tends to asymptote at a relatively 
mediocre level [e.g., [69, 74, 781). There would ap- 
pear to be a conspiracy of reasonable strategies for 
learning and performance in a practical domain that 
has the surprising effect of undermining the motiva- 
tion required to learn and to perfect skills [21]. 

The situation can be sketched as follows: People 
want to use computer equipment because they want 
to get something accomplished. This is good in that 
it gives users a focus for their activity with a system 
and increases their likelihood of receiving concrete 
reinforcement from their work. But this same prag- 
matism can also make an individual unwilling to 
spend any time learning about a system on its own 
terms. After all, to consult on-line tutorials or pro- 
grammed self-instruction manuals is for a time to 
effectively cease working. There is then a conflict 
between learning and working that inclines new 
users to try to skip training altogether, or to skip 
around in a training sequence, sometimes with dis- 
astrous consequences. It also inclines more experi- 
enced users to stagnate, for when situations occur 
that could be more effectively handled by new pro- 
cedures, these users are likely to stick with the 
procedures they already know, regardless of their 
efficacy. 

Recently, many researchers have rallied to the 

suggestion that the motivational “cost” of learning 
and skill improvement could be reduced through the 
use of intelligent system monitors (see, e.g., [SO]) that 
could mitigate the learning versus working conflict 
by better integrating the time and effort spent on 
learning with actual use of a system. This “advice- 
giving” approach contrasts with the more typical 
drill and practice style of contemporary on-line tuto- 
rials and the confusing verbosity of typical context- 
insensitive help commands [49]. On-line tutorials 
and helps do in some cases monitor and adjust to the 
needs of specific users, but characteristically main- 
tain a sharp separation between learning and work- 
ing that can undermine the user’s motivation to 
make use of training and help materials. 

We present a structured overview of current pro- 
posals for advice-giving systems in terms of three 
specific goals. First, we review the literature. Re- 
search in this area is expanding rapidly, and the 
time has arrived when “intelligent” monitoring tech- 
nology is practical. This makes it important to struc- 
ture and assess the research literature now. 

Second, our particular orientation is to consider 
requirements for such systems from a behavioral 
standpoint. One striking lesson in recent computer 
science is that the capability to build a new system 
technology is only one condition for the potential 
“real success” of the technology. Mere technological 
feasibility must be augmented by empirical study of 
whether and how people will find a new technology 
useful and tractable. It is pointless to build such 
facilities unless we take into account behavioral 
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Ideally, such an assessment can be made even before 
the new technology is completely developed (e.g., 
[45, 61, 801). 

Our third goal is to extract the themes and conclu- 
sions in this research that can help to direct future 
work. To lay our cards on the table from the outset: 
We believe, based on our study of the current litera- 
ture, that far too little behavioral work has been 
invested to date in design research on advice-giving 
systems. This is ironic since one of the chief practi- 
cal motivations for such systems is to produce 
advice-giving capabilities that effectively support the 
needs of human users. And, indeed, this lack of at- 
tention to usability is increasingly being identified 
as a key reason for the limited impact that expert- 
system technology has had on real computing (e.g., 
[27, 541). 

We have organized our discussion of the literature 
into two major topic areas: the knowledge involved 
in giving advice, and the contingencies for and con- 
tent of effective advice. 

KNOWLEDGE REQUIREMENTS 
Advice-giving systems will need to have knowledge 
if their advice is to be worth anything. What will it 
mean for a system to have knowledge? What does an 
advice-giving system need to know about? How 
much does it need to know? How is it supposed to 
get this knowledge? Philosophers can rest easy; for 
today’s computers, to “have knowledge” means no 
more than to be able to store information and to act 
on the basis of that information. Advice-giving sys- 
tems are distinguished chiefly in that they store 
information about a system and its commands, con- 
ditions, procedures, etc., and can access this infor- 
mation and provide it to users as on-line training 
and help. This puts the philosophical issues to rest, 
but it awakens a host of technical issues. 

In the editing environment in which this article 
was composed, the command “help split” evokes six 
screens of information defining the command split. 
The system has stored knowledge about itself and 
can provide this knowledge on request. True advice- 
giving systems will have to know about more than 
merely their own dialogue conventions. They will 
have to know about advice-giving, about the tasks they 
are to be used for, and about the ways that users can 
vary. For example, our editor might be enhanced to 
know to respond differently to “help split” depend- 
ing on whether a text file or a Pascal program is 
being edited [9, 491. 

We consider these types of knowledge under three 
headings. General skills includes knowledge about 
things like tutoring styles and natural language- 
knowledge areas that transcend the particular sys- 

tem, the user, and the tasks for which the user em- 
ploys the system. Domain knowledge (as in the exam- 
ple of elaborating “help split”) incorporates specific 
task information. A user model is what the system 
knows about the person interacting with it. 

General Skills 
The importance of general skills is otten acknowl- 
edged, but rarely discussed. General skills encom- 
pass knowledge of such vast and intricate -topics as 
advisory strategies and natural language. Our under- 
standing of these areas is very incomplete, and it is 
not surprising that we have been unable to satisfac- 
torily codify these knowledge domains in advice- 
giving systems, 

Advisory Strategies. How can advice be given effec- 
tively? How can a particular advisory strategy be 
modified effectively on the basis of feedback from an 
advisee? Sleeman and Brown [87], in the introduc- 
tion to their well-known anthology on intelligent 
tutoring systems, label the need for explicitly de- 
scribing different advisory strategies as “critical,” but 
the papers in their book do not in fact address the 
issue. Clancy [24], for example, takes it as a signifi- 
cant advance that his GUIDON system architectur- 
ally separates the domain knowledge base from the 
advisory strategies-underscoring the importance of 
the latter. He [24, p. 2051 specifically calls attention 
to the question of evaluating the strategies, but then 
leaves the question open. 

Typically, researchers have opted for a particular 
advisory style, offering little or no empirical ration- 
ale. For example, many tutoring systems employ a 
Socratic style where the system poses questions and 
the user is expected to provide answers [24, p. 219; 

881. It is likely that this is an effective style for inter- 
active tutoring in many situations, but it is also sig- 
nificant that no evidence has been offered to sup- 
port this assumption. The possibility exists that the 
Socratic style is often adopted for tutorially irrele- 
vant reasons. Giving the system control of the dia- 
logue by allowing it to Socratically pose all the 
questions allows a simple question-list knowledge 
structure (e.g., [55]). The trade-off is that system 
control of advisory dialogue may make the system 
behaviorally unacceptable [14]. 

Coombs and Alty [26] analyzed actual interactions 
of computer consultants working on problems that 
users presented. They found that the flow of infor- 
mation tended to be one way: After the user posed 
an initial question, the advisor assumed control of 
the interaction. Advisors rarely included explana- 
tions or checked whether the user understood the 
advice. Users often criticized advisors for “not mak- 
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ing the information meaningful” [26, p. 4071. Advi- 
sory interactions that were judged successful by 
users tended to be ones in which the advisory strat- 
egy allowed shared control of the dialogue (see [27]). 

Learning-by-doing environments are the other 
major advisory design that has been implemented 
experimentally [lo, 121. In this approach the user 
can more freely initiate actions. Each user move is 
compared with an expert move, as generated by the 
system, and feedback is provided to shape the user’s 
responses toward the expert prototype. This ap- 
proach has the advantage of placing more initiative, 
and therefore more control, in the hands of the user. 
However, the increased flexibility in user inter- 
action may entail more dema.nding knowledge re- 
quirements for the system, which must know every 
way a user’s actions can depart from those of the 
normative expert, and the particular significance of 
each potential departure. 

Most learning-by-doing environments have been 
developed for educational games where the state- 
space of possible move combinations is relatively 
small. Several investigators have developed empiri- 
cally based taxonomies of “bugs” [IO-121 or of 
“object-related misconceptions” [64]. But these tax- 
onomies are very domain dependent and hence may 
not capture genera1 knowledge about strategies for 
error correction or the development of expertise by 
means of advice giving (cf. [71]). 

Neither the Socratic nor the learning-by-doing ap- 
proach enjoys much systematic empirical validation 
(but cf. [ll]), and a researcher’s choice of advisory 
strategy remains largely a matter of fiat. Kimball 
[55, p. 2831, for example, explicitly rejects learning- 
by-doing environments for the domain of posed 
math problems, but offers no empirical rationale 
whatsoever. It is also notable that both the Socratic 
and learning-by-doing approaches are always ap- 
plied unilaterally in current tutoring systems. Cur- 
rent systems are not able to reason about tutoring 
per se or to select situationally appropriate tutoring 
strategies dynamically. 

Recently, Fischer, Lemke, and Schwab [36] ac- 
knowledged the need for a variety of advice-giving 
strategies. They distinguished between active and 
passive strategies for help (in active strategies the 
system interrupts the dialogue to provide advisory 
commentary on the user’s actions; in passive strate- 
gies the user must explicitly request advice). Unfor- 
tunately, they did not show empirically how either 
of their advisory strategies was specifically called for 
on behavioral grounds, or how implementing them 
in fact proved useful. 

Natural Language. As with advisory strategies, there 
has been a general recognition of the importance of 

natural language to successful advisory interfaces 
(e.g., [38]). U f t n or unately, the problem has often 
been finessed rather than confronted. Systems like 
those described by Coombs and Alty [27] and by 
Goldstein [41], for example, appear to have little or 
no natural-language capability. Fischer, Lemke, and 
Schwab’s Passivist system [36] merely slices out 
keywords in the style of Weizenbaum’s Eliza [95]. 
Sleeman’s ACE system [86] parses with simple argu- 
ment templates, a very rough and inevitably fragile 
and domain-specific approach. What are the behav- 
ioral consequences when the user inadvertently foils 
the template and gets garbage advice from the sys- 
tem? The risk, as Brown, Burton, and deKleer [lo, 
p. 2441 observe, is that arbitrarily approximate treat- 
ments of natural language may cause more problems 
than they solve. 

Malhotra and Sheridan ([61]; see also [go]) adopted 
an empirical approach to this problem by simulating 
an order-writing and invoicing system that could an- 
swer questions and respond to commands in English. 
In their studies, the user-system dialogue was fil- 
tered by the experimenter, who could intervene be- 
hind the scenes to enhance the apparent natural- 
language capabilities of the system. In this way, 
Malhotra and Sheridan were able to study the be- 
havioral requirements for natural-language capabili- 
ties in a system without actually implementing 
them. Over half of the sentences produced by their 
subjects instantiated a small set of structural tem- 
plates that they were able to describe. However, 
more than a third of the sentences produced were 
classified as not syntactically analyzable. 

Chin [23] has more recently employed this empiri- 
cal approach to study a simulation of the UNIX@ 
Consultant [96]. He found that over a quarter of the 
English queries submitted to the simulated consul- 
tant incorporated contextual syntactic constructs, 
such as ellipsis, anaphora, indirect speech acts, and 
grammatically incomplete clauses. However, the in- 
cidence of contextual constructs in a control group 
querying a human consultant was nearly twice as 
great, suggesting on the one hand that natural- 
language interface facilities need to be able to inter- 
pret contextual constructs, and on the other that 
people may voluntarily restrict the contextual com- 
plexity of their queries when interacting with an 
advisory system. 

Both of these findings are encouraging for the pos- 
sibility of developing empirically adequate but com- 
putationally limited natural-language capabilities. 
They provide an alternative to natural-language re- 
strictions motivated chiefly by ease of implementa- 
tion. Of course, they also raise the theoretical issue 
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of how to more comprehensively characterize the 
nature of appropriate natural-language restrictions. 
Finally, they begin to provide methods for analyzing 
the cost-benefit trade-offs in general skill require- 
ments for advice-giving systems (e.g., how much 
does a particular enhancement actually enhance the 
usability of an advisory interface?), which is a criti- 
cal issue if these systems are to be practical in the 
near future. 

General skill areas are clearly amenable to behav- 
ioral study. We hope that simulation techniques like 
those of Malhotra and Sheridan [61] and Chin [23], 
and direct behavioral investigations like that of 
Coombs and Alty [26, 271, will be more widely em- 
ployed in future explorations of general knowledge 
requirements for advisory expert systems. 

Domain Knowledge 
In our “help split” example, we posited an on-line 
help system that could refer to heuristic knowledge 
about the tasks it supported in determining how to 
respond to help requests. The system described had 
a domain knowledge capability of extremely limited 
scope. Many diagnoses that an actual advisory sys- 
tem might make about a user’s intentions would 
require examining and extracting a pattern from a 
sequence of user activities (e.g., [l2, p. 961) and look- 
ing not merely at the state the user has arrived in, 
but at the entire process that the user traversed in 
getting there [go]. 

Psychological Pertinence. This issue is more than 
merely one of how much user activity is taken into 
consideration. It has become a question of interpret- 
ing the user’s actions in terms of the user’s inten- 
tions. Fitter [37, p. 3411, for example, argues that in 
order to be useful to people a system must represent 
its knowledge as people know it (see also, [38, 511); 

that is (to quote Fitter), 

(1) the underlying process which the computer is per- 
forming should model the processes which are directly 
pertinent to the user in a manner compatible with the 
user’s own model of the process; and 
(2) the communication language (or user interface) 
should be designed so as to reveal [a system’s] under- 
lying processes as vividly as possible. 

The rub, of course, is to accurately carry out these 
prescriptions in given cases (and to be able to know 
that you have done so). What does it mean to model 
a system’s operation and interface on processes per- 
tinent to the user? What, after all, is the user’s inter- 
nalized mental model of the system? 

These are difficult questions. The research litera- 
ture in psychology provides little basis for deriving 
serious mental models of complex task domains [16], 

and virtually no direct behavioral research either 
informs claims about psychological pertinence or has 
been brought to bear on evaluating these claims. It 
is worrisome, then, to find that some researchers 
merely assume that these questions are settled. 
Jagodzinski [51, p. 2181 states that “since the incep- 
tion of computers there has been a continuous 
movement in programming away from methods 
which reflect the working of the computer towards 
methods which correspond more closely with hu- 
man cognitive processes.” In a very rough, intuitive 
sense, this claim seems correct. But, as a summary of 
the state of research, it is a meaningless promise of 
optimistic intentions, lacking any serious probing of 
what “human cognitive processes” might refer to. 

A more fruitful approach might be to focus on the 
apparent discrepancies between human cognition 
and computational knowledge techniques. Kidd and 
Cooper [54] called attention to the mismatch be- 
tween the exhaustive backward chaining strategy 
for drawing out connections in a database and what 
they call the “quick stab” strategy, perhaps more 
typical of how people try to draw out such connec- 
tions. They did not analyze this discrepancy in 
much detail or study its empirical consequences 
directly, but their suggestion takes a step toward 
identifying relevant human cognitive processes. 

Multiple Representations. Fikes [35] and Stevens, 
Collins, and Goldin [88] raised the important possi- 
bility that multiple representations of a domain are 
necessary. The idea is that any single domain repre- 
sentation will not provide enough basis and flexibil- 
ity to support effective advising. Fikes contrasted 
rote description, functional description, and proce- 
dure teleology description. Rote description focuses 
only on the steps of a procedure and the desired 
result. Functional description includes also a ration- 
ale for each step-its dependency relations with 
other steps and its contribution to the desired result. 
Procedure teleology extends this rationale to the 
procedure itself by describing the task that the pro- 
cedure is designed to achieve and the function 
that each step in the procedure plays. A limitation 
of Fikes’s work is that it proceeds from a purely 
a priori standpoint: The specific empirical conse- 
quences of his notion of procedure teleology 
remain unclear. 

Stevens, Collins, and Goldin [88] developed their 
multiple representations thesis more concretely-in 
the context of an empirical investigation. People 
were taught facts about weather (e.g., Oregon is wet) 
and the mechanisms that underlie these facts. They 
identified two relevant levels of knowledge: scriptal 
knowledge, expressing situationally grounded, 
causal relations; and function knowledge, expressing 
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a more abstract, qualitative model. They found that 
scriptal knowledge governed the sequencing of 
major topics in an advisory dialogue, whereas func- 
tional knowledge governed the finer structure of ad- 
visory interaction. Unfortunately, their work rests 
on an ad hoc sample of pedagogical anecdotes and 
presents little systematic evidence that their distinc- 
tion actually underlies a significant enough distinc- 
tion in human thought to constrain the design of 
advice-giving systems. Nevertheless, this work is 
empirical and suggests an interesting direction for 
further work on knowledge representation. 

Toward a Theory of Domains. Lurking around all 
work on domain knowledge is the disturbing possi- 
bility that the research outcomes will be too strictly 
domain specific. Many of the domains that have 
been investigated so far are extremely simple. 
VanLehn [%t, p. 91 described his own domain of in- 
terest (subtraction) as “dry, formal and disconnected 
from everyday interests.” This raises a general ques- 
tion about the adequacy of the solutions proposed: 
Will they extend to more complex and typical 
arenas of knowledge? It is also notable that much 
extant work has focused on what one might call 
declarative, as opposed to procedural, domains. Pro- 
cedural domains include the interactive use of sys- 
tems, program composition, and debugging. The 
meteorological domain studied in [88], for example, 
includes underlying mechanisms of cause and effect, 
but no procedures. This raises the question of how 
the analysis of multiple knowledge representations 
might extend to a procedural domain: for example, 
what is the scriptal/functional distinction in such a 
domain? 

What kinds of domains are there? Naturally 
enough, computer science application work has fo- 
cused attention on procedural domains. At an ex- 
treme from these are purely factual domains (foreign 
language vocabulary, history). Somewhere in be- 
tween, perhaps, are functional domains (mechanics, 
meteorology). What kind of domain is music, 
though? We need to better articulate a taxonomy of 
domains that expresses the similarities and contrasts 
between types of ‘domains. This taxonomy must re- 
flect the significant empirical contrasts between 
types of domains, and so clarify what sorts of do- 
main knowledge theories we have and do not have 
at present [39, 82, 921. 

The Grain of Analysis. It is often claimed that repre- 
senting more domain knowledge is a key to better 
advice-giving systems. Stevens, Collins, and Goldin 
[88, p. 221, who represented their knowledge domain 
in two separate formats, suggested that additional 
multiple representations are necessary. In a similar 
vein, VanLehn [%I, p. 231 concluded that his own 

progress would have been greater if he had repre- 
sented domain knowledge at a finer grain-the pro- 
cesses underlying procedural bugs rather than the 
bugs themselves. Indeed, to predict that more could 
be achieved if only more knowledge and finer grain 
knowledge were represented is almost a given in the 
knowledge-based systems literature. 

Rich [76] proposed that a convenient grain of rep- 
resentation for domain knowledge is the level of 
statements in the system code. She conjectured that 
if an advisory facility could examine system code, 
statement by statement, it could find answers to 
what she took to be the principal types of user quer- 
ies (“What causes this outcome?” “What will happen 
if I do this?” and “What is the difference between 
these two ways of doing it?“). This is an interesting 
proposal if only because it gives up on the require- 
ment of psychological pertinence that most research- 
ers have placed on their views of domain knowl- 
edge. However, it is important to bear in mind that 
Rich did not demonstrate that her proposal could 
really produce a feasible domain representation, 
with respect to answering the user query types she 
enumerated. Moreover, she did not establish that 
these query types are in fact exhaustive, or even 
typical of actual user queries. 

Reiser, Anderson, and Farrell [75] gave a user- 
based rationale for selecting Lisp atoms as the grain 
of analysis for an intelligent tutoring system for Lisp. 
They argued that a finer grain (e.g., keystrokes) 
would often underdetermine specific errors and thus 
underdetermine specific tutorial advice. A larger 
grain, however, would delay feedback past the point 
when specific errors could have been classified, 
which allows the user to continue on past the error. 
By focusing on a single and salient grain of resolu- 
tion for domain knowledge representation (like the 
Lisp atom), the system might present a more consis- 
tent advisory style to the user. However, selecting 
the atom as the grain may be a double-edged sword, 
since providing advice at the atom level might cause 
the system to overlook or misadvise on problems 
that in fact pertain to higher levels of program struc- 
ture or involve conceptual tangles of several lower 
level problems. 

Instead of stuffing more domain knowledge into 
advisory systems, we might ask, How little domain 
knowledge, and at how large a grain, is optimum for 
advice giving? This would focus relatively more at- 
tention on projecting dialogue fluency and the ap- 
pearance of some advisory competency and rela- 
tively less on the organization and access of very 
large knowledge databases. Thus, instead of storing 
the component processes underlying 500 bugs, we 
might store a dozen prototype scenarios to roughly 
classify user situations and advise at that grain. Clas- 
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sic demonstrations like Weizenbaum’s Eliza [%I 
suggest the power that mere appearances can have 
for people. Our work on scenario machines (to be 
reviewed later) has also explored this direction. 

User Models 
Referring once again to our “help split” example, we 
might consider enhancing the system by maintain- 
ing a record of a given user’s work patterns and help 
calls for use in diagnosing the nature of a future help 
call by that user. A special concern here is that the 
computer not be, or be seen as, spying on the user 
(e.g., to benchmark worker productivity). However, 
to provide individually and situationally pertinent 
advice, the system may need to analyze user activ- 
ity. The development and maintenance of predictive 
user models has been seen as critical for advisory 
systems (e.g., [4, 871). 

Normative Models. A simple approach is to develop 
and refer to a single, normative user model. An ex- 
ample of this approach is the training wheels inter- 
face studied by Carroll and Carrithers [la], which 
hard coded the assumption that new users of a word- 
processing application would not need to access 
specific advanced system functions. When users at- 
tempt to access these functions, they are informed 
that the functions are not available to them. 

The training wheels design was based on empiri- 
cal research indicating that new users often access 
an advanced function by mistake, and then becotne 
distracted and confused by the consequences. A lim- 
itation with this approach is that users could become 
frustrated with the implicit and inflexible guidance 
should their actual goals fail to accord with the nor- 
mative model. Reiser, Anderson, and Farrell [75] 
employed a normative model with prescribed goals 
in their Lisp tutor, but then adjusted the advice 
dynamically in response to specific user actions. 
Error-correction advice was adjusted to suit the 
manner in which an error was committed; users 
could also request specific clarifications or explana- 
tions. A limitation of such approaches is that there 
can be psychological distinctions to a user when 
there are no functional distinctions to a system [85]. 

An ambitious approach to advice adjustment is to 
incorporate both a normative reference model and a 
user-specific model of a given individual. Sleeman 
and Brown [87, p. 51 discuss using a comparison of 
performance outputs of the two types of models as a 
basis for generating advice. Goldstein [41, p. 671 crit- 
icized this approach for assuming that the knowl- 
edge of the novice could be viewed as a simple sub- 
set of the knowledge of the expert, and that the 
transition from novice to expert consisted of nothing 
more than the accretion of knowledge, gradually and 

ballistically minimizing the performance differential 
between the two models. Goldstein’s discussion 
echoes critiques of the accretion learning theories of 
stimulus-response psychology (e.g., [%I) by contem- 
porary theorists in artificial intelligence [72] and 
cognitive learning [56] who believe that learning in- 
volves radical cognitive restructuring. 

The possibility that the relation between novice 
and expert skill is more intricate and perhaps more 
erratic than a simple quantitative comparison im- 
plies is consistent with an empirical test of the ideal 
normative model approach. Sleeman [86] employed 
an ideal expert model in designing a system to coach 
algebra. The model made relevant diagnoses for less 
than half of the errors that actually occurred in an 
algebra tutoring situation and made the correct diag- 
nosis on only half of those. The Lisp tutor of Reiser, 
Anderson, and Farrell [75] introduced a variation on 
ideal normative models in which the “ideal” model 
was not of an ideal expert, but rather of an ideal 
learner-an advanced student [5]. The tutor stored a 
list of productions as an ideal student model, and 
annotated this list on the basis of the given individu- 
al’s monitored performance to indicate which pro- 
ductions were assumed to have been learned. This 
system correctly diagnosed 45-80 percent of user 
errors. 

Vocabula y Analysis. We have not yet addressed the 
question of how a user model is to be constructed 
and updated. Can the system merely ask the user to 
indicate a skill level? We doubt the value of such an 
approach. A simple partitioning into “novices” and 
“experts” is probably not adequate [SO], and offering 
more categories might make the self-classification 
task difficult and unreliable. People are notoriously 
bad at giving accurate descriptions of their own in- 
formation needs [TO, 7. The obvious alternative is 
to infer the user’s skill level (and the user’s specific 
problems and concerns) from actions and responses. 
This would provide more reliable classifications, but 
would also make greater demands on the system. 

Rich [77] describes an advice-giving facility for a 
document formatting system in which a user’s skill 
level is determined by a keyword analysis of the 
vocabulary employed in help calls. Each text format- 
ting command is associated with a hierarchical 
structure of explanations ranging from general to 
technical. The skill level diagnosed in the user’s 
help call determines the vocabulary level of the ex- 
planation produced by the system. One problem 
with this approach is that it is not clear how diag- 
nostic the vocabulary in a help call really is: An 
utter novice will probably not pose very technical 
queries, but a user with considerable experience 
might use relatively general vocabulary and there- 
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fore get advice at too elementary a level. No behav- 
ioral assessment of the vocabulary analysis approach 
has been made yet. 

Behavior Analysis. Perhaps a more direct route to 
automatically diagnosing user skill is to monitor and 
evaluate the user’s actual behavior. Much of this 
work has focused on monitoring and evaluating user 
errors. Coombs and Alty [x’] stored prototypical er- 
ror patterns as a normative user model for users of a 
Prolog environment. When particular users gener- 
ated patterns of behavior that matched a stored pro- 
totype, relevant corrective advice was produced. We 
would of course prefer to have more than a mere list 
of attested error types to direct a behavior analysis. 
We would like to have a more general, or abstract, 
taxonomy of error, and more importantly, a theoreti- 
cal understanding of why errors occur. 

We have referred to work on the concept of 
knowledge “bugs,” or systematic departures of a user 
model from an ideal model [lo-121. A bug is defined 
to be the smallest change in a correct procedure that 
would make it into an error [ll]. Bug theorists stress 
that this level of analysis is more abstract than that 
of prototypical error patterns, where errors are sim- 
ply flaws in the stream of behavior. Bug theorists see 
bugs as knowledge hypotheses: Errors, characteristic 
nonoptimalities, and even correct performances 
could all be evidence of a particular bug hypothesis. 
Systems like BUGGY and DEBUGGY try to recognize 
bugs and compositions of bugs in a person’s work. 
Recognized bugs comprise a level of analysis of the 
user’s skill, and a basis for generating specific ad- 
vice. 

Unfortunately, research on behavior analysis is 
still quite inconclusive. More than five years worth 
of development work on bug diagnoses for the do- 
main of simple arithmetic managed to analyze only 
a third of actual learner errors. Perhaps more worri- 
some is the fact that no princ:iples have been isolated 
that distinguish learner errors that are not based on 
misanalysis from those that are. There is still no 
systematic theory of bugs or of error prototypes. An 
inventory of bugs or errors is an inventory of mini- 
theories of a person’s knowledge, but there is no 
systemic constraint on this taxonomy. Conversely, 
a view of learning as a process of debugging “least 
variants” in performance is still no richer than the 
simple accretion of stimulus--response connections. 
This is a practical as well as a theoretical limitation. 
Since a particular inventory of bugs or error proto- 
types develops on a case-by-case basis without any 
overarching framework, each new case is unique. 
From a practical standpoint this is a crippling 
limitation. 

Perhaps current approaches to knowledge bugs are 

at too low a level to capture cognitive skill. One 
could drop the requirement that bugs differentiate 
“least variants” in performance and consider only 
“higher level” bugs in the hope that they might com- 
prise a more efficacious and more tractable grain of 
theoretical analysis. (Indeed, higher level bugs might 
coextend better with the level of error prototypes 
and thus be a more empirically straightforward level 
as well.) Finally, it is clear that in many cases analy- 
ses of user error must explicitly incorporate the in- 
tention the user had in making the error [52]. Thus 
behavior analysis may need to move in the direction 
of cognitive analysis [94]. 

Individual Differences. Coming at these problems 
from the top down, instead of from the bottom up, 
we might begin with a general analysis of individual 
differences and so deduce patterns of errors or bugs 
that are diagnostic. This strategy holds out the prom- 
ise of providing an integrating framework that could 
help to generalize the case-by-case behavior taxon- 
omies across task domains and systems. 

The user modeling work that underlies the design 
of advice-giving systems has typically presumed that 
users are homogeneous in relevant ways, although 
hardly anyone would dispute that a better alterna- 
tive would be to tailor interface presentation for in- 
dividual differences (e.g., [77]). We agree that indi- 
vidual differences may figure importantly into fu- 
ture advice-giving technology, but we also believe 
that the area is virtually undeveloped at present. It 
makes sense to say that people have diverse styles 
and needs for information. And it seems that people 
who provide information to others (e.g., reference 
librarians, people giving directions) do make adjust- 
ments based on some reckoning of individual differ- 
ence [57]. Therefore, it does seem reasonable to pre- 
dict that computer systems may need to incorporate 
such capacities. What seems unclear at present is 
just what the relevant dimensions of this accommo- 
dation are. 

Many of the examples that have been discussed 
are quite unconvincing. On the one hand, many of 
the individual difference categories that are dis- 
cussed are extremely general (like gender and Rich’s 
stereotypes like “intellectual feminist”). The problem 
with these categories is relating them in focused 
ways to significant aspects of human information 
processing: Do intellectual feminists have different 
advisory needs? 

On the other hand, more specific individual differ- 
ence categories often provide few real design impli- 
cations. In making a case for considering individual 
differences in interface design, Rich [77, p. 2001 calls 
attention to studies by Card, Moran, and Newell [13] 
indicating that keystrokes per task should be mini- 
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mized in designing word processing interactions for 
experts, and to studies by Ledgard, Whiteside, 
Singer, and Seymour [58] indicating that English- 
like, full-word commands should be used in design- 
ing word processing interactions for novices. She 
calls these “conflicting requirements,” but it is not at 
all clear that they do conflict-even for a specific 
level of user experience (e.g., Card et al. clearly view 
keystroke estimates of complexity as approxima- 
tions, and Ledgard et al. in fact used very brief full- 
word commands). 

An interesting and increasingly relevant individ- 
ual difference is that users’ experience with other 
systems creates specific expectations about func- 
tions, vocabulary, predicted errors, and confusions. 
Rosson [76] found that the number of different full- 
screen text editors a person had previously used pre- 
dicted other user characteristics (e.g., the range of 
program function keys used in editing). Again, indi- 
vidual differences seem ripe for empirical investiga- 
tion although little .has been done as yet. 

Knowledge Bounds 
How much knowledge is enough? Clearly, it is 
sound to argue that more explicit knowledge about 
advisory strategies, more natural-language capabil- 
ity, more content knowledge about given domains, 
and more extensive user modeling of individual 
users could make interactive advisory systems more 
effective. However, this detaches the issues from the 
problem context that gave them meaning. It is the 
constraints and limitations placed on knowledge rep- 
resentations that give this work scientific interest. 
Moreover, developing advice-giving systems is more 
than an exercise in knowledge representation: The 
argument for more of every type of knowledge fails 
to take account of what engineering has to offer. 

Knowledge requirements work needs to move to- 
ward placing constraints and limitations on knowl- 
edge representations, and then measuring and evalu- 
ating the ensuing behavioral consequences. In the 
theoretical arena, this means going beyond invento- 
ries of knowledge elements to theories of knowledge 
structures; it means developing a theory of domains, 
and better theories of particular domains-empiri- 
cally testable theories; it means understanding ad- 
visory strategies and restricted natural-language 
capabilities so that alternatives can be explicitly 
characterized, contrasted, and evaluated, not merely 
selected or rejected on intuitive grounds. 

In the practical arena, we need to look not mere- 
ly at how to implement more comprehensive 

. approaches, but also at the consequences of self- 
limiting approaches that are more technically 
feasible and that may be good bargains in advisory 

effectiveness. At the Watson Research Center, we 
have explored a research and training tool called a 
“scenario machine” [19, 671, which statically en- 
codes a series of goals and tasks for the user to ac- 
complish with the system. The system makes each 
succeeding task seem plausible as the user works 
through the programmed scenario via incidentally 
presented information (e.g., the user receives elec- 
tronic mail containing a query about a bulletin- 
board item that must in turn be accessed and exam- 
ined to answer the query). The scenario machine 
can provide advisory dialogue about the current 
goals, the steps of a procedure being executed, or 
other information relevant to the current task. The 
scenario that the user traverses is designed to in- 
clude the fundamental functions of the system- 
those functions users will need to have understood 
when they are engaged in actual use of the system. 
This sort of approach allows the system to provide 
very appropriate and context-sensitive advice with- 
out explicitly representing knowledge about the do- 
main or dynamically inferring the user’s goals. 

Advisory Knowledge Issues 

What advisory strategies are there? 
Under what conditions are different strategies 

effective? 
How can different strategies be integrated? 
In what specific ways can natural language 

enhance system usability? 
In what ways do people voluntarily restrict their 

use of natural language when interacting with a 
recognition facility? 

How can a user’s mental model of a task domain be 
incorporated into an advice-giving system? 

What properties of domain models, and at what 
grain of analysis, are most important for 
generating advice? 

How can we generalize adviso y techniques across 
different task domains? 

Can user models that incorporate learning transi- 
tions and trajectories (as well as end states) be 
developed? 

Are there application areas for which normative 
modeling approaches will be adequate? 

How should individual user models be incorporated 
into advice-giving systems? 

What behaviors and self-descriptions can be col- 
lected to build user models? 

What differences in individual users are important 
for advice, and how can they be addressed 
through design? 
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A topic like “knowledge requirements” might 
seem like a “formal” issue-more artificial intelli- 
gence than human factors. We think otherwise. In 
fact, looking over the current literature, it is striking 
that many of the questions we have raised (and for 
the most part had to leave open) could only be re- 
solved by making behavioral. measurements of peo- 
ple using current research prototypes. 

ADVICE CONTINGENCIES AND CONTENT 
Knowledge requirements are a foundation but at the 
same time merely a preliminary to the “real” prob- 
lem of giving advice. Granting that the system 
knows the right sorts of things and has all the right 
answers and skills, how should these be structured 
and deployed in an advice-giving dialogue? What 
should the system say, and when? 

Initiative 
Our “help split” example assumes a user who explic- 
itly requests advice by issuing a command. This is 
quite typical in the commercial state of the art, but 
we can imagine a system that could directly monitor 
the user’s activities, keeping a log of every user ac- 
tion, analyzing this log, and then initiating advisory 
dialogue. Indeed, in speaking of advice-giving sys- 
tems, the implication is that initiative is at least 
shared in part with. the system. 

Certain questions follow from this line of reason- 
ing: What level of user activity should be moni- 
tored?-that is, what classes of events should be 
logged? The system could log every single keystroke 
event, or it could log events at a higher level (for 
example, exemplars of a closed class of taxonomized 
errors). How should advice be delivered? The system 
could merely suggest more efficient or more correct 
ways to use the system, through verbal feedback, for 
example, or it could compel the user to do things in 
these alternate ways. These contrasting approaches 
rather severely modulate what it means to give 
“advice.” 

System Monitoring. In current advice-giving systems, 
the most typical class of user actions to monitor for 
is errors. This makes good intuitive sense. After all, 
it is in the context of an error that users need most 
to be advised, and it seems reasonable to assume 
that in attempting to recover From an error a user is 
motivated to attend to and to use advice. As such, 
error monitoring provides good grounds for feasibil- 
ity demonstrations. 

The key problem in error monitoring is defining 
what is to be taken as an error. There are simple 
cases: In a factual domain, if the user asserts false 
facts then he or she has made an error and can be 
corrected and tutored. Even in procedural domains 

there are fairly simple cases: The user who selects 
“Printing” before having created any printable data 
is probably making an error. The user who selects 
“Application Customizing” at the first log on and 
prior to any other selection is probably making an 
error and could be directed to first try out some 
simpler function. The user who queues and re- 
queues the same print job over and over without 
ever operating the printer is probably making an 
error and could be coached on using the printer. 

A user action is often an error only with respect to 
specific user goals. For example, the user who 
queued and requeued the same print job without 
printing was making an error only under the as- 
sumption that his or her operative goal was in fact to 
print the job out. If the goal was to fill up the queue, 
the entire action sequence might have been not 
merely correct but optimized. Thus, the problem in 
error monitoring becomes one of diagnosing errors 
based on inferred goals [52]. It can be very difficult 
for a system to correctly infer user actions and user 
goals in an interactive procedural domain like pro- 
gramming or word processing. An even greater diffi- 
culty is the fact that errors tangle in sequences of 
user behavior. A typically correct user action exe- 
cuted in the context of a prior error may need to be 
interpreted as a consequent error. For example, cor- 
rectly operating the printer could be an error if the 
goal is to print Document A and, via some other 
error, Document B was queued for printing before 
Document A was queued. It is an error because in 
this context correctly operating the printer will 
cause Document B to print. 

Error monitoring is facilitated if the user’s actions 
are predictable or directly prescribed. Indeed, this is 
why so much work on advisory systems has focused 
on intelligent tutorials rather than on intelligent 
help systems. Tutorials provide the system with a 
more restricted domain of action to diagnose. Never- 
theless, this also makes clear that work on advisory 
systems will need to develop toward monitoring 
both for user problems other than overt errors (e.g., 
for problematic or merely inefficient patterns of use 
[78]) and for errors in real contexts of use, outside of 
tutorial environments. Shrager and Finin [83] de- 
scribe an advisory system that monitored actual use 
and suggested more optimal methods to users. 

User Discovery. Granting that the system can suc- 
cessfully monitor for, say, errors (relative to appro- 
priately diagnosed user goals), a further question is 
whether even this is an adequate basis for generat- 
ing advice. System-initiated advice, however rele- 
vant to the user’s situation, could be a distraction to 
a user whose current goal is something other than 
attending to advice. Fischer et al. [36] acknowledged 
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this problem and employed a simple time-out ap- 
proach with advisory interruptions occurring with 
an arbitrarily bounded maximum frequency. But 
merely controlling the rate of interruption may miss 
the point: The system needs to distinguish opportu- 
nities for welcomed interruption from advisory 
harassment. 

Proponents of “discovery learning” often advocate 
waiting until the user explicitly asks for help before 
offering feedback [N]. The practical problem with 
current user-initiated advice facilities is that they 
often require lengthy and tedious prompting dia- 
logue interaction [54]. There is a need for work on 
schemes for streamlining system response protocols 
for user-initiated advice requests. 

Taking an even stronger discovery learning ap- 
proach, we might consider downside aspects of pro- 
viding advice at all. It is often argued that providing 
information to people is in many cases less effective 
than allowing them to discover on their own initia- 
tive [84]. The discovery approach takes advantage of 
opportunistic learning, that is, making the most of 
each unique personal experience. On the other 
hand, allowing the user to wander with minimal 
guidance in an exploratory learning mode may also 
be undesirable, in terms of learning rate, for exam- 
ple ([29]; but cf. [22]). It is also not clear that very 
intricate skills could be “discovered” efficiently 
(compare inventing the calculus with learning it). 

Clearly, this possibility interacts with the type of 
interface under consideration. Discovery learning is 
perhaps more feasible for a menu interface [22] than 
for a command interface: The former explicitly lists 
current options that can be tried and provides many 
implicit cues as well (e.g., in what the names of the 
options suggest). Interfaces designed around active 
forms [97, 981 provide even more implicit advice to 
the user about what can be done from a given sys- 
tem state. These and other techniques, such as dy- 
namically highlighting and/or relocating currently 
important display areas, might be thought of as pro- 
viding “soft” advice to the user. 

Brown, Burton, and deKleer [lo, p. 2281 report 
that, in their experience developing interactive tu- 
toring systems, providing large amounts of system- 
initiated intervention was quite often deleterious. 
They argue that it is often better to leave the user 
alone, especially if the problem seems small. How- 
ever, they also suggest that no advice be given if the 
learner gets too far off track [12, p. 961, arguing that 
it is unclear what sort of advice to give in such cases 
anyway. This is probably the best available wisdom, 
but it underscores the lack of depth in our current 
understanding: What is too far off the track? What is 
a small problem? What is too much system-initiated 

intervention? These are empirical questions that 
await systematic investigation. 

Consequences 
Advice giving has consequences. At the very least, 
information is presented and hopefully imparted. 
The user can attend to it, be distracted by it, or 
ignore it. But other types of consequences are possi- 
ble: The available function of the system can change 
when advice is given so as to implicitly compel the 
user to follow the advice, or the user could be placed 
in a special system mode where advice can be ex- 
plored without risk of further errors or other compli- 
cations. 

Information. When a system “merely” provides in- 
formation, it is providing a particular type and 
amount of information, timing its presentation in a 
particular way, etc. As we have seen in other cases, 
there is relatively little empirical work that has ad- 
dressed the problem of fixing these parameters. Most 
of the relevant work consists of demonstration sys- 
tems that adopt a certain specific set of parameters. 
There has, however, been some empirical study. 

Lewis and Anderson [59] studied people learning 
to play a logic-based computer game and found that 
feedback immediately after an error was the most 
effective kind of advice. They also found that people 
learn to recognize dead-end situations better if they 
are allowed to encounter them. Allowing people to 
actually “see” the consequences of an error they 
would have made (and to easily back out of or avoid 
these consequences) is an important type of advisory 
information, and one well enabled by advice-giving 
systems. These findings suggest that advice should 
be presented immediately after an error is made, but 
that the user should also be allowed to see the con- 
sequence of the error before being allowed to correct 
it and go on (see also [XI). 

Carroll and Kay [19] tested several versions of a 
system designed to teach the basics of word process- 
ing. One way in which the various versions differed 
was in the advisory dialogue: The control version, a 
commercial system, gave no advice. Other versions 
gave prompting advice, telling the user exactly what 
to do in the current system state to avoid making 
errors. Others gave feedback advice, telling the user 
how to recover when an error had been committed. 
One version gave both prompting advice, directing 
the user what to do, and feedback advice, directing 
the user how to recover from errors that were com- 
mitted. Interestingly, the people who were trained 
on this latter version performed most poorly in 
transfer of learning tasks, suggesting (with Brown, 
Burton, and de Kleer [lo]) that too much advice can 
be deleterious. 
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It seems intuitive that factors like the timing, 
amount, and type of advice will be important in de- 
signing advice-giving systems. These two studies 
support and develop this inluition. However, they 
are only two points in a vast space: Each involved 
other factors besides those we have highlighted in 
our discussion, and each addressed a different-and 
quite limited-task domain. Lewis and Anderson 
studied a simple game, and Carroll and Kay studied 
the elementary func:tions of a word-processing sys- 
tem. Behavioral work should be directed at these 
issues. 

Confirmafion Dialogue. Beyond merely presenting 
information, an advice-giving facility can modulate a 
system’s control structure. For example, when the 
user can be diagnosed as having made an error or 
when the user is perhaps one command away from 
taking an action with potentially dangerous conse- 
quences, the system could e:nter into a “confirmation 
dialogue” by interrupting the session and posing 
questions that the user must answer before being 
permitted to continue with the session (e.g., “Type Y 
if the information you are about to transmit is non- 
proprietary, or anything else to cancel the com- 
mand”). A well-known cliche example is the confir- 
mation question, “Are you sure you want to delete 
all your files?” The objective, of course, is to force 
the user to rethink recent actions, immediate op- 
tions, and possible consequeaces. 

Many systems request confirmation for fatal errors 
(like “erase all files”). Cuff [28], in a review of work 
on database retrieval systems for casual users, advo- 
cates this sort of protective mechanism, but does not 
specify how or when it should be invoked. Gable 
and Page [38], also in a review of the literature, 
recommend a confirmation a.pproach in which the 
user is given immediate feedback by the system that 
can be either heeded or rejected. But can we rest 
assured that a user who would erroneously issue 
such a command in the first place would adequately 
appreciate the severity of the consequences when 
they were-briefly reviewed in a confirmation 
prompt? We need to know how the approach works 
and, perhaps more important, when and how it is 
likely to fail. 

Control Blocking. In the confirmation approach the 
user’s access to the system is temporarily inter- 
rupted by the advisory prompt. A more severe inter- 
vention is control blocking, where a portion of the 
system’s function is rendered conditionally inacces- 
sible to the user. Recall our example of the user who 
prematurely selected the “Application Customizing” 
function. If the user has no appropriate need for this 
function, it can be blocked off. The incorrect selec- 
tion might then on1.y elicit an advisory message to 

try something more appropriate. Similarly, if a user 
error were detected, the system could direct the user 
to correct the problem before allowing any other 
activity. 

This approach has the undesirable side effect of 
profoundly interrupting the user. If the system has 
misdiagnosed the situation and no error has in fact 
been made, or if the user was doing something cor- 
rect but unorthodox, the consequence would be ex- 
tremely frustrating. The blocking approach may be 
most appropriate for new users whose goals may be 
more limited (and therefore more easily anticipated 
or recognized) and who may be less sensitive to 
interruptions in the flow of system control. Carroll 
and Carrithers [18] showed that an error-blocking 
approach led to more efficient learning of a word- 
processing application. No analogous work has yet 
been carried out with more experienced users. 

Automatic Correction. Perhaps at the other extreme 
from confirmation dialogues and control blocking is 
automatic correction. In this approach, the system 
interprets a user error as a correct next response and 
allows progress to continue uninterrupted. Thus, we 
might imagine a user who misexecutes “split” and is 
automatically provided with a correct command 
form-without ever having to go through any ex- 
plicit “help split” request. Interlisp’s Do What I Mean 
(DWIM) facility [89] automatically resolves incorrect 
input and suggests a correction to the user (usually 
through nothing more sophisticated than spelling 
correction). In cases where the correction is classi- 
fied as “obvious,” though, the system simply makes 
the correction without requesting explicit confirma- 
tion. Clearly, this approach might be convenient for 
experienced and sophisticated users, particularly for 
mundane and common slips. However, the particu- 
lar conditions under which the approach could be 
effective for such users have not been determined. 

Two behavioral studies suggest that the automatic- 
correction approach may also have a use in the de- 
sign of training interfaces for new users. We earlier 
described research by Carroll and Kay contrasting 
alternate versions of a training system [19]. The best 
training design therein evaluated, both from the 
standpoint of training time and success in a transfer 
of the learning task, was one with automatic correc- 
tion. As the novice worked through a training sce- 
nario, errors were interpreted as the next correct 
action. Earlier work by Hillen [47] with an on-line 
manual reached the same conclusion. How far these 
curious findings can be extended is an open ques- 
tion (although it seems clear the approach must 
break down in the limit). 

Protected Modes. All of the approaches we have 
considered provide advice within the context of 
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interaction with the system. An alternative is to cre- 
ate a special mode within which the user can work 
out problems and receive advice. Jagodzinsky [51] 
described a “reconnoiter mode” in which the actions 
of system commands are simulated without actually 
altering any of the user’s data. A user who has a 
problem can switch into reconnoiter mode, resolve 
the problem by trying things out, and then return to 
the actual system environment to continue a work 
session. An idea like this was implemented in the 
SIGMA message processing service [81] and in a 
text-processing system called NLS-SCHOLAR, where 
the user, by asking a “What if. . . ” question, creates 
a temporary copy of the current file and carries out 
the hypothetical action without affecting the actual 
workspace [46]. 

This approach leaves the responsibility for initiat- 
ing a reconnoiter or what-if session to the user, but 
we might extend it to allow the system to suggest 
such advisory subsessions when potential user errors 
are detected. A problem is that, by placing the advi- 
sory subsession within a special mode, we risk 
confusing users by requiring them to keep track of 
different modes of operation [42, 681. Clark [25] 
reported that users sometimes forgot the underlying 
concern that motivated a help request in the course 
of switching from problem-solving to learning mode. 
The growing availability of undo facilities suggests 
an interesting reconciliation of the utility for pro- 
tected modes with the problem of mode changing: 
The actual system environment can become a pro- 
tected environment for trying things out. 

It seems likely that the bottom line regarding the 
management of initiatives and consequences in the 
design of advice-giving systems is that all of the ap- 
proaches we have inventoried here (and no doubt 
the several we missed) can play useful roles. There 
is nothing wrong with this conclusion for the mo- 
ment as long as we bear in mind how far it is from 
where we need to go if there is going to be a princi- 
pled basis for designing such systems. We need to 
investigate the conditions under which each tech- 
nique is most useful, and to understand the design 
trade-offs. Finally, we need to do these things empir- 
ically and systematically. 

Scope 
We have referred to error-recovery dialogues with- 
out considering what information should be pro- 
vided in such dialogues. In DWIM automatic correc, 
tion (e.g., [89]) no explicit information is provided, 
although information could be provided to help the 
user identify the specific error that triggered advi- 
sory intervention, The advice could help users to 
better understand what they are trying to do (in the 
sense of a goal), or to better understand how to do it 

(the concrete steps that facilitate accomplishing the 
goal), or perhaps to better understand the larger con- 
text within which this work and the particular task 
at hand are taking place. 

Goals and Methods. Step-level advice can be pre- 
sented very explicitly as literal directions. There 
is a degree of consensus that the focus of presented 
information should be on how to do something, in 
concise and direct instructions, rather than on more 
abstract or general explanations and descriptions 
[25]. Step-level advisory dialogue has also been 
advocated for intelligent advice-giving facilities 
[40, p. 152; 12, p. 921. Burton and Brown state that 
they hoped to implicitly suggest appropriate goals to 
users through the language in which they presented 
appropriate steps. 

One problem with this approach is that it magni- 
fies the costs of any mistaken diagnosis the system 
might make. Users could easily be thrown far off the 
track if a system misdiagnoses their actual situa- 
tions. A complementary problem arises if the sug- 
gested step (even though correct) is far from what 
the user expected. The user can take the suggestion, 
but without gaining any new understanding of the 
system. An alternative (reversing the strategy of 
Burton and Brown) would be to implicitly suggest 
steps by explicitly advising goals. 

Edmonds [33], however, stressed that it can be 
unwise to specify very general-level objectives in 
detail because these goals will quite likely change as 
a function of the users’ experience. For example, the 
vocabulary in which the user understands system- 
relevant goals may change radically with experi- 
ence. Edmonds concluded that the means by which 
goals are attained should be specified first, since 
they are more stable. He specifically suggested that 
this step-level information could be presented by 
means of an example designed to facilitate analogi- 
cal mapping to the user’s current situation. The 
RABBIT system [97] allows the user to query a data- 
base through successive reformulation of an exam- 
ple target instance. However, presenting step-level 
advice through examples can also be problematic. It 
is notoriously difficult to differentiate those aspects 
of an example that generalize to an analogical do- 
main from those that do not [48]. The advice may 
become ambiguous. 

An alternative is to advise directly on goals. Par- 
ticularly if the goal-level dialogue were couched at 
an intermediate level of abstraction, this approach 
might avoid the problems raised by Edmonds (it 
seems likely that the greatest changes in goal vocab- 
ulary as a function of user experience occur at the 
most abstract levels). Goal-level advice could in 
some cases also be more technically tractable than 
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step-level advice. Even if the system cannot deter- 
mine exactly how the user ought to proceed, it 
might be able to delimit the options enough to pro 
vide goal-level advice. Indeed., this advisory strategy 
seems typical of what human advisers do when 
they remind learners explicitly of subgoals and 
keep track of where various results fit into higher 
goals [66]. While receiving advice on what goals to 
pursue-but not on specifically what to do or on 
particular functions and conditions for application- 
might be more of a learning demand on users, in the 
longer term it might also afford them a deeper un- 
derstanding [4, 221. 

An even more technically tractable approach 
might be to require the user to generate appropriate 
steps exclusively from implicit goal-level advice. 
The training wheels system [18] merely advised the 
user that a selected function was not available dur- 
ing training (the system blocked selected functions 
that were judged to have been prematurely selected, 
based on the user’s experience and current task). 
This level of advice did not directly help the user to 
select an alternative. The user had to generate a new 
goal in view of the blocking message, and then de- 
rive the specific steps to achieve that goal. 

Clearly, information and advice can be provided 
at a variety of different levels. A person could be 
advised exactly what step to carry out next, or could 
merely be given more information about appropriate 
goals. One approach does not exclude the other: A 
goal could be suggested explicitly when behavior (or 
an explicit help request) indicates that the user has 
lost the path in a complex procedure; conversely, a 
step could be suggested when the indication is that 
the user is pretty much on track but has made a 
small slip. Although some work has directly exam- 
ined the types of strategies that are effective in hu- 
man advice giving, there is much that we do not 
know. One aspect of the problem is that strategies 
for advice giving might need to be varied according 
to the needs of the user and the nature of the 
task. 

Adjusting Advice. Jackson and Lafrere [SO] urge that 
the type of advice provided should indeed vary as a 
function of the level of the task. Well-specified tasks 
may only require descriptive information support of 
the type found in many conventional help systems. 
Animated demonstrations of system function may be 
more appropriate for tasks requiring the integration 
of subprocedures, while even more open-ended tasks 
might require dynamically generated intelligent ad- 
vice. Although Jackson and Lafrere cited no specific 
empirical backing or psychological reasoning for 
these suggestions, their view is consistent with the 
few behavioral studies of advic:e giving that have 

been published. McCoy [64] discussed anecdotes in 
which experts corrected misconceptions about the 
attribute mappings among objects. In her examples, 
the experts provided more information than was 
necessary to expose particular misconceptions; the 
additional information often served to establish the 
correct conception by raising questions about new 
issues. 

McKendree et al. [66] studied a more procedural 
domain than McCoy: computer programming in 
Lisp. Advisor/learner diads worked through a series 
of typical programming problems in an uncon- 
strained tutoring situation. The content of the advi- 
sory dialogue was analyzed in terms of the goals and 
methods employed by the advisors. This analysis 
showed that advisors tended to vary the content of 
their help according to a judgment of the “serious- 
ness” of the misconception. A minor slip or syntactic 
error might elicit only enough information from the 
advisor to correct the immediate problem. However, 
a learner response indicating something more seri- 
ous to the advisor might evoke more extensive ex- 
planation, examples, and questions. Again, though, it 
was not clear in this analysis just what information 
the advisors used to determine “seriousness.” 

Pollack [i’s] solicited electronic bulletin-board 
queries pertaining to a computer mail system. She 
noted that advice seekers do not always have well- 
formed plans about what they need to know. For 
example, they ask about actions that are impossible 
with respect to the system. A consequence was that 
advisors sometimes responded with an action not 
asked for-an alternate plan. Pollack directed these 
observations at the “appropriate query assumption” 
of Allen and Perault [Z], the assumption that the 
user always has a well-formed plan and will ask an 
appropriate question. This result suggests that advice 
giving cannot presuppose the well formedness, with 
regard to a domain, of a request for advice. 

Advising the Process. Several researchers have 
emphasized the importance of directing advice to 
processes involved in problem solving, rather than 
concentrating only on a solution to an immediate 
problem. This approach addresses a major deficiency 
in bug analyses of a user’s knowledge and perfor- 
mance. Genesereth [40] argued that, in order to cor- 
rectly analyze the bugs in a user’s procedure, the 
entire problem-solving process, and not merely local 
segments (for example, the activity immediately pre- 
ceding the manifestation of a bug), must be ana- 
lyzed. 

Fikes [35] dealt with procedural office tasks and 
the various levels at which these tasks can be de- 
scribed. He concluded that, although a rote descrip- 
tion of steps may allow a worker to function in 
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many cases, it does not contain enough information 
to support problem solving in situations where speci- 
fied results cannot be produced. For this, Fikes con- 
cludes the need for a “procedure teleology” contain- 
ing a functional description of the task to be 
achieved and each step in the procedure. This al- 
lows users to recognize situations where a procedure 
might not be appropriate, and supports reformula- 
tion of new plans. 

Coombs and Alty [26, 271 found that consultants 
often attended too little to the organization of the 
advisory process. Advisors assumed control of the 
dialogue as soon as possible and permitted only a 
one-way flow of information; they rarely included 
explanations of the larger problem context and 
rarely checked whether users really understood the 
advice. These problems appeared to vary according 
to the sophistication of the user, however. In advis- 
ing relatively sophisticated users, advisors did tend 
to give explanations, and to share control of the ad- 
visory interaction to a greater extent. These latter 
interactions were viewed by users as being more 
successful. 

These more successful advisory interactions often 
seemed to have little obvious structure; they seemed 
more rambling. More information seemed to be 
given than was really necessary. However, in de- 
briefing sessions with users and consultants, motiva- 
tions often became more apparent. The large infor- 
mation exchange served to make the inferences in- 
volved in problem solving explicit and allowed users 
to participate through monitoring and feedback. The 
end result was to encourage “problem solving 
through mutual understanding,” with users working 
through problems with the help of the advisor. 
Coombs and Alty conclude that a guidance system 
should “support rather than direct problem solving, 
. * . mainly . . . [through] assistance in building and 
evaluating concepts in the problem area” [27, p. 271. 
Thus, like Fikes, they conclude that advice that 
evolves with the user’s knowledge about the proc- 
esses, steps, and purpose of the task will hold the 
user in better stead when other problems are en- 
countered (see also [N]). 

Our analysis of advisory interactions between 
computer consultants and users also supports these 
conclusions. We found that ostensibly successful ad- 
visory interactions often did not codify a solution 
per se; rather the “solution” took the form of an 
enumeration of strategies and plans, along with an 
elimination of other courses of action judged to be 
less promising. We also found that one of the chief 
mechanisms through which advice is generated is 
the posing of verificational questions by the user: 
“All I do is read from standard input; is it that sim- 
ple?” Thus, to an extent, “getting advice” merely 

means getting explicit encouragement for a solution 
one already knows (see [l, 651). 

Metacommunication. Although we have focused 
here on procedures, goals, and steps as levels for 
advice giving, it is important to bear in mind the 
larger context within which advice giving takes 
place. It is quite possible that the most important 
elements in effective advice lie beyond providing 
more correct and complete information. Alty and 
Coombs [3] made an empirical survey of the advice 
and information needs of users at a university com- 
puting center and found that one of the principal 
bases of user satisfaction with the center’s help desk 
service was the personal human contact it provided. 
Similar points have been stressed by Eason [31, 321. 

It is obvious that attitudes toward computers, par- 
ticular systems, and particular advisory dialogues 
will influence users’ ability to use and learn systems 
effectively. Burton and Brown [12, p. 891 provided 
positive encouragement as well as critique feedback 
in their WEST demonstrational system to help moti- 
vate users. However, such attempts to address moti- 
vational and attitudinal issues have so far rested on 
intuitive analyses of what these factors are and how 
they should be addressed. Malone [62] and Carroll 
[14] suggest that motivational elements used in com- 
puter games, such as fantasy, challenge, and safety 
in risk taking, might be incorporated into user inter- 
face dialogue designs to produce more intrinsically 
interesting system dialogues. 

Summary 
Current work on advice-giving systems has focused 
on system-initiated advice giving in the context of 
user error. This is probably an excellent choice; it is 
intuitively the type of situation where people might 
be receptive to advice and therefore one where we 
can get the leverage to demonstrate feasibility. 

There are two main types of shortcomings in cur- 
rent research: First, the particular demonstration 
systems that have been developed and described in 
the literature have sampled the space of advisory 
interaction somewhat haphazardly. What level 
should advice be provided at-goals, steps, exam- 
ples? What consequences should accompany ad- 
vice-blocking, correction, special modes? How 
should advice be timed with respect to a triggering 
event such as an error? How much advice should be 
given? What dynamic aspects of advice-giving strate- 
gies are important? 

A second class of shortcoming is that virtually 
none of the current work has been subjected to any 
systematic empirical study: Advice-giving systems 
ought to help people solve their problems, but we 
have no solid basis yet for knowing that they really 
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do. Indeed, Coombs and Alty [27] have recently 
posed the interesting question of why-now that 
demonstration advisory systems are available-this 
technology still has yet to be used much in real 
applications. They raise the possibility that this fail- 
ure is due to a fundamental lack of usability. Similar 
points are made by Kidd and Cooper [NJ. 

Behavioral evidence suggests that many forms of 
communication are used spontaneously in advice 
giving [l, 26, 661. However, there have been no sys- 
tematic investigations of the effectiveness of various 
styles or of the interaction w:ith context or type of 
misunderstanding. Expertise in domain-specific 
problem solving and methods of teaching has been 
abstracted through experiencre-very limited experi- 
ence in the case of automated systems. Advice- 
giving systems that have been built generally em- 
ploy only one of these strategies or perhaps a few of 
them chosen randomly to vary advisory style. It is 

Advisory Dialogue Issues 

Under what conditions should a system fake the 
initiative in advisory dialogues? 

Are there heuristics for advising error tangles that 
cannot be fully diagnosed? 

How can we provide opportunities for discovery 
learning and yet still ensure adequate advisory 
support? 

How can access to protected modes be engineered 
to avoid mode-changing usability problems? 

When are obtrusive advice-giving approaches, like 
blocking and automatic correction, more appro- 
priate than mere information presentation? 

How can blocking be used with sophisticated users? 
How can automatic correcfion be used for 

nontrivial problems? 
At what level of problem detail should advisory 

dialogue be couched (e.g., should if advise goals 
or steps), and under whaf conditions? 

How can we develop a more comprehensive theory 
of user goals in infelligent advice-giving 
systems? 

In what presentation vocabulary should advisory 
dialogue be couched (e.g., examples, demonstra- 
tions, explanations, procedures)? 

What are the specific usability benefits and cOsts of 
adjusting the content and presentation of advice 
dynamically? 

How can we advise the problem-solving process 
and not merely comment on the o&comes of that 
process? 

How can metacommunication in advisory dialogue 
be used to motivate users? 

necessary to combine intuitions and behavioral stud- 
ies to systematize more effective advising. 

THE RESEARCH AGENDA 
We have tried to capture and taxonomize some of 
the key issues in the design of advice-giving systems. 
We have not found a well-developed paradigmatic 
endeavor with a highly structured and generally 
agreed upon set of standard issues and a set of clear 
research successes. But this is not surprising. The 
area of advice giving is a frontier in both cognitive 
science and computer science. 

In our view, the chief lessons to be drawn have to 
do with managing the research agenda. Too much 
energy is being directed at existence demonstra- 
tions-the design and implementation of limited- 
scale advice-giving technology. This is an appropri- 
ate early objective, and it is still relevant to investi- 
gate whether current small-scale advisory systems 
will scale up for large and complex, real applica- 
tions. However, very little systematic effort has been 
directed at exploring the behavioral issues pertain- 
ing to advice-giving expert systems. This could be a 
critical deficiency, for even if current questions of 
technical possibility were to be settled with over- 
whelmingly impressive software, we would still be 
gambling that the type of advisory facilities devel- 
oped would be usable by, and desirable to, real 
people. 

To avoid this gamble two items need to be pro- 
moted on the research agenda: a psychological the- 
ory of advice and advising, and a behavioral meth- 
odology to assess the actual success of demonstration 
advice-giving systems. 

Toward a Theory of Advice Giving 
One approach to experimental computer science is 
to build a reasonable working system through which 
to explore, discover, and understand the principles 
of the system’s operation. This is an important re- 
search method, and it has become important as 
rapid prototyping tools have become more powerful, 
flexible, and widely available. A limitation of this 
approach is that it is unconstrained in any area of 
system design with direct implications for the user 
interface. Moreover, it has become ever clearer that 
every aspect of system design has direct implications 
for the user interface. Accordingly, the approach of 
building experimental demonstration systems must 
be augmented to include usability considerations 
[20, 441. 

The starting point must be a general understand- 
ing of what advice is, how people generate and de- 
liver advice, and how people make use of advice in 
the context of problems. Much of our current under- 
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standing of advice and advice giving (like our under- 
standing of usability in general) is either too high 
level or too low level. High-level principles like “ad- 
vice should be relevant” or that they should “repre- 
sent and communicate information about the system 
as people do” remind one of the vacuous maxim 
“know the user.” But principles can also be codified 
at too low a level. Much current discussion of dem- 
onstration advice-giving systems offers design princi- 
ples evaluated only casually in the context of a sin- 
gle system. Each of these systems is different in in- 
numerable and unsystematic ways though, and they 
cannot really be compared, contrasted, or general- 
ized with any confidence. 

Useful principles will be applicable in a variety of 
domains and yet provide guidance for specific con- 
tent and structure. One such principle might be “ad- 
vice should be presented in a vocabulary of system- 
independent goals.” This principle is strong enough 
to be falsifiable, in the Popperian sense, and to really 
constrain the design of advice facilities. Another 
principle that could be useful and that is empirically 
testable is “give immediate feedback when an error 
is detected.” Exactly how this should be done is still 
a question. Should the user be blocked from any 
further progress or allowed to see consequences? 
We do not claim that these principles exemplify the 
best we can hope for, or even that they are correct 
(the evidence for them is still too limited). Rather, 
we suggest that they are the least we should settle 
for. Clearly, there is a lot of work to be done be- 
fore we will have anything to seriously call a theory 
of advice, but at least studies are beginning to 
appear. 

Measuring Advisory Effectiveness 
Advice-giving systems are obviously intended for 
practical applications. The chief rationale for provid- 
ing an advisory capability is to help users become 
more successful and effective. But, as we have tried 
to stress, good intentions are just not enough. Devel- 
oping a theory of advice is a key to going beyond 
mere good intentions. Unfortunately, even when the 
problem is acknowledged, the solution offered can 
be useless (e.g., “implement . . . in a sensible way” 
[53] is not a methodology; it merely underscores the 
current lack of methodology). 

We need to develop, codify, and routinize the use 
of behavioral evaluation techniques within the de- 
velopment process for advisory systems. We surely 
do not mean to suggest tha! there is a wealth of rich 
and powerful behavioral methodology that can now 
be taken off the shelf to improve advisory interfaces. 
There are in fact a variety of techniques available 
(some of which are referenced here; see also [6]). 
However, their effectiveness in helping to guide real, 

complex system projects is still something we have 
too little experience with to be able to confidently 
evaluate (but see recent case studies [7, 8, 15, 431). 
Appropriate methods have to be constructed or 
adapted to this area. 

One recommendation we would make is that re- 
searchers try to strike a balance between getting 
“hard” behavioral data that might be convenient to 
quantify and summarize, and “softer” behavioral 
data that might often be relatively more illuminating 
in helping to guide redesign (see [6, 7, 8, 15, 431). 
Reiser, Anderson, and Farrell [75] focus considerable 
attention on behavioral evaluation and are able to 
report very encouraging overall statistics for the be- 
havioral efficacy of the authors’ Lisp tutor. However, 
they fail to report any qualitative details: For which 
error types did the tutor fail? How much of the 
power of the tutorial design was derived from the 
user-initiated Clarify and Explain keys, and how 
much from the system-initiated tutorial? We need to 
know, of course, that advisory designs can really 
work, and this can be assessed quantitatively. But it 
is the qualitative measurements that will guide fur- 
ther research developments [17]. 

Once we agree to measure-rather than merely to 
assert-the effectiveness of advice facilities, we can 
seriously ask whether a given advisory system is 
cost-effective with respect to any other. If one ap- 
proach is 86 percent as effective as an alternative, 
but costs a tenth as much (in terms of development 
time and computing resources), it might be a very 
good deal. We referred earlier to the scenario ma- 
chine approach, which encodes knowledge about a 
domain at a very large grain (that of a complete user 
action path). Such systems do not break knowledge 
down into procedural atoms and cannot generate 
inferences to respond dynamically, but their behav- 
ioral utility has already been systematically demon- 
strated. A scenario machine is cheap, but assessing 
its effectiveness will involve considerations of user 
and task specifics. 

The research area of advice-giving expert systems 
is vital to a science of user interface design. The area 
must rest on a variety of technologies-knowledge 
engineering and dialogue management are two key 
ones we have looked at in this review. But success 
in designing expert systems for intelligent training 
and help will finally turn on usability. And, as we 
have argued, the area has not yet incorporated a 
serious psychological theory base or empirical meth- 
odology. Rectifying this will probably involve in- 
venting psychological theory and method as much 
as assimilating existing theory and method. But the 
effort could he richly repaid: Advice giving could 
become the first successful domain for intelligent 
interfaces. 
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