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A new interpolatory subdivision zscheme for surface design is presented. The new scheme is designed 
for a general triangulation of control points and has a tension parameter that provides design 
flexibility. The resulting limit surface is C’ for a specified range of the tension parameter, with a few 
exceptions. Application of the butterfly scheme and the role of the tension parameter are demonstrated 
by several examples. 

Categories and Subject Descriptors: G.l.l [Numerical Analysis]: Interpolation; 1.3.5 [Computer 
Graphics]: Computational Geometry and Object Modeling-surface representation; J.6 [Computer 
Applications]: Computer-Aided Engineering-computer-aided design (CAD) 

General Terms: Algorithms, Design 

Additional Key Words and Phrases: General triangulation, subdivision scheme, surface interpolation, 
tension control 

INTRODUCTION 

The basic approach to the design of curves and surfaces in CAGD consists of 
using control points which define control polygons or control polyhedrons, 
together with a smoothing scheme. The scheme defines a smooth curve out of a 
control polygon, or a smooth surface out of a control polyhedron, and the desired 
shape is achieved by maneuvering the control points. In the case of a curve, we 
are given control points {fiF}Y, pp E R3. A B-spline curve is then defined as 
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where (Bi) ; is a proper B-spline basis. Another type of scheme for defining curves 
uses a binary subdivision process that computes recursively from the given set of 
control points { $’ ) YE0 new sets (0: 1 f?O, k = 1, 2, . . . . The points at level k define 
a polygon fik(t), t E [0, n], and the sequence (@“(t))& converges to a smooth 
curve if the recursive process is properly devised. All the B-spline curves can be 
defined by recursive subdivision. Two examples that fit into this class are 

(1) Chaikin’s algorithm [5] 

i 

-k+l - 3 -k 
P!Zi - 4 Pi + $ @f+l, 

-k+l 
PZi+l = 7 Pi l -k + 4 pf+1, 

which converges to the quadratic B-spline curve and is C’ continuous; and 

(2) the cubic spline algorithm [12] 

-k+l = 1 -k 
P2i 2 Pi + $ Ff+,, 
-k+l 

PZi+l = il Pi l -k + $pf+l + $fi;+2, 
(3) 

which converges to the cubic B-spline curve and is C2 continuous. 

Catmull and Clark [4] presented a version of (3) for nonregular polyhedrons of 
control points, and Chaikin’s algorithm was generalized to this setting by Doo 
and Sabin [8]. 

The above schemes are based on chopping corners of the control polygon. 
Hence, they are not interpolatory, and this may be a drawback in some applica- 
tions. Nasri [ 161 suggested a method for achieving interpolation by applying the 
Doo-Sabin scheme to a modified set of control points with the same topology. 
Computation of the modified points involves solution of a sparse linear system, 
and the resulting method is nonlocal. In this work we present an explicit, local, 
interpolatory subdivision scheme for surfaces that is based on the local four- 
point interpolatory subdivision scheme for curves studied in [9, lo]. 

Given control points (fip) ?E2, the four-point interpolatory scheme defines 
points at level k + 1 of the recursion by 

{ 

-k+l- -k 
PZi - Pi -1 5 i 5 2kn + 1, 
-k+l 

p2i+l = (f + w)(fil + pf+l) - w(IJf-l + Pf+2) -1 5 i 5 2kn. 
(4) 

Obviously the scheme is interpolatory, IJ’$i = fip, 0 5 i 5 n, since at each stage 
we keep all the old points and insert new points “in between” the old ones. 

Let us associate the point 154 with the parameter value t3 = 2-ki, 0 5 i 5 n, and 
denote by fik(t), t E [O, n], the polygonal line connecting the points (fif)F2. The 
convergence analysis deals with the limit curve 

investigating existence and smoothness of p(t) for different values of the 
parameter w. 
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The convergence analysis of the four-point scheme and the properties of the 
limit curve are presented in [9] and [lo], and the results are as follows: 

(1) For any ( w ] < f, the points produced by scheme (4) lie on a continuous 
curve P,(t). 

(2) For any 0 < w < (& - 1)/8, the curve &(t) is a C’ curve; that is, it has a 
continuous tangent. 

(3) For general sets of initial control points, there is no value of w for which the 
curve j&(t) is C2 cont.inuous. 

(4) The parameter w serves as a tension parameter; that is, as w + 0 the curve 
is tightened toward the control polygon. 

A C2 limit curve is obtained by the six-point interpolatory scheme: 

’ i 

rJ;i” = $, 

fig&t1 = <$ + 2@)($1 + p:+,, - (& + 38)(.&I + p;+,, 

+ f?qp;-, + pf+,,. 

(6) 

For 0 = 0, this scheme reduces to the four-point scheme with w = &, and for 
0 < 0 < 0.02, the limit curve is C2, that is, it has continuous curvature [17]. For 
necessary conditions on a general interpolatory 2r-point scheme to produce a Ck 
curve, see [lo]. 

The simplest generalization of the univariate subdivision processes to surfaces 
is when the control points form a regular squarelike grid. In this case one can 
define a tensor-product version of the univariate schemes. The tensor-product 
form of the interpolatory four-point scheme is the following: 

Starting from the set of control points (p&J, define 

{ 

-k+l _ -k 
P 2i,2j - Pi,.i9 

-k+l 
P2i+1,2j = (f + w)(fifj + fiF+lj) - w(Pfelj + fiF+Zj), (7) 

fi2;i’+l = <f i- w><~~~ + p;;:,, - w(p;+;e2 + fig;+‘& 

Further information on subdivision methods can be found in the works of 
Boehm [l, 21, Boehm, Farin, and Kahmann [3], Cohen, Lyche, and Riesenfeld 
[6, 71, and Micchelli and Prautzsch [13-S]. 

1. INTERPOLATORY SUBDIVISION SCHEMES FOR SURFACES 

We propose a generalization of the four-point interpolatory scheme to a general 
triangulation of control points (&‘). The scheme transforms recursively each 
triangular face of the control polyhedron into a patch consisting of four triangular 
faces interpolating the old control points. Thus, the refined triangulation retains 
the vertices of the coarser triangulation, and new vertices are added corresponding 
to the edges of the old triangulation. The rule for inserting new points is an 
eight-point rule we call a “butterfly scheme” because it is based on the configu- 
ration shown in Figure 1. Using the butterfly configuration in Figure 1, we 
examine rules for inserting a new point ok+‘, corresponding to the edge (p:, fig), 
of the symmetric form 
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Fig. 1. Configuration of points in the butterfly scheme. 

After inserting the new points, each corresponding to an edge of the given 
triangulation, a refined triangulation is formed, and the process is repeated 
recursively. The refined triangulation consists of all the edges connecting each 
new point fjk+l with the old points fit, jizk and the four new points corresponding 
to the edges (j$, $), i = 1, 2, j = 3,4. Thus, each old triangle is replaced by four 
new triangles. In (8) U, u, w are parameters to be chosen so that in the limit the 
process will produce a Cl surface (Cl). 

The convergence analysis of subdivision schemes for surfaces was treated by 
Doo and Sabin [8] and by Micchelli and Prautzsch [14]. In [14] necessary 
conditions and sufficient conditions are given for the convergence and the 
smoothness of the limit surface produced by a general uniform subdivision scheme 
defined on a uniform rectangular grid. In [8] necessary conditions for the 
regularity of the surface near a given point are stated. The analysis of a butterfly 
scheme for a general triangulation should combine both the approach of [8] and 
that of [14]. The uniform grid analysis treats the case where all the vertices in 
the triangulation are regular vertices, namely, of degree six (the degree of a vertex 
being the number of edges meeting at the vertex). Note that all the new vertices 
generated by the scheme are regular vertices. Therefore, the uniform analysis of 
[14] applies to most of the surface, excluding neighborhoods of the initial irregular 
vertices, where the analysis in [8] applies. 

By considering the necessary conditions of [8] near a regular vertex, it follows 
that for a Co surface we must have 

2u + 2v -4w=1 (9) 

and for C!’ we should take u = i + h(w), h(0) = 0. Choosing h = 0 and combining 
both conditions, we have that u = 2w, and the scheme is 
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Fig. 2. One step of subdivision with w = &. 

In Figure 2 we give the original control polyhedron and the resulting piecewise 
linear surface obtained after one subdivision iteration using scheme (10) with 

1 
w=z. 

That scheme (10) is an extension of the four-point scheme (4) becomes 
apparent when the control points describe function values over a three-direction 
mesh; if these values are constant along one of the directions, then all the new 
values will be constant along this direction, and the scheme reduces to the 
univariate scheme (4) along the other two directions. 

The smoothness properties of the surface produced by the butterfly scheme 
depend on the degrees of the vertices in the triangulation. It was found that if 
there is no vertex of degree three in the triangulation then scheme (10) with 
0 c w < wg, WQ > 6, satisfies the necessary conditions of [8] and the 
sufficient conditions for C!’ derived from [ll] and [14]. It is conjectured that if 
the necessary conditions of [8] for C1 hold at irregular points and if the surface 
is Cl at all other points, then the surface is globally Cl. The full analysis near 
irregular points, and the exact range of w and its local dependence on the degree 
of the vertex are still under investigation. A detailed analysis of the regular case 
for w. > 0 small, is given in [8]. In a neighborhood of a vertex of degree three, 
the surface is certainly not C’ since the necessary conditions for C1 do not hold. 
A modification of scheme (10) for points near such a vertex is also under 
investigation. 

In scheme (10) w serves as a tension parameter in the sense that as w tends to 
zero the limit surface is tightened toward the piecewise linear control polyhedron. 
For design flexibility in manipulating both curves and surfaces, one would like 
to have different tension in different segments and different tension in different 
directions. 

Local tension is achieved by preassigning a tension value WY to each control 
point $ and by assigning recursively a tension value w” to a new point p? by 
linear interpolation. That is, the definition of a new point by scheme (10) is 
preceded by defining the parameter w there as 

w = ; (w: + wi), (11) 

and this tension value is as,signed to the new point. 
ACM Transactions on Graphics, Vol. 9, No. 2, April 1990. 
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A generalization of the scalar tension w to a directed tension is obtained by 
replacing the scalar w in schemes (4), (7), and (10) by a tension matrix, 

w= (2; 3, z). (12) 

To explain the geometric meaning of directed tension, let us rewrite scheme (10) 
as 

-k+l _ ’ -k 
9 -++p;)+wB (13) 

where S = 2(@; + ~5:) - (IJk + fit + rJ$ + I?:). Hence, qk+’ is the midpoint of the 
segment (fit, ~5:) “corrected” by wS. By letting w be a matrix, we provide 
flexibility in the direction of the correction as well as in its magnitude. For 
example, in the case of a diagonal matrix w the parameter Wii corresponds to the 
tension of the ith component of the curve or the surface. 

2. IMPLEMENTATION AND EXAMPLES 

A software package for implementing and testing the new butterfly schemes has 
been developed on a SUN 3/50 workstation. It accepts any set of control points 
in R3, which together with a proper triangulation form a control polyhedron with 
piecewise linear triangular faces. The software has the following options: 

(1) reading the control polyhedron from an input file; 
(2) a global definition of a scalar tension parameter; 
(3) local definition of a diagonal matrix tension; 
(4) global and local updating of tension parameters; 
(5) translation of the control points in space; 
(6) flipping edges of the triangulation; 
(7) iterated application of the butterfly scheme; 
(8) a variety of graphic viewing and displaying options; and 
(9) saving the designed shape, that is, its control polyhedron and tension 

parameters. 

In each iteration of the subdivision process, the number of triangles is multi- 
plied by four. Special attention has therefore been given to the design of an 
economical data structure. The initial control polyhedron is kept in a data 
structure that allows general triangulation: Each triangle is a record containing 
its vertices and pointers to neighboring triangles. In order to reduce memory 
requirements, however, finer triangulation within any of the initial triangles is 
kept as a two-dimensional array of points in R3. 

The following examples exhibit the main features and the performance of the 
butterfly scheme for general triangulation. The control polyhedron for the first 
example is the fish-like shape presented in Figure 3. Figure 4 presents the 
resulting surface after four subdivision iterations with the butterfly scheme, with 
a global tension parameter w = A, in wireframe form and as a shaded surface. 
The sharp points at the front and the rear are due to the fact that the vertices 
at the tips of the mouth and the tail are of degree three. The next two figures 
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Fig. 3. Control polyhedron of a fish-like shape. 

Fig. 4. A fish-like shape after four iterations. 

ACM Transactions on Graphics, Vol. !9, No. 2, April 1990. 



A Butterfly Subdivision Scheme l 167 

Fig. 5. Effect of local tension w = 0 at T. 

Fig. 6. Effect of directional tension at T outside the allowed range. 

exhibit the effects of local tension changes. In Figure 5, we set w = 0 at the point 
marked by T. The result is a surface that is locally tense near T, with a sharp 
corner. In Figure 6, we set w = diag(&, &., a) at the point T. This tension is 
outside the C1 range, and the effect is a fractal-like behavior in a neighborhood 
of T. 

The next example in Figure 7 is of a head-like control polyhedra and the 
resulting surfaces after two and after four iterations with w = &. 
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Fig. 7. From control polyhedron of a face-like shape to its smoothed versions after two 
and four iterations. 
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