
A Fast Algorithm for Optimal Length-Limited
Huffman Codes

LAWRENCE L. LARMORE

California State University, Dominguez Hills, Dominguez Hills, California and University of California,
Irvine, Irvine, California

AND

DANIEL S. HIRSCHBERG

University of California, Irvine, Irvine, California

Abstract. An O(nL)-time algorithm is introduced for constructing an optimal Huffman code for a
weighted alphabet of size n, where each code string must have length no greater than L. The algorithm
uses O(n) space.

Categories and Subject Descriptors: E.4 [Coding and Information Theory]: data compaction and
compression

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Binary tree, Huffman coding

1. Introduction

Given an alphabet Z: = (a,, . . . , a,), where ai occurs with frequency Wi, the
Huffman coding problem is to find a prefix-free binary code’ for Z that minimizes
the weighted length of a code string, defined to be Cy=, Wili, where Ii is the length
of the code for ai. For example, if y1= 3, and if wI = 2, w2 = 5, and w3 = 3, then
the code

a, -00
a24 1
u3 -+ 01

is optimal, with weighted length 15. Huffman’s algorithm [51 finds such an optimal
code in time O(nlogn), and can be implemented to run in O(n) time if the Wi are
already sorted [9].

’ A code is prefx-free if no code string is a prefix of any other. The advantage of a prefix-free code is
that code strings can differ in length, yet any coded message can be decoded unambiguously.

Authors’ present address: Department of Information and Computer Science, University of California,
Irvine, Irvine, CA 927 17.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1990 ACM 0004-541 l/90/0700-0464 $01.50

Journal ofthe Association for Computing Machinery, Vol. 37, No. 3, July 1990, pp. 464-473

http://crossmark.crossref.org/dialog/?doi=10.1145%2F79147.79150&domain=pdf&date_stamp=1990-07-01

A Fast Algorithm for Optimal Length-Limited Huffman Codes 465

1.1 RESTRICTED LENGTH. A related problem is to find a prefix-free code that
has minimum weighted length, subject to the restriction that, for all i, 1; I L, where
L is a given constant. Hu and Tan give an exponential-time algorithm for finding
such a code [3]. Garey, using a different approach, gives an algorithm that requires
O(n’L) time and space [11. A hybrid algorithm, combining the methods of both
Hu-Tan and Garey, runs in O(n3’2Llog”2n) time and requires O(n3/2Llog-‘/2n)
space [9]. In this paper, we present an O(nL)-time algorithm that requires only
linear space.

1.2 BINARY TREES. The Huffman coding problem is equivalent to the following
problem: Given a list of weights, wI , . . . , w,, sorted into nondecreasing order, find
a full binary tree2 T with n leaves for which the weighted path length = CY=‘=l Wifi is
minimized, where li is the depth of the ith leaf of T. (We write WPL(T) for the
weighted path length of T.) The restricted length coding problem is then equivalent
to that same minimum weighted path length problem, but with the restriction that
the height of T cannot exceed L. (See, e.g., [11.)

1.3 METHODS. Huffman’s original algorithm uses a greedy method. The items
are first sorted by weight, and each item is considered to be a tree of just one node.
A “combine” step is then executed n - 1 times. Each “combine” step deletes the
two trees of smallest weight from the sorted list, combines them to form one tree
(making the two smaller trees the subtrees of that new tree), and then inserts that
new tree, whose weight is the sum of the weights of the subtrees, in the proper
position in the sorted list. After n - 1 iterations, the list contains just one tree,
which is the Huffman tree. Hu and Tan’s algorithm uses a dynamic programming
approach, working across the tree from left to right. The items are first sorted by
weight. For each integer j E [1, n] and each q which is an integral multiple of 2-L
in the range [0, 11, Hu and Tan’s algorithm dynamically computes the smallest
possible total zjZ1 Wili, subject to the condition that C+=, 2-b = q. The best sequence
I . . .) 1, for j = n, q = 1, is the sequence of leaves for the optimal tree. Garey’s
i;gorithm also uses dynamic programming, building optimal subtrees, starting with
the smallest possible subtrees, and ending with the entire tree, analogous to Knuth’s
algorithm [7] for constructing optimal binary search trees. Larmore’s algorithm [9]
uses a hybrid of those last two methods, running the subtree algorithm for subtrees
up to a certain size, then switching to the Hu-Tan left-to-right method.

In this paper, we introduce a new problem, which we call the Coin Collector’s
problem, a version of the Knapsack problem. Suppose a coin collector has m coins
of various denominations (face values) and various numismatic values. Since the
country he lives in has binary coinage, the denomination of each coin is an integral
power of 2. The collector is obliged to spend X dollars to buy groceries, but the
grocer (rather unimaginatively) refuses to accept any coin at other than its face
value. How can the coin collector choose a set of coins of minimum total
numismatic value whose total face value is X?

We give a linear-time algorithm, which we call the Package-Merge algorithm,
for solving the Coin Collector’s problem. We reduce the restricted length Huffman
coding problem to an instance of the Coin Collector’s problem of size nL. The
Package-Merge algorithm then gives an optimal restricted length code in O(nL)
time.

2 A full binary tree is a rooted tree in which every nonleaf has precisely two sons.

466 L. L. LARMORE AND D. S. HIRSCHBERG

1.4 SPACE COMPLEXITY. The algorithm in its simple form takes O(nL) space,
but can be modified to take only linear space, using a technique similar to that
introduced by Hirschberg [2]. The time complexity remains U(nL).

2. The Package-Merge Algorithm

An instance (Z, X) of the Coin Collector’s problem of size m is defined by:
(a) A set I of m items, each of which has a width and a weight, such that each

width is a (possibly negative) integral power of 2, and each weight is a real number.
(Think of width as being face value of a coin, and weight as being numismatic
value.)

(b) A nonnegative real number X, which we call total width.

A solution to such an instance is defined to be a subset S of Z whose widths sum
to X, and an optimal solution is a solution of minimum total weight. We write
Opt-So&Z, X) to be such an optimal solution. If X is not diadic (a diadic real
number is one that can be written as a fraction whose denominator is a power of
2) then no solution exists.

We now give a recursive description of the Package-Merge algorithm. Assume
X is diadic, which implies that X can be written as a finite sum of distinct integral
powers of 2, including possibly negative powers. If X > 0, then write minwidth for
the smallest of those powers of 2.

Basis. If X = 0, then Opt-Sol(Z, X) is the empty set. If X > 0 and Z is empty,
then no solution exists.

Recursion. Let Y be the smallest width of any item in I. We consider four cases.

Case 1. r > minwidth. No solution exists.

Case 2. r = minwidth. Let a E Z be the smallest weight item of width r. Then
Opt-So&Z, X) = Opt-Sol(Z - {a), X - r) U {a).

Case 3. r < minwidth, and there is just one item a E Z of width r. Then
Opt-Sol(Z, X) = Opt-Sol(Z - {a), X).

Case 4. r < minwidth, and there are at least two items in Z of width r. Let a,
a’ E Z be the two least weight items of width r, and let b be a new item, which we
call a package, formed by combining a and a’. The width of b is 2r, and its weight
is weight(a) + weight(a’). Let S’ = Opt-So/(Z - {a, a’) U {b], X). If b E S’, then
Opt-Sol(Z, X) = S’ - (b) U (a, a’); otherwise, Opt-Sol(Z, X) = S’.

2.1 CORRECTNESS. We show that the Package-Merge algorithm produces an
optimal solution by induction on the depth of the recursion. The basis is trivially
correct, so we can assume that Z is nonempty and X > 0. The inductive hypothesis
is that the algorithm is correct for any problem instance that requires fewer recursive
calls than the instance (I, X).

In Case 1, there is no solution since the width of every subset of Z must be an
integral multiple of r, and X is not an integral multiple of r. In Case 2, any solution
must contain an odd number of items of width minwidth = r. The optimal solution
must contain the item of that width of minimum weight, since otherwise its one
item could be exchanged for that minimum weight item, causing an improvement.
The remaining items must then be the optimal solution to the reduced problem.
In Case 3, the one item of width r could not possibly be part of any solution, hence
can be discarded. In Case 4, any solution must have a total width that is an even

A Fast Algorithm for Optimal Length-Limited Huffman Codes 467

multiple of r, hence must contain an even number of items of width r. If this
number is 0, neither a nor a’ will be in the solution, while if this number is 2 or
more, both will be in any optimal solution. Thus, the two items a and a’ can be
“packaged” together, it being later decided whether they are both in or both out of
the optimal solution. Replacing a and a’ by the combined item (package) b and
then recursively applying the algorithm accomplishes this.

2.2 IMPLEMENTATION. The Package-Merge algorithm can be implemented in
O(m) time provided the items are presorted, as in our application. (If not, an
O(mlogm)-time sorting step can be included.) The space requirement is O(m).
Although the algorithm is described above recursively, for ease of proof, the
implementation given here is nonrecursive.

Let Ld be the list of items of width 2d, sorted in order of increasing weight. By a
slight abuse of notation, we shall not distinguish between an item and the singleton
set of items whose sole member is that item. We refer to the diadic expansion of X
as its representation as powers of 2. (For example, the diadic expansion of 5.625 is
22 + 2O + 2-l + 2-3).

Package-Merge Algorithm(I, X)
SC0
for all d, Ld c list of items having width 2d, sorted by weight
while X > 0 loop

minwidth = the smallest term in the diadic expansion of X
ifI=0then

return “No solution.”
else

d + the minimum such that Ld is not empty
rc2d
if r > minwidth then

return “No solution.”
else if r = minwidth then

Delete the minimum weight item from Ld and insert it into S
X + X - minwidth

end if
Pd+, + PACKAGE
discard Ld
L d+l + MERGW’d+, , Ldt,)

end if
end loop
return “S is the optimal solution.”

2.3 THE STEP PACKAGE. The list &+1 is formed from Ld by combining items
in consecutive pairs, starting from the lightest. That is, the kth item of Pd+l is the
package formed by combining items (2k - 1) and 2k of Ld. If Ld is of odd length,
its heaviest item is simply discarded. The MERGE step is just the usual merging
of two sorted lists.

2.4 TIME ANALYSIS. Merging of two sorted lists takes time that is linear in the
sum of the lengths of the lists, while the package step takes time that is linear in
the length of the list. The following amortization argument shows that the entire
algorithm takes linear time. Place three credits on each original item. Invariably,
there are three credits on each item of any list Ld that consists solely of original
items, two credits on each item of any list Ld that was formed by a MERGE step,
and three credits on each item of Pd. The PACKAGE step combines two items
which have two or three credits each into one item which has three credits, one
credit paying for the operation. The MERGE step takes time which is linear in the

468 L. L. LARMORE AND D. S. HIRSCHBERG

sum of the lengths of the lists. One credit from each item (they have three each)
pays for the MERGE, leaving each item with two credits.

2.5 SPACE ANALYSIS. Each package can be represented as a binary tree, where
the leaves are original items. The space requirement is O(m).

3. The Length-Limited Huffman Coding Problem

In this section, we show how to reduce the restricted length Huffman coding
problem to the Coin Collector’s problem. The Package-Merge algorithm can then
be applied to solve the original problem in O(nL) time and O(nL) space.

We assume that the input weights are nonnegative. The input weights can be
sorted within the stated complexity bounds, since logn = O(L) and hence we
assume that the weights are presented in sorted order.

We begin with the nodeset representation of binary trees, which was introduced
in [lo]. Fix n z 1 and L > log,n. We are only interested in full binary trees with
II leaves whose height does not exceed L.

3.1 NODESET REPRESENTATION. Define a node to be an ordered pair (i, l) such
that i E [1, n], which is called the index of the node, and 1 E [1, L], which is called
the level of the node. Any set of nodes we call a nodeset. If T is a tree, define

nodeset = ((i, 1) 1 1 I I % /i),

where I, is the depth of the ith leaf of T. For example, Figure 1 shows nodeset(T)
for a tree T of 7 leaves, with L = 4.

3.2 WIDTH AND WEIGHT. If (i, 1) is any node, define width(i, 1) = 2-j, and
weight(i, 1) = wi. If A is a nodeset, width(A) and weight(A) will be the sums of the
widths and weights, respectively, of its constituent nodes. We make the following
two observations.

(1) If T is a tree, then weight(Node.set(T)) = WPL(T). This follows directly from
the definition of weighted path length.

(2) If T is a tree with n leaves, then width(Node.set(T)) = n - 1. This can be
proved easily by induction. The basis is n = 1. This tree has one leaf at level 0
and width(Nodeset(T)) = 0. For the inductive step, consider T, a tree with
n > 1 leaves. Let a and b be two leaves that are siblings (there must be such
a pair) and let fbe their father at level I 2 0. Let T’ be T with a and b deleted.
T’ has n - 1 leaves (a and b are no longer leaves and f is now a leaf) and,
by the inductive hypothesis, width(Nodeset(T’)) = n - 2. To obtain
width(Nodeset(T)) we must subtract the contributions of ((l;j)] 1 ‘j I I) and
add the contributions of ((a, j), (b,j)] 1 ~j I I + 1). That is, we must subtract
(1 - 2-l) and we must add 2(1 - 2-(‘+I)). The net result is that
width(Nodeset(T)) = width(Node.set(T ‘)) + 1 = (n - 2) + 1 = n - 1.

For convenience, we assume strict monotonicity of the weights, that is, wi >
w;+~. No loss of generality is incurred by this assumption, since an infinitesimal
value can be added to weights to force tie-breaking in the correct direction. We
can also assume Wi > 0 for all i, since Wi I 0 and we could add an infinitesimal
value to the zero weights.

A Fast Algorithm for Optimal Length-Limited Huffman Codes 469

1

2

I3

4

1 2 3 4 5 6 7

1:-

FIG. 1. nodeset(

3.3 MONOTONICITY. We say that a nodeset A is monotone if the following two
conditions hold:

(a) (i, 1) E A + (i + 1, I) E A, for i C n,
(b) (i,f)EA+(i,f- l)EA, for I> 1.

LEMMA 1. Suppose that A is a nodeset of width 1(2-l) + r where I is an integer
and 0 < r < 2-l. Then A has a subset B whose width is exactly r.

PROOF. By induction on the cardinality (number of nodes) of A. If A has just
one node, its width must be r, and we can simply let B = A. If A has cardinality
greater that 1, we assume the inductive hypothesis, namely that the lemma holds
for all nodesets of cardinalities less than that of A. Let p be the node of A of smallest
width, say 2-k. If k 5 I, we have a contradiction, since A would then have width a
multiple of 2-k, and hence a multiple of 2-‘. Thus, k > 1. Since width(A) and 2-’
are both multiples of 2-k, r must also be a multiple of 2-k, hence r 2 2-k. If
r = 2-k, let B = (p). Otherwise, let A’ = A - (p), let B’ be the subset of A’ of
width r - 2-k, obtained by the inductive hypothesis, and let B = B’ U (p]. Cl

LEMMA 2. If X c n is an integer, the minimum weight nodeset of width X is
monotone.

PROOF. Let A be the minimum weight nodeset of width X. If (i, 1) E A and
(i + 1, 1) 4 A, then A U ((i + 1, I)) - {(i, I)) has the same width as A and smaller
weight, a contradiction. If (i, 1) E A and (i, I - 1) $5 A, let A’ = A U ((i, I - 1)) -
((i, I)), which has the same weight as A, but width which is 2-’ larger. Thus, the

470 L. L. LARMORE AND D. S. HIRSCHBERG

width of A’ is X + 2~‘, with X integer. By Lemma 1, there exists a nodeset B C A’
of width 2-‘. A’ - B has width X and weight less than A, a contradiction. 0

LEMMA 3. Zff,, 1, is a list oj’ integers in the range [1, L], and A is the
nodeset ((i, I) 1 1 I i % n, 1 I I I !,I, then width(A) = n - CZI 2-4.

PROOF. For each i, let Ai C A be the set of all nodes in A of index i, that is,
Ai = ((i, l), . . . , (i, /i)). Then width(Ai) = 2-l + 2-2 + * * 1 + 2-4 = 1 - 2-C.
Summing over all i yields the result. 0

LEMMA 4. Zfw=(1,,12,.. .) is a monotone increasing list of nonnegative integers
whose width is 1, then w is the list of leaf depths of a tsee.

PROOF. This follows as an immediate corollary from Lemma 2.3 in [9,
p. 11171. For completeness, we give a proof here.

The proof is by induction on the length of w. If] w] = 1, then w = (0), which is
the list of leaf depths of a tree consisting of one leaf. Suppose] w] = n > 1. Define

x0 = 0,
xj = xi-1 + 2-4, for all i E [I, n].

Note that (x0, xi, . . . , x,) is a monotone strictly increasing sequence, and
that x, = 1. Let k be the smallest index such that & > i. If & > i, we obtain
a contradiction, as follows. Since w is monotone increasing, 2-b, is an integral
multiple of 2-‘k for all i < k. Thus, both x&-i and & are both multiples of 2-Ik,
and in fact are consecutive multiples of that quantity. But $, which is also a
multiple of 2-4, lies strictly between them, a contradiction. Thus & = i. Let
u=(I,- I,... , /k - 1) and let v = (&+1 - 1, . . . , 1, - 1). Both u and v are lists of
length less than n of width 1. By the inductive hypothesis, u and v are the lists of
leaf depths of trees L and R, respectively. Let T be the tree whose left and right
subtrees are L and R. The list of leaf depths of Twill be w. 0

To apply the Package-Merge algorithm, we need the following theorem.

MAIN THEOREM. Zf the wi are distinct (i.e., wi > wi+l for all i), then any nodeset
A that has minimum weight among all nodesets of width n - 1 is the nodeset of a
tree T that is an optimal solution to the restricted length Huffman coding problem.

PROOF. Let A be the minimum weight nodeset of width n - 1. For each i, let 1;
be the largest index such that (i, li) E A. By Lemma 2, A is monotone; hence,
Ii d l;,, . Since A is monotone and has width n - 1, C:=, 2-c = 1 by Lemma 3.
Therefore, by Lemma 4, {/I) is the list of leaf depths of a binary tree T, and hence
A = nodeset(If there were a tree of smaller weighted path length, the weight of
its nodeset would be less than that of A and A would then not be the least weight
nodeset of width n - 1. Thus, T is optimal. Cl

3.4 THE REDUCTION. We can find an optimal Huffman tree of depth no more
than L as follows. Let each node in the nodeset be an item, each of which has
width !ess than 1. Apply the Package-Merge algorithm to the set of all those nodes
to find a minimal weight nodeset of width n - 1. For each I E [1, L], the list of
nodes of width 2-’ is initialized as ((n, 1), (n - 1, I), . . . , (1, /)). Note that sorting
of the nodes is unnecessary, since the wi are already sorted. Ties are broken as if Wi
were infinitesimally greater than w. r+l, so that the Main Theorem applies. We
construct the optimal tree from the resulting nodeset as in the proof of the Main
Theorem.

A Fast Algorithm for Optimal Length-Limited Hz&man Codes 471

3.5 TIME AND SPACE. The algorithm takes O(nL) time and O(nL) space. In
the next section, we show how the space can be reduced to O(n), while multiplying
the time by only a constant factor.

4. A Linear Space Algorithm

In this section, we show how the algorithm of the previous section can be modified
to solve the restricted length Huffman coding problem in O(n) space, while still
taking only O(nL) time.

In the previous section, the restricted length Huffman coding problem was
reduced to the Coin Collector’s problem, where each node (coin) was an ordered
pair in [1, n] x [1, L]. During the course of the algorithm, “packages” were formed,
each of which is a set of nodes, which could be represented as (for example) a
binary tree. Each such package has a width and a weight, being the sums of the
widths and weights of its constituent nodes.

At any given point in the algorithm, the number of packages that has to be
remembered is fewer than 2n-fewer than y1 packages formed at the previous level
plus n nodes at the current level. But these packages could have, as their members,
most of the nL original nodes. Thus O(nL) space is required to keep track of
everything. We propose, instead, to keep track of a very limited portion of this
information, that portion being sufftcient to divide the problem into two subprob-
lems that can be worked recursively. Each stage of the recursion will require only
O(n) space. The size of the original Coin Collector’s problem is nL, and the total
of the sizes of the Coin Collector’s problems at each stage of the recursive descent
does not exceed half the size of the total at the previous stage. Thus, the total work
is roughly twice that of the work during the first stage, that is, still O(nL).

It is important to note that the linear-space algorithm is guaranteed to calculate
the same nodeset S as the original algorithm. Each recursive call calculates the least
weight nodeset of a given width within a given subrectangle R of [1, n] x [1, L].
That nodeset will be S rl R. If the recursion returned any nodeset A other than
S fl R, it would contradict the fact that S is the lowest weight nodeset of width
n - 1, since S could be improved by removing S fl R and replace it with A.

We now explain in detail the first stage of the algorithm, which is illustrated by
Figure 2. Let /mid = L(L + 1)/21. The basic idea is to run the package-merge
algorithm once, using only linear space, retaining only enough information to be
able to break the problem into two subproblems whose total complexity does not
exceed half the complexity of the original problem. Our goal is to determine the
set of leaves. We can do so in linear time if we know the number of nodes at each
level. As we execute the algorithm, we keep track of only the following four values
for each package. Other information, such as the full set of members of a package,
is discarded. The values we keep are:

weight(p) = the sum of the weights of nodes in p
width(p) = the total width of all nodes in p
midct(p) = the number of nodes in p of level fm,

hiwidth = the total width of all nodes in p whose levels exceed fmid

In addition, these same values are maintained for S, which will be the optimal
nodeset by the end of the algorithm. S satisfies the following two monotonicity
properties (see Lemma 2):

(a) (i,l)EA+(i+ l,l)EA, for i < n,
(b) (i, I) E A + (i, I - 1) E A, for I> 1.

472 L. L. LARMORE AND D. S. HIRSCHBERG

1

1 Did

L

r-------------I-----1---“----1------1-

i.. . .I.. . ,
1

. i

i

. . .A.j.B. . . . 1
------mm 1 I I . - i ’ .f.. , . . .i ! b--------: _.--.-_._..-.--.-_._..-. I -.--._.._ J-e” ._.._.- I.” -._.._.--.--._.._.- I .__._.._.” _.__.” ..-.- I ._-._..-.-_.--.-..---. I_.” ..-._ I.__

. . . .!I.
1”” ._-._.. “._L * - - - * c * * - - 1 .-.._.--.--.-..-.--.--.-..-.--.--.” ..-.--.--._.._--.---.. “.” -.--. “..” .--.--)

. . . .“.
B t----------------------- D

. . . i .i.i.,
I L--- -.----------------, I iI.i.

‘i :-.- -_--
7 n

FIG. 2. Sets A, B, C, D.

Let m be the number of nodes of level /mid in S. m = midct(S), which is

remembered by the algorithm. We note that S can be written as the disjoint union
of four sets, namely

A = nodes in S whose levels are < /mid with indices in [1, y1 - m],
B = nodes in S whose levels are < lmid with indices in [n - m + 1, n],
C = nodes in S whose levels are = /mid,
D = nodes in S whose levels are > Imid.

Figure 2 illustrates the partition of S into A, B, C, and D.
By the monotonicity of S, the nodes in C are (II - m + 1, Imid), . . . , (n, /mid)

and the nodes in B are [n - m + 1, n] X [1, fmid - 11. Thus, we know the number
of nodes in B and C at each level. We can determine the width of the four sets
as follows. The width of C is m2-‘mid and the width of B is m(1 - 2-(‘mid-‘)).
D c [n - m + 1, n] x [Imid + 1, L] and therefore the width of D is hiwidth(
which is remembered by the algorithm. The width of A is width(S) - width(B) -
width(C) - width(D).

Finally, A and D are (respectively) the minimum weight subsets of [1, n - m] X

Ll, lmicl - I] and [n - m + 1, n] X [Imid + 1, L], of their respective widths. Thus,
the number of nodes at each level of A and D can be found by recursive calls to
the algorithm. (Although, in the recursive calls, the total width needed is no longer
n- 1.)

The recurrence relation we obtain is the following: Letf(n, L) be the worst case
time to find the minimum weight subset S of [1, n] X [1, L] of a given width X,
under the assumption that S satisfies the two monotonicity properties. Then,

f(n, L) 5 Cl& for L < 3,
f(n, L) 5 c2nL + j-h? L) + f(n2, L2), for L 1 3,

where L, = fmid - 1 I LL/2J, Lz = L - LI - 1 5 LL/21, and the adversary chooses
n, + n2 = n. To obtain an upper bound on the complexity off(n, L), we note that

A Fast Algorithm for Optimal Length-Limited Huffvvlan Codes 473

f(n, L) = O(g(n, L)), where g is any function that satisfies the recurrence

dn, L) 2 clnL, for L < 3,

g(n,L)Bc,nL+g(n,,$)+g(n-n,,$), for Lr3.

It is seen that g(n, L) = (c, + 2c2)nL satisfies the recurrence relation. Thus,
f(n, L) = O(nL).

5. Additional Questions

5.1 ALPHABETIC CODES. A prefix-free code is said to be alphabetic if the lexical
order of the code strings corresponds to a given order of the original weighted
alphabet. Itai and Wessner [6, 121 present algorithms to find an optimal length-
limited alphabetic code in O(n2L) time. By using the nodeset representation of
code trees, an O(nLlog yt) algorithm for this problem has been developed [111. Can
the complexity be reduced to O(nL)?

5.2 DYNAMIC TREES. Consider the case in which an encoding of a stream of
symbols is transmitted, and the code (based on symbol frequencies) is updated
after each symbol. If there are no length limitations, the optimal tree can be updated
in O(I) time, where 1 is the length of the codeword whose frequency was incre-
mented [8]. Can the optimal length-limited code tree be updated in O(I) time?

REFERENCES

I. GAREY, M. R. Optimal binary search trees with restricted maximal depth. SIAM J. Comput. 3
(1974) 101-l 10.

2. HIRSCHBERG, D. S. A linear space algorithm for computing maximal common subsequences.
Commun. ACM I8 (1975), 341-343.

3. Hu, T. C., AND TAN, K. C. Path length of binary search trees. SIAM J. Appl. Math 22 (1972),
225-234.

4. Hu, T. C., AND TUCKER, A. C. Optimal computer search trees and variable length alphabetic
codes. SIAM J. Appl. Math 21 (1971), 514-532.

5. HUFFMAN, D. A. A method for the construction of minimum redundancy codes. Proc. Inst. Radio
Engineers 40 (1952) 1098-l 101.

6. ITAI, A. Optimal alphabetic trees. SIAM J. Comput. 5 (1976) 9-18.
7. KNUTH, D. E. Optimal binary search trees. Acta If: I (197 I), 14-25.
8. KNUTH, D. E. Dynamic Huffman coding. J. Algorithms 6,2 (1985) 163- 180.
9. LARMORE, L. L. Height-restricted optimal binary trees. SIAM J. Comput. I6 (1987), 1115- 1123.

10. LARMORE, L. L. Minimum delay codes. SIAM J. Comput. 18 (1989), 82-94.
11. LARMORE, L. L. Optimal length-restricted codes. Colloquium, AT&T Bell Labs, Murray Hill,

N.J., January 6, 1988.
12. WESSNER, R. L. Optimal alphabetic search trees with restricted maximal height. InJ: Proc. Lett. 4

(1976), 90-94.

RECEIVED OCTOBER 1987; REVISED AUGUST 1988, FEBRUARY, APRIL, AND AUGUST 1989; ACCEPTED
AUGUST 1989

Journal of the Association for Computing Machinery. Vol. 37. No. 3, July 1990.

