
its E 6 A I, 1 Y PEAKING

Should Program
Algorithms be
Patented?
In the Legally Speaking column last
May [6], we reported on a survey
conducted at last year’s ACM-spon-
sored Conference on Computer-
Human Interaction in Austin, Tex.
Among the issues about which the
survey inquired was whether the
respondents thought patent protec-
tion should be available for various
aspects of computer programs. The
667 respondents overwhelmingly
supported copyright protection for
source and object code although
they strongly opposed copyright or
patent protection for “look and feel”
and most other aspects of programs.
Algorithms were the only aspect of
programs for which there was more
than a small minority of support for
patent protection. Nevertheless,
more than half of the respondents

I _ opposed either copyright or patent
(L protection for algorithms. However,
o nearly 40 percent ofthe respondents
i regarded algorithms as appropriate-
(ly protected by patents. (Another
u) eight percent would have copyright
- law protect them.)
z We should not be surprised that
z these survey findings reflect division
,, within the technical community

about patents as a form of protection
z for this important kind of computer
_ program innovation. A number of
b prominent computer professionals
a who have written or spoken about
Df
~ patent protection for algorithms or
U) other innovative aspects ofprograms
3 have either opposed or expressed
z reservations about this form of pro-
- tection for software [2, 4, 51.

This division
of opinion, of
course, has not
stopped many
firms and some
individuals from
seeking patent
protection for al-
gorithms or other
software innova-
tions [8]. Al-
though the Refac
Technology pa-
tent infringement
lawsuit against
Lotus and other
spreadsheet pro-
ducers may be in some jeopardy, it
and other software patent lawsuits
have increased awareness of the new
availability of software patents. This
situation, in turn, has generated
some heated discussion over whether
this form of legal protection will be
in the industry’s (and society’s) long-
term best interests.

The aim of this column is to ac-
quaint readers with the legal debate
on patent protection for algorithms
and other computer program inno-
vations, an issue which seems to be
as divisive among lawyers as those in
the computer field. [3, 91.

The Legal Debate
There are three U.S. Supreme Court
decisions that seem to state quite
plainly that computer program algo-

DV

Pamela Samuelson

rithms are not the sort of innovation
that can be patented. (More pre-
cisely, it has been said that program
algorithms are not among the kinds
of “processes” Congress intended to
be eligible for patent protection
when it passed the patent statute.)
But as Ecclesiastes once said, “God
made mankind straight, but men
have recourse to many subtleties.”
Patent lawyers have found ways of
interpreting these three decisions
more narrowly than their plain
meaning suggested was appropriate;
through clever drafting of patent ap-
plications they have persuaded the
patent office that these decisions do
not bar patents for their clients’ soft-
ware innovations.

Some patent lawyers, for exam-
ple, have interpreted the third of
these three Supreme Court decisions
as meaning that algorithms are now
unpatentable only if no practical

COYM"NIC*T,CNIOFT"EAC.CY/August 1990/Vol.33,No.8 23

http://crossmark.crossref.org/dialog/?doi=10.1145%2F79173.79175&domain=pdf&date_stamp=1990-08-01

LS

application is claimed for them [9].
This reading of the judicial opinion
ignores too much of the rest of what
the Court said in that case to be a
convincing interpretation. It also
runs counter to a set of guidelines
that the Patent&Trademark Office
(PTO) issued within the past year
concerning the standards by which
it would judge patent claims for
algorithms [lo]. Nevertheless, some
recently issued patents suggest that
at least some patent examiners are
operating on this basis. A lawyer
who takes an aggressive stand on the
patentability of software innovations
is certainly more likely to generate
more business for him- or herself
than one who has a more cautious
interpretation of the patentability
standard.

While lawyers have been arguing
for many years about the patenting
of software innovations, the legal
debate over the patenting of algo-
rithms intensified when in 1986
Donald Chisum, an art.iculate and
well-respected patent scholar, wrote
an article arguing that the Supreme
Court rulings against pa.tent protec-
tion for computer program algo-
rithms be overruled. He asserted
that the rulings were an incorrect in-
terpretation of patent law as well as
being bad intellectual property
policy [l]. Since then, the PTO has
issued some well-publicized patents
for computer program algorithms,
including one for industrial appli-
cations of Narendra Karmarkar’s
linear programming algorithm,
assigned to AT&T. And this past
November, an appellate court over-
turned a decision by the PTO which
would have denied a patent to a
voice recognition algorithm. The
implications of this case, however,
are far from clear, for the decision
said it was following the earlier
Supreme Court rulings, and upheld
the algorithm patent claim on
grounds that are far from convinc-
ing and seem at odds with at least
one of the previous Supreme Court
decisions (see following discussion).
And so the legal debate continues.

While this column can give only
a brief glimpse of the history of the

24

legal debate on this topic [7], it is well
to begin with the story of the first
computer program algorithm case
to be decided by the Supreme Court.
This case is typical of the problems
that computer program innovations
present for the patent system, and it
is the case which Professor Chisum
has argued should be overruled.

The Benson Case
Gottschalk v. Benson is the 1972
Supreme Court decision that ruled
a computer program algorithm is by
its nature unpatentable. Gottschalk
was the Commissioner of Patents
who sought Supreme Court review
of an appellate court ruling which
had overturned the patent office’s
decision to deny Benson (an em-
ployee of Bell Laboratories) a patent
on his two claims for a new algo-
rithm for converting binary-coded
decimals to pure binary form.

The appellate court regarded the
first of Benson’s two claims as easily
meeting the standards for a patent-
able process because the claim made
reference to hardware elements,
such as “signals” and “reentrant
shift registers.” This meant, said the
judges, that it was only a claim for
the machine implementation of this
process. Under standards this court
had announced in previous cases,
such hardware references made the
claim a patentable one. The judges
pointed out that cash registers, like
Benson’s method, worked with num-
bers, but that did not make such
registers unpatentable. (This anal-
ogy, however, misses the deeper ques-
tion of whether addition itself would
be patentable as a process merely
because it is capable of being carried
out on a machine such as a cash
register, an issue which will be
discussed further here.)

Benson’s second claim, however,
made no mention of any hardware
elements. The appellate court ad-
mitted that issuing a patent on this
claim would cover the method when
performed manually with a pencil
and paper (which was why the patent
office regarded it as an unpatentable
“mental process”). Since the court
believed computer implementations

would be the only practical utiliza-
tion of the invention, it decided this
claim too was technological enough
in character to be a patentable pro-
cess. Consequently, the appellate
court ruled that the patent office had
been wrong to reject Benson’s patent
application.

The Supreme Court reversed this
appellate court decision and ruled
that the patent office had been right
to reject both of Benson’s claims. It
agreed with the patent office that
until that time, only processes that
involved the transformation of mat-
ter from one physical state to
another (such as a chemical process)
had been considered patentable.
Benson’s method did not trans-
form matter.

While the court made clear it was
not saying that transformation of
matter would always be required to
support the patentability of a pro-
cess, the judges were persuaded
by “friend of the court” briefs sub-
mitted by such firms as IBM, Bur-
roughs, and Honeywell that the
mathematical character of the Ben-
son algorithm excluded it from be-
ing the sort of process that was
patentable in nature. (The Court
also agreed with the patent office
that mental processes are not patent-
able, although this was not one of its
main points.) The court compared
Benson’s algorithm to a law of na-
ture or a scientific principle-dis-
coveries traditionally not considered
to be patentable in character. The
fact that the only practical utiliza-
tion of the Benson algorithm was in
a computer was interpreted by the
Court to mean that a patent on it
would, in effect, preempt all uses of
that algorithm. This factor helped to
influence the Court to deny its
patentability.

Post-Benson
Patentability Standards
In the years that followed the
Supreme Court’s 1972 Benson deci-
sion, the appellate court reviewed a
number of other patent office deci-
sions involving computer program
innovations. In these cases, the court
experimented with various inter-

August 1990/“01.33, No8/COYMUNICATIONSOFTnEdCM

LS

pretations of the Benson decision
(which the appellate court was
bound to follow, even if the judges
did not agree with the Supreme
Court’s ruling).

For a while, the appellate court in-
terpreted Benson as applying only to
claims drafted inprocess (or method)
form, and not to claims drafted in
machine (or apparatus) form,
although a patent lawyer could,
through minor wording changes,
easily draft the claims in either form.
At some point, however, the ap-
pellate court decided to abandon
this distinction. (But see the follow-
ing discussion of the Iwahashi case.)

Then the appellate court began to
distinguish between “mathematical
algorithms” (by which the appellate
court generally meant mathematical
formulae), which it said were un-
patentable under the Benson ruling,
and nonmathematical algorithms
(such as an algorithm for converting
written texts from one natural
language to another, which the ap-
pellate court regarded as non-
mathematical in character), which
could be patented.

For a time, the appellate court
decided that even claims for
“mathematical algorithms” might
be patentable as long as the claims
did not cover all uses of the algo-
rithm: limiting the claim to some
technological environment or field
of application was regarded by the
appellate court as saving the claim
from Benson’s proscription against
a patent on an algorithm.

However, in 1978 (and again in
1981), the Supreme Court said that
a claim limitation of this sort was not
consistent with its ruling in Benson.
Nor was it consistent with Benson to
merely tack on to the claims some
minor post-solution activity. In its
1981 decision-Diamond v. Diehr-
the Supreme Court ruled that a
patent claim for a process should
not be rejected merely because it
includes a mathematical calculation
or a computer program as an
element.

The only requirement, the Court
said, was that the process being
claimed-in Diehr, the process was

said to be one for curing rubber,
which included as an element some
computerized calculations to deter-
mine when the curing was done-
be of a patentable sort. Since rubber
curing is a traditional type of in-
dustrial process (i.e., one involving
the transformation of matter), the
Court found Diehr’s process to be
patentable in nature. The present
PTO guidelines on the patentability
of claims involving mathmematical
algorithms attempt to implement the

Supreme Court’s ruling in Diehr, as
well as to be consistent with other
appellate courts’ rulings on com-
puter program-related inventions.

The Bwahashl Case
Since the Supreme Court’s decision
in Diamond v. Diehr, there have
been relatively few court decisions
concerning the patentability of com-
puter program algorithms or other
software innovations. In the fall of
1989, however, the appellate court
which oversees the patent office’s
decisions issued two opinions con-
cerning what the PTO found to be

unpatentable algorithms. In the
Iwahashi case, the appellate court
ruled that a patent should have
issued; in the Grams case, the ap-
pellate court upheld the PTO’s re-
jection of the claims.

Iwahashi’s claim was drafted in
apparatus (rather than method)
form, and was for an auto-correla-
tion unit useful in pattern recogni-
tion (particularly voice recognition)
to obtain auto-correlation coef-
ficients for stored signal samples.
Iwahashi claimed to have invented a
simpler way to obtain the desired
coefficients. (Rather than utilizing
multiplication as the prior art did,
which required more complicated
circuitry and more calculation time,
Iwahashi’s unit squared the sum of
two factors in accordance with a
stated formula.)

Most of the elements in the claim
were for obtaining input values,
calculating sums in accordance with
a formula, and storing the values ob-
tained from the calculations. Several
of the claims elements made refer-
ence to “read only memory” (e.g.,
storing a value in read only mem-
ory). Despite these references, the
PTO regarded the claim as being for
the algorithm. The appellate court,
however, focused on the fact that the
claim was for an apparatus (a
“unit”), and made references to
read only memory (a hardware com-
ponent) in ruling that the claim was
for a patentable machine.

Given that the Supreme Court, in
the course ofjudging the patentabil-
ity of Benson’s invention, did not
distinguish between the claim which
referred to “reentrant shift regis-
ters” and that which made no refer-
ence to hardware elements, the
appellate court’s ruling in Iwahashi
seems inconsistent with Benson.

The Iwahashi opinion does not
seem to be in agreement with earlier
decisions by a predecessor appellate
court, which regarded as immaterial
whether a claim reciting a mathe-
matical algorithm was drafted in
method or apparatus form. Based
upon the reading of this case, one
wonders whether all it takes now to
render a claim for a computer pro-

25

gram-related innovation patentable
is to draft it in apparatus form and
mention a ROM.

Although the decision does not
indicate whether the algorithm was
intended to be embodied in a pro-
gram or in a chip, this distinction too
would not seem to be meaningful
since the Benson algorithm, like all
other computer program algo-
rithms, could have been embodied
in a chip, rather than a program.

Another computer program algo-
rithm patent which does not appear
consistent with the three Supreme
Court decisions on this subject, is
AT&T’s patent on “industrial
applications,” of the Karmarkar
algorithm, in view of the Court’s
statements that merely limiting the
field of application for the algorithm
does not make it patentable.

The Grams Case
Grams made a number of claims
related to a method of diagnosing
abnormal conditions in complex
systems. The method consisted of
steps such as conducting tests on
individual instances of the system,
taking values from these tests and
comparing them with values associ-
ated with normal individuals, and
conducting successive tests to deter-
mine the cause(s) of the abnormal-
ity. The patent application made
evident that the method was to be
computerized. Relying on the 1982
Meyer decision in which an algo-
rithm for an expert system pro-
gram for diagnosis of neurological
conditions had been held to be
unpatentable because it was for a
mathematical algorithm, the appel-
late court in Grams upheld the
PTO’s rejection of the claims.

One of the surprises about both
the Grams and the Meyer decisions
was that in each of them the court
took a broader view of what the term
mathematical algorithm included
than it had in some of its earlier
decisions. In the 1978 Toma case, for
example, the appellate court had re-
jected the argument that Toma’s al-
gorithm for a computerized process
of natural language translation was
a “mathematical algorithm” for it

26

recited no equation; but then neither
did Grams’s or Meyer’s applica-
tions. In the latter two cases, the ap-
pellate court also emphasized that
the claims were for an unpatentable
mental process, even though it
was clear that the intended imple-
mentation of both was a computer
program.

What to do IF Patent
Law’s Dlstlnctlons
are Untenalsle
Chisum has argued that the Su-
preme Court’s Benson decision
should be overruled. Benson’s algo-
rithm was, in his view, a process that

was technological enough in char-
acter to be patentable. Chisum has
blamed the analytic confusion re-
flected in the judicial case law (such
as the distinction between mathe-
matical and nonmathematical algo-
rithms) on the Supreme Court’s
Benson decision, and predicts that
this confusion will be resolved once
Benson is overruled. Chisum has
also asserted that patent incentives
are needed to stimulate investment
in research that will lead to impor-
tant algorithmic innovations and ad-
vance the state of the art of computer
programming.

The computer scientist Allen
Newell, in responding to Chisum’s
article on the patentability of algo-
rithms, agreed with Chisum that the
distinction between mathematical
and nonmathematical algorithms is
untenable, as is that between algo-
rithms and mental processes. Newell
pointed out that cognitive scientists
have been aiming to model the com-
putational processes which occur in
the brain by writing programs that
stimulate this kind of computation;
consequently, there is an equiva-
lence between algorithms and men-
tal processes that makes any
distinction between them for patent
purposes doomed to failure.

While agreeing with Chisum that
the particular confusion that devel-
oped in the law in the aftermath of
the Benson decision might disap-
pear if Benson were overruled, he
questioned Chisum’s conclusion that
all the analytic confusion in patent
law concerning algorithms would be
resolved by this act. Newell thought
more profound issues were raised by
the patenting of program algorithms
than Chisum seemed to realize.

Newell suggested that the concep-
tual models on which the patent
system was based might be broken
when applied to algorithms and
other program innovations, and
questioned whether more innova-
tion in program algorithms would
result from patenting than has
resulted from what has been the
norm of nonprotection.

Newell used the example of the
commonly used algorithm for addi-
tion to illustrate the conceptual
problems presented by patents for
algorithms. Suppose this example
(or some other mathematical proce-
dure of equally widespread appli-
cation) had just been invented.
Chisum’s definition of a patentable
process would seem to include such
an innovation as a patentable one.
Yet it is surely the kind of innova-
tion which would ordinarily not be
considered patentable. Even the
Supreme Court justices who would
have upheld a patent on an equation
useful in catalytic conversion plants
in the 1978 Parker v. Flook case gave

August 1990/Vo1.33,No.8ICCYY"~ICITICWSCFTREAC.CU

LS

multiplication as an example of an
unpatentable process.

The Need ior a
Standard H Pa+entabiliry
Before overruling the Benson deci-
sion, it is surely wise to think care-
fully about the consequences of
granting patent protection to com-
puter program algorithms, which are
mathematical in character. What
makes them technological enough to
be patentable processes? The fact
that they can be carried out on a
computer? Some case law suggests
this may be enough.

If this is the case, an algorithm for
addition would seem to be patent-
able, as would the program to carry
it out. Since a patent could issue on
the algorithm itself, and since patent
law gives the holder of the patent ex-
clusive rights to use the patented in-
vention, some might even argue that
it would infringe upon the patent to
write an article about the algorithm,
for writing about it would use it, in-
ducing one’s readers to use it as well;
this might be regarded as contribu-
tory infringement. Traditionally it
has not been an infringement of a
patent to draw a patented machine
or to write an article about it, for one
could not thereby make or use the
machine, whereas with mental pro-
cesses like addition, one can use the
invention by writing about it. Com-
puter program innovations, if and
when patented, mark the first time
it can infringe a patent to embody
the innovation in a copyrighted writ-
ten text.

Given that all types of informa-
tion can now be processed by com-
puter, a standard of patentability
that rested merely on the ability
to computerize it would make all
methods of representing, organiz-
ing, and manipulating information
patentable. (Benson’s algorithm, for
example, can be characterized as a
method of representing data-in
that case, numerical information-
or converting its representation from
one form to another.) In the past,
methods of representing, organiz-
ing, and manipulating information
have been considered unpatentable

-not technological in character. It
seems a rather broad stretch to make
all information processing patent-
able just because one wants, for ex-
ample, to give AT&T incentives to
invest in research for advances in
computing such as the Karmarkar
linear-programming algorithm. Yet
where does one draw the line?

Chisum punts when it comes to
indicating what the bounds of patent-
ability would be if Benson were over-
ruled, looking only to a 1970 case
which says all it takes to make a pro-
cess patentable is that it be “in the
technological arts,” without defining
what that might and might not in-
clude. Later cases interpreting that
1970 case seem to say that having the
ability to be carried out on a com-
puter is enough to make a process
patentable. Transformation of mat-
ter as a test of what patentable pro-
cesses might include and not include
may have outlived its usefulness, but
at least it was a standard that pro-
vided some limiting boundaries for
patentability.

Furthermore, considering how
the software industry has, grown,
and the amount of innovation it has
exhibited in an environment in
which patent protection was per-
ceived to be unavailable, some have
questioned whether more than copy-
right or trade secret protection is
really needed to provide incentives
for innovations in computer pro-
gramming.

Some also express concern about
the ability of the PTO to make up for
30 years of not keeping track of the
state of the art of computer pro-
gramming, and the adequacy of its
classification system, as well as its
judgment as to the nonobviousness
of some innovations which have
been patented. In addition, some
worry that the structure of the soft-
ware industry will be changed by the
increasing utilization of patents for
software innovations, and entry into
the business will be made more dif-
ficult. Considering how much in-
novation in the field has come from
small firms, the prospect of higher
entry barriers from patents is worth
considering carefully.

A New POIPCy Study
Is Underway

At the request of some congressional
committees, the Office of Technol-
ogy Assessment (OTA) of the U.S.
Congress has just recently under-
taken the study of how the U.S.
software industry can most effec-
tively utilize intellectual property
protection to maintain its compe-
titive edge in the emerging global
marketplace for software. Among
the issues OTA will study is what
role patents should play in the legal
protection of program innovations.
OTA will be seeking input from
computing professionals, industry,
user groups, as well as lawyers, in
carrying out this work. OTA may
well conclude that although growth
of the industry might have been im-
peded if patents had been available
for program innovations in the early
stages, such protection is now needed
to spur investment in software devel-
opment and strengthen the position
of U.S. firms in the international
arena. What do you think? 0

Pamela Samuelson is a professor of law
at the University of Pittsburgh School
of Law.

References

1. Chisum, D. The Patentability of Algorithms.

Univ. ojPill.cbur~h Law Rev. 47, 959 (1986).
2. Kapor, M. Testimony at Hearings before US.

House of Representatives, Subcommittee on
Courts, Intellectual Property and the Adminis-
tration of Justice, of the Committee on the
Judiciary (March 5, 1990).

3. Kahin, B. The Software Patent Crisis. Tech.
Reu., 93, 52 (April 1990).

4. Newell, A. The Models Are Broken! The
Models Are Broken. Uniu. o/Piltrburgh Law Rea
47, 1023 (1986).

5. Plauger, P.J. Soup or Art? (Copyright Protec-
tion for Software Concepts), compul. LQ,,E. 6,
17 (Sept. 1989)

6. Samuelson, P. and Glushko, R. Survey on the
Look and Feel Lawsuits. Commun. ACM 33,
(May 1990), 483.

7. Samuelson, P. Benson Revisited: Should Pa-
tent Protection Be Available for Algorithms
and Other Computer Program-Related Inven-
tions? Emory LawJ, 39, To be published-fall
1990.

8. Soma, J. and Smith, B. Software Trends:
Who’s Getting How Many of What? 1978 to
1987,J. ofPat. &‘Eadem Soc. 71, 415 (1989).

9. Sumner, J. and S. Lundberg. The Versatility
of Software Patent Protection: From
Subroutines t” Look and Feel. Comput. Lawyer,
3, 1 fJune 1986).

10. U.S. Patent & Trademark Office. Report on
Patentable Subject Matter: Mathematical
Algorithms and Computer Programs. Pat.,
Cop., 63 ?kdem. J. (BNA), 38, 563 (1989).

CCMY”WICITICIICCCT”~ACCY/Augusr 199O/Vol.33, No.8 27

