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P 
rolog was initially designed to process natural 
languages. Its application in various problem 
solving areas has demonstrated its capabilities, 
but has also made clear its limitations. Some of 
these limitations have been overcome as a result 

of increasingly efficient implementations and ever 
richer environments. The fact remains, however, that 
the core of Prolog, namely, Alan Robinson’s unification 
algorithm [22], h as not changed fundamentally since 
the time of the first Prolog implementations. Moreover, 
it is becoming less and less signficant compared to the 
ever-increasing number of external procedures as, for 
example, the procedures used for numerical processing. 
These external procedures are not easy to use. Their 
evocation requires that certain parameters be com- 
pletely known, and this is not in line with the general 
Prolog philosophy that it should be possible anywhere 
and at any time to talk about an unknown object x. 

In order to improve this state of affairs, we have fun- 
damentally reshaped Prolog by integrating at the 
unification level: 1) a refined manipulation of trees, in- 
cluding infinite trees, together with a specific treatment 
of lists; 2) a complete treatment of two-valued Boolean 
algebra; 3) a treatment of the operations of addition, 
substraction, multiplication by a constant and of the 
relations <, I ,>, 2; 4) the general processing of the 
relation #. By doing so, we replace the very concept of 
unification by the concept of constraint solving in a 
chosen mathematical sfructure. By mathematical struc- 
ture, we mean here a domain equipped with operations 
and relations, the operations being not necessarily 
defined everywhere. 

The incorporation of these features into Prolog 
resulted in the new programming language, Prolog III. 
In this article we establish its foundations and illustrate 
its capabilities using representative examples. These 
foundations, which apply to a whole family of “Prolog 
III-like” programming languages, will be presented by 
means of simple mathematical concepts without explicit 
recourse to first-order logic. 

The research work on Prolog III is not an isolated ef- 
fort; other research has resulted in languages whose 
designs share features with Prolog III. The CLP(R) 
language developed by J. Jaffar and S. Michaylov [19] 
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emphasizes real number processing, whereas the CHIP 
language developed by the team led by M. Dincbas [13] 
emphasizes processing of Boolean algebra and 
pragmatic processing of integers and elements of finite 
sets. We should also note the work by J. Jaffar et J-L. 
Lassez [18] on a general theory of “Constraint Logic 
Programming.” Finally, we should mention Prolog II, 
the well-established language which integrates infinite 
tress and the # relation, and whose foundations [9, lo] 
were already presented in terms of constraint solving. 
From a historical point of view, Prolog II can be re- 
garded as the first step towards the development of the 
type of languages discussed in this article. 

The Structure Underlying Prolog 111 
We now present the particular structure which is the 
basis of Prolog III and specify the general concept of a 
structure at the same time. By structure we mean a tri- 
ple (D, F, R) consisting of a domain D, a set F of operu- 
tiom and a set of relations on D. 

Domain 
The domain D of a structure is any set. The domain of 
the structure chosen for Prolog III is the set of trees whose 
nodes are labeled by one of the following: 

1. identifiers, 
2. characters, 
3. Boolean values, 0’ and l’, 
4. real numbers, 
5. special signs <>“, where a is either zero or a 

positive irrational number. 

Figure 1 illustrates such a tree: 

Name&$arriedWeight 

/I\ 
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FIGURE 1 
An element Of the dOt?Iain Of PrOlOQ III. 

The branches emanating from each node are ordered 
from left to right; their number is finite and indepen- 
dent of the label attached to the node. The set of nodes 
of the tree can be infinite. We do not differentiate be- 
tween a tree having only one node and its label. Iden- 



PROLOG III 

tifiers, characters, Boolean values, real numbers and 
special signs <>” will therefore be considered to be par- 
ticular cases of trees. 

By real numbers we mean perfect real numbers and not 
floating point numbers. We make use of the partition 
of the reals into two large categories-the rational 
numbers, which can be represented by fractions (and 
of which the integers are a special case) and the irra- 
tional numbers (as for example T[ and 0) which no 
fraction can represent. In fact, the machine will com- 
pute with rational numbers only and this is related to 
an essential property of the constraints that can be 
employed in Prolog III; if a variable is sufficiently con- 
strained to represent a unique real number then this 
number is necessarily a rational number. 

A tree a whose initial node is labeled by <>* is called 
a list and is written 

where a 1... a, is the (possibly empty) sequence of trees 
constituting the immediate daughters of a. We may omit 
a whenever a is zero. The true lists are those for which 
a is zero : they are used to represent sequences of trees 
(the sequence of their immediate daughters). Lists in 
which a is not zero are improper lists that we have not 
been able to exclude : they represent sequences of trees 
(the sequence of their immediate daughters) completed 
at their right by something unknown of length a. The 
length Ial of the list a is thus the real n + a. A true list has 
as its length a non-negative integer and an improper list 
has as its length a positive irrational number. The list 
<> is the only list with length zero; it is called the empty 
Itit. We define the operation of concatenation on a true list 
and an arbitrary list by the following equality : 

<a 1 ,..., a,>” * <b, ,..., b,>” = <a, ,..., a,,bl ,..., b,>“. 

This operation is associative, (a .a’)*b = a*(a’*b), and 
the empty list plays the role of the neutral element, a* 
<> = a et <>*b = b. We observe that for any list b, 
there exists one and only one true list a, and one and 
only one real a so that 

b = a*<>“. 

This list a is called the prejYx of b and is written Lb] . 

Operations 
Let Dn denote the set of tuples al... a, constructed on 
the domain D of a structure. An n-place operation f is a 
mapping from a subset E of Da to D, 

f. al...a. I+ fal...a,. 

Note that if E is strictly included in Dn, the operation 
f is partial; it is not defined for all tuples of size n. The 
reader should also note that in order to be systematic, 
the result of the operation is written in prefix notation. 
The O-place operations are simply mapping of the form 

f:A*J 

where A is the empty tuple; they are also called constants 
since they can be identified with elements of the 
domain. 

As far as the chosen structure is concerned, Figure 
2 gives the listing of the operations which belong to F. 
In this listing we introduce a more general notation than 
the prefix notation. 

‘: Constants 

id : A k-3 id, 
. . (C’ A t, k“ 

,‘, 0’ :, A t+ o’, 
_n 1’ ,: A I-+ l’, 

q. : A I-+ q, 
<> : “A~<>, 

_’ q...cm : A f-3 “C1...crn(‘. 

n’ 3 ., 
_ Badean operations 

a’ 
: --‘.l : n.(. ~. b, I-+ ‘bl, 

_‘_ h : bib:! I-, bv%, 
js : v :. b,b, I-+ b&r 

* _. 3 : .) bjbz I+ bpbzr 
e : blb2 J-+ bl=b2. 

Num+caI operations 

n List operations 

44 : 11 I-+ 441, 
<,>a : al...a, b3 cal,...,am>, 
(I~...U,’ : I1 t, -cal,...p,>*I~. 

-. ,_n 
~’ bm3ral operations 

FIGURE 2 
A set of operations of Prolog III. 
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In Figure 2, id designates an identifier, c and ci a 
character, 4 et q’ rational numbers represented by frac- 
tions (or integers), with q’ not zero, ma positive integer, 
n a non-negative integer and a; an arbitrary tree. The 
result of the different operations is defined only if bi is 
a Boolean value, r; a real number 1; a list and ei a label 
not of the form <>“. 

To each label corresponds a constant, with the excep- 
tion of irrational numbers and labels of the form <>“, 
where a is not zero. The constant tici... cm” designates 
the true list whose immediate daughters make up the 
sequence of characters ‘cl ‘...‘c,‘. The operations 1, 
A, V, 1, =, corresp0n.d to the classical Boolean opera- 
tions when they are defined. The operations f’, +‘, q x , 
when they are defined, are the l-place + , the 2-place 
k, multiplication by the constant q (when this does not 

lead to confusion we may omit the sign x) and division 
by the constant q’. By ]I, ] we designate the length of the 
list I,. By <al,...,am> ,we designate the true list whose 
immediate daughters make up the sequence ~~,...,a,. 
The operation a,. . a, * applied to a list I, consists in con- 
catenating the true list <a,,...,~,> to left of I,. By 
e1(u2,...,%+2 ) we designate the tree consisting of an ini- 
tial node labeled e1 and the sequence of immediate 
daughters a*,..., IZ~+~. By e,[l,] we designate the tree con- 
sisting of an initial node labeled e, and of the sequence 
of immediate daughters of the list 12. 

We note the following equalities (provided the dif- 
ferent operations used are indeed defined) : 

11 Cl...C, II := < ‘Cl I,... ,‘c,’ > 

UIJ(UI ,..., Um) = Uo[< UI ,..., am>]. 

Using the constants and the operations we have in- 
troduced, we can represent our previous example of a 
tree by 

NameMarriedWei.ght( ” DuPont ‘I, 1 ‘, 755/10) 

or by 

NameMarriedWeight[ < < ’ D ‘, ’ u ’ > * ” pont ‘I, 
O’vl ‘, 75+1/2>]. 

Relations 
Let Dn again denote the set of tuples ai... a, constructed 
on the domain D of a structure. An n-place relation r is 
a subset E of D,. To express that the tuple ai... a, is in 
the relation r we write 

r al...an. 

With respect to the structure chosen for Prolog III, 
Figure 3 shows the relations contained in l? We also in- 
troduce a more graceful notation than the prefix 
notation. 

: One-place relations 
s n .n In 

I 

id e.l : 

FIGURE 3 
A set of relations of Prolog III. 

In Figure 3, n designates an integer greater than 1 and 
0.; an arbitrary tree. The relations id, char, bool, num, 
irint, list and leaf are used to specify that the tree a, is 
an identifier, a character, a Boolean value, a real 
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number, an integer or irrational number, a list, a label 
not of the form < > LT. The relations = and # corre- 
spond of course to the equality and inequality of trees. 
The pair of trees u1u2 is in the relation *only if a, and 
az are Boolean values and if a1 = 1’ entails that u2 = 1’. The 
pair of trees aia2 is in relation <, > , I, 2 only if it 
is a pair of reals in the corresponding classical relation. 

We use the relation I3 to approximate division and 
write 

us f a, i u2 

to express, on the one hand, that a,, u2 and u3 are real 
numbers, with u2 not equal to zero and, on the other 
hand, that if at least one of the reals u2 et u3 is rational, 
it is true that 

u3 = uJaz. 

We use the relations x n+‘, with n 2 2, to approx- 
imate a series of multiplications and write 

a,+, i a, A . . k a, 

to express, on the one hand, that the ai’s are real 
numbers and, on the other hand, that if the sequence 
al... a, contains n or n-l rational numbers, it is true that 

u~+~= a,x...xa,. 

We use the relations * “+I, with n 2 2, to approx- 
imate a series of concatenations and write 

a,+1 A UI* . . . ;a, 

to express that in all cases the ai’s are lists such that 

IQ+11 = Iall +...+ IanI 

and that, according to whether the element ul*..:un is 
or is not defined, 

a,+1 = u,*..:un 

a,+, is of the for: Lul*..:ukJ * b, 

where b is an arbitrary list and k is the largest integer 
for which the element ul*..:uk is defined. 

We recall that al-..:uk is defined only if the lists 
ar,...,Uk+ are all true lists. We also recall that Lu] 
designates the prefuc of a, that is to say, the true list 
obtained by replacing the initial label < > u of a with 
the label < >O. 

Terms and Constraints 
Let us suppose we are working in a structure 

(D, F, R) and let V be a uniuersul set of variables, given 
once and for all, used to refer to the elements of its do- 
main D. We will assume that V is infinite and countable. 
We can now construct syntactic objects of two kinds, 
terms and contraints. T&rn.~ are sequences ofjuxtaposed 
elements from VU F of one of the two forms, 

x orfti...t,, 

where x is a variableJan n-place operation and where 
the ti’s are less complex terms. Comtraints are sequences 
of juxtaposed elements from V U FUR of the form 

r tl...tn, 

where r is an n-place relation and the t;‘s are terms. We 
observe that in the definition of terms we have not 
imposed any restriction on the semantic compatibility 
betweenf and the t;‘s. These restrictions, as we will 
see, are part of the mechanism which takes a term to 
its “value.” 

We introduce first the notion of an assignment o to a 
subset W of variables : such an assignment is simply a 
mapping from W into the domain D of the structure. 
This mapping u extends naturally to a mapping u* from 
a set T, of terms into D specified by 

u*(x) = u(x), 
d”Cftl...tn) = fa*(t,)...d(t,). 

The terms that are not members of T, are those con- 
taining variables not in W, and those containing par- 
tial operations not defined for the arguments u*(d). 
Depending on whether a term t belongs or does not 
belong to T, , the value oft under the assignment u is 
defined and equal to u*(t) or is not defined. Intuitively, 
the value of a term under an assignment is obtained by 
replacing the variables by their values and by evaluating 
the term. If this evaluation cannot be carried out, the 
value of the term is not defined for this particular 
assignment. 

We say that the assignment u to a set of variables 
satisfies the constraint r tl...n if the value u*(t;) of each 
term ti is defined, and if the tuple u *(tl)...u *(tn) is in the 
relation r, that is to say if 

r u*(t,)...u*(t,). 

CClum”nlCaslCrrsCFT”EACY/July 199O/Vo1.33, No.7 73 



Here are some examples of terms associated with the 
structure chosen for F’rolog III. Instead of using the 
prefix notation, we adopt the notations used when the 
different operations were introduced. 

<X>Y, 
-4Yl~ 

<x>*lO, 
duo( +x, Sy). 

The first term represents a list consisting of an element 
x followed by the listy. The second term represents a 
tree, which is not a list, whose top node is labeled by x 
and whose list of immediate daughters isy. The value 
of the third term is never defined, since the concatena- 
tion of numbers is not possible. The value of the last 
term is not defined under any assignment, since x can- 
not be a number and a. Boolean value at the same time. 

The following list offers some examples of constraints. 
Again we adopt the notations introduced together with 
the different Prolog III relations. 

z = y-x, 
xA1y * xvz, 
i-tj+k 5 10, 

TX # y+z, 
TX #y+x. 

We observe that there exist assignments to {x, y, z} which 
satisfy the next to the last constraint (for example a(x) 
= 0’, a(y) = 2, u(t) := 2), but that there is no assign- 

ment which satisfies the last constraint (the variable x 
cannot be a number and a Boolean value at the same 
time). 

Systems of Constraints 
Any finite set S of constraints is called a system of con- 
straints. An assignment u to the universal set V of 
variables which satisfies every constraint of S is a solu- 
tion of S. If u is a solution of S, and W is a subset of V, 
then the assignment (J' to W, so that for every variable 
x in W we have u’(x) = u(x), is called a solution of S on 
W. Two systems of constraints are said to be equivalent 
if they have the same :set of solutions, and are said to be 
equivalent on W if they have the same set of solutions 
on W. 

We illustrate these definitions with some examples 
from our structure: 
l The assignment u to V where u(x) = 1’ for every 
variable x is a solution of the system of constraints 
{x = y, y Z 0}, but it is not a solution of the system 
{x = y, +y # O}. 
l The assignment u to b} defined by u(y) = 4 is a solu- 
tion on 01) of the system {x = y, y # O}. 
l The systems {x = J +y # 0) and {-x = -y, y # 0} 

a.re equivalent. Similarly, the system (1 = 1, x = x} is 
equivalent to the empty constraint system. 
. The systems {x I 2, y I z, x Zz} and {x < z} are not 
equivalent, but they are equivalent on the subset of 
variables {x, z}. 

It should be noted that all solvable systems of con- 
straints are equivalent on the empty set of variables, and 
that all the nonsolvable systems are equivalent. By 
solvable system, we obviously mean a system that has at 
lceast one solution. 

The first thing Prolog III provides is a way to deter- 
mine whether a system of constraints is solvable and if 
so, it solves the system. For example, to determine the 
number x of pigeons and the numbery of rabbits so that 
together there is a total of 12 heads and 34 legs, the 
following query 

{x + y = 12, 2x+4y = 34}? 

gives rise to the answer 

{x = 7, y = 5). 

‘To compute the sequence z of 10 elements which results 
in the same sequence whether 1,2,3 is concatenated to 
its left or 2,3,1 is concatenated to its right, it will suffice 
to pose the query 

(1~1 = 10, <1,2,3>*zAzz <2,3,1>}? 

The unique answer is 

(z = <1,2,3,1,2,3,1,2,3,1>}. 

If in the query the list < 2,3,1> is replaced by the list 
<2,1,3> there is no answer, which means that the 
isystem 

(1.~1 = 10, <1,2,3>*z k .a: <2,3,1>} 

is not solvable. In these examples the lists are all 
<of integer length and are thus true lists. As a result, 
approximated concatenations behave like true 
concatenations. 

In this connection, the reader should verify that 
the system 

{<l>~Z~Z~ <2>} 

is solvable (it suffices to assign to z any improper list hav- 
ing no immediate daughters), whereas the system 

(121 = 10, <l>Y~z: <2>}, 
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which constrains z to be a true list, is not solvable. 
The same holds for approximated multiplication and 
division. Whereas the system 

{t~xxJx2 l,yZ l,z<O} 

is solvable (because the approximated product of two 
irrational numbers is any number), the system 

which constrains y to be a rational number, is not 
solvable. 

Another example of the solving of systems is the 
beginning of a proof that God exists, as formalized by 
George Boole [4]. Th ’ . e dun is to show that “something 
has always existed” using the following live premises : 
1. Something is. 
2. If something is, either something always was, or the 
things that now are have risen out of nothing. 
3. If something is, either it exists in the necessity of its 
own nature, or it exists by the will of another Being. 
4. If it exists by the will of its own nature, something 
always was. 
5. If it exists by the will of another being, then the 
hypothesis, that the things which now are have risen out 
of nothing, is false. 

We introduce live Boolean variables with the follow- 
ing meaning : 
a = 1’ for “Something is,” 
b = 1’ for “Something always was,” 
c = 1’ for “The things which now are have risen 
from nothing,” 
d = 1’ for “Something exists in the necessity of its 
own nature,” 
e = 1’ for “Something exists by the will of another 
Being.” 
The live premises are easily translated into the system 

{u= l’a*bVc,a*dVe,d*b,e* -16) 

which when executed as a query produces the answer 

{u = l’, b = l’, &e = l’, eVc = l’}. 

One observes that the value b is indeed constrained to 1’. 

After these examples, it is time to specify what we 
mean by solving a system S of constraints involving a 
set W of variables. Intuitively, this means that we have 
to find all the solutions of S on W. Because there may 
be an infinite set of such solutions, it is not possible to 
enumerate them all. It is possible, however, to compute 
a system in solved form equivalent to S, whose “most 
interesting” solutions are explicitly presented. More 
precisely through a system in solved form, we understand 
a solvable system such that, for every variable X, the 

solution of S on {x} is explicitly given, whenever this 
solution is unique. One can verify that in the preceding 
examples the systems given as answers were all in 
solved form. 

Before we conclude this section, we should mention 
a useful property for solving systems of constraints in 
the chosen structure. 

PROPERTY If S is a system of Prolog III constraints 
and W a set of variables, then the two following proposi- 
tions are equivalent : 
1. for every x in W, there are several numerical solutions 
of S on {x}; 
2. there exists a numerical irrational solution of S on W. 

By numerical solution or irrational numerical solution, 
on a set of variables, we understand a solution in which 
all the variables in this set have real numbers as values, 
or irrational numbers as values. 

Semantics 06 Prolog Ill-Like 
Lanmuages 
On the basis of the structure we have chosen, we can 
now define the programming language Prolog III. As 
the method employed is independent of the chosen 
structure, we define in fact the notion of a “Prolog III- 
like” language associated with a given structure. The 
only assumption we will make is that the equality rela- 
tion is included in the set of relations of the structure 
in question. 

Meaning of a Program 
In a Prolog III-like language, a program is a definition 
of a subset of the domain of the chosen structure (the 
set of trees in the case of Prolog III). Members of this 
subset are called admissible elements. The set of admissi- 
ble elements is in general infinite and constitutes-in 
a manner of speaking-an enormous hidden database. 
The execution of a program aims at uncovering a 
certain part of this database. 

Strictly speaking, a program is a set of rules: Each rule 
has the form 

where n can be zero, where the ti’s are terms and where 
S is a possibly empty system of constraints (in which 
case it is simply absent). The meaning of such a rule 
is roughly as follows: “provided the constraints in S 
are satisfied, to is an admissible element if l1 and . . . and 
t, are admissible elements (or if n = O).” Figure 4 
depicts such a set of rules. This is our first example of 
a Prolog III program. It is an improvement on a pro- 
gram which is perhaps too well-known, but which 
remains a useful pedagogical tool: the calculation of 
well-balanced meals [9]. 
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FlGURE Q 
Computing light meals. 

The meaning of the first rule is: “provided the four con- 
ditions i 2 0,j 2 0, k > 0, i+j+k s 10 are satisfied, 
the triple h,m,d constitutes a light meal, if h is an hors- 
d’oeuvre with calor&: value i, if m is a main course with 
calorific valuej and ifd is a dessert with calorik value 
k.” The meaning of the last rule is: “Ice-cream is a 
dessert with calorific value 6.” 

We will now offer a precise definition of the set 
of admissible elements: The rules in the program are 
in fact rule schemas. Each rule (of the above form) 
stands for the set of evaluated rules 

u*(to) + a*(t,)...a*(t,) 

obtained by considering all the solutions u of S for which 
the values o*(ti) are defined. Each evaluated rule 

in which only elements ai of the domain occur, can be 
interpreted in two ways: 
1. as a closureproper& of certain subsets E of the domain: 
ifallofa ~,...,a, are members of the subset E, then a is 
also is a member of E (when n = 0, this property states 
that 6 is a member of E), 
2. as a rewrite rule which, given a sequence of elements 
of the domain beginning with ao, sanctions the replace- 
ment of this first element a0 by the sequence al...a, 
(when n = 0, this is the same as deleting the first 
element a~). 

Depending on which of these two interpretations is 
being considered, we formulate one or the other of the 
following definitions: 

Definition 1. The set of admissible elements is the 
smallest subset of the domain (in the sense of inclusion) 
which satisfies all the closure properties stemming from 
the program. 

Definition 2. The admissible elements are the 
members of the domain which (considered as unary 
sequences) can be deleted by applying rewrite rules 
stemming from the program a finite number of times. 

In [lo, 111 we show that the smallest subset in the first 
definition does indeed exist and that the two definitions 
are equivalent. Let us re-examine the previous program 
example. Here are some samples of evaluated rules: 

LightMeal(pbtC,sole,fruit) --) 
Hors Doeuvre(pkk,G) MainCourse(sole,B) 
Dessert(fiuit,2); 

MainCourse(sole, 2) + Fish(sole,P); 

HorsDoeuvre(pkC,G) +; 

Fish(sole,2) +; 

Dessert(fiuit,2) +; 

If we consider these rules to be closure properties of a 
subset of trees, we can successively conclude that the 
following three subsets are sets of admissible elements, 

{HorsDoeuvre(pkC,G), Fish(sole,P), Dessert(fruit,2)}, 
{MainCourse(sole,2)}, 

{LightMeal(pbtC,sole,fiuit)) 

and therefore that the tree 

LightMeal(pbtt,sole,fruit) 
(~0 -b aI...a,, 
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is an admissible element. If we take these evaluated rules 
to be rewrite rules, the sequence constituted solely by 
the last tree can be deleted in the following rewrite steps: 

LightMeal(pltC,sole,fruit) + 
HorsDoeuvre(pAtC,G) MainCourse(sole,2) 

Dessert(fruit,S) + 
MainCourse(sole,2) Dessert(fruit,2) + 

Fish(sole,P) Dessert(fiuit,2) + 
Dessert(fruit,2) + , 

which indeed confirms that the above is an admissible 
element. 

Execution of a Program 
We have now described the information implicit in a 
Prolog III-like program, but we have not yet ex- 
plained how such a program is executed. The aim of the 
program’s execution is to solve the following problem: 
given a sequence of terms tl...tn and a system S of con- 
straints, find the values of the variables which transform 
all the terms ti into admissible elements, while satisfy- 
ing all the contraints in S. This problem is submitted 
to the machine by writing the query 

ti...tn, S? 

Two cases are of particular interest. 1) If the sequence 
tl...tn is empty, then the query simply asks whether the 
system S is solvable and if so, solves it. We have already 
seen examples of such queries. 2) If the system S is 
empty (or absent) and the sequence of terms is reduced 
to one term only, the request can be summarized as: 
“What are the values of the variables which transform 
this term into an admissible element?” Thus, using the 
preceding program example, the query 

LightMeal(h,m,d)? 

will enable us to obtain all the triples of values for h, m, 
and d which constitute a light meal. In this case, the 
replies will be the following simplified systems : 

{h = radishes, m = beef, d = fruit}, 
{h = radishes, m = pork, d = fruit}, 
{h = radishes, m = sole, d = fruit}, 

{h = radishes, m = sole, d = icecream}, 
{/r = radishes, m = tuna, d = fruit}, 

{/z = p&C, m = sole, d = fruit}. 

The method of computing these answers is ex- 
plained by introducing an abstract machine. This is a 
nondeterministic machine whose state transitions are 
described by the three formulas in Figure 5. 

FIGURE 5 
The three formulas which summarize the execution 

of a Prolog Ill-like program. 

Formula (1) represents the state of the machine at a 
given moment. W is a set of variables whose values we 
want to determine, totI.. .t, is a sequence of terms which 
we are trying to delete and S is a system of constraints 
which has to be satisfied. Formula (2) represents the 
rules in the program which is used to change the state. 
If necessary, the variables of (2) are renamed, so that 
none of them are shared with (1). Formula (3) is the new 
state of the machine after the application of rule (2). The 
transition to this new state is possible only if the system 
of constraints in (3) possesses at least one solution 0 
with respect to which all the values a*(si) and a*(tj) 
are defined. 

In order to provide an answer to the query given 
above, the machine starts from the initial state 

(W to...tn, S), 

where W is the set of variables appearing in the query, 
and goes through all the states which can be reached by 
authorized transitions. Each time it arrives at a state 
containing the empty sequence of terms A, it simplifies 
the system of constraints associated with’it and presents 
it as an answer. This simplification can also be carried 
out on all the states it passes through. 

Let us now reconsider our first program example, 
and apply this process to the query. 
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LightMeal(k,m,d)? 

The initial state of the machine is 
(hwd, LightMeal (fmd), 0). 

By applying the rule 
LightMeal(h’, m’, (i’) + 
HorsDoeuvre(h’, i) MainCourse(m’, j) Dessert(d’, 

4 
{i 2 0,~’ > 0, k r 0, i+j+k I 10) 

we proceed to the state 
({h,p,d}, HorsDoeu.vre(h’,i) MainCourse(m’j) 

Dessert(d’, k), 
{irO, k>O, i+j+k<lO, LightMeal(h,m,d) = 
LightMeal(h’, m’, d’)}) 

which in turn simplijies to 
({h&J}, HorsDoeuvre(h’,i) MainCourse(m’,j) 
Dessert(d’,k), 

ant;O,j-‘O, kr0, i+j+k510, h=h’, p=p’, d=d’}), 

({k,p,d}, HorsDoeuvre(h, z) MainCourse(m,j) 
Dessert(d, k), 
(2~0, kz0, i+j+kllO}). 

By applying the rule 
HorsDoeuvre(pBtC, 6) + 

and simplifying the result, we progress to the state 
({h&d}, MainCourse Dessert(d,k), {h=pgt-tC,jr 0, 
krO,j+kc4}). 

By applying the rule 
MainCourse@‘, i) --* Fish@‘, ;) 

and simplifying the result, we proceed to the state 
({h,m,d}, Fish(m’, ;) Dessert(d,k), 
{h=pbte,j?O, kzO,j+kl4, m=m’,j=i}). 

which then simplifies to 
({h,m,d}, Fish(m,j) Dessert(d,k), {h=p&5,j>O, k>O, 
j+ks4}). 

By applying the rule 
Fish(sole, 2) * 

we obtain 
((/z,m,d), Dessert(G!k), {h=pkC, m=sole, kr0, ks2)). 

Finally, by applying the rule 
Dessert(fruit, 2) ,+ 

we obtain 
({h,m,d}, A, {h=pkt, m=sole, d=fruit}). 

We can conclude that the system 

{h = p&C, m = sole, d = fruit} 

constitutes one of the answers to the query. 

To obtain the other answers, we proceed in the same 
way, but use the other rules. In [ll] we prove that this 
method is complete and correct. To be more exact, given 
the abstract machine Mp connected to a program P, we 
show that the following property holds. 

PROPERTY. Let {tr,...,td be a set of terms, S a 
isystem of constraints, and W the set of variables occur- 
ring in them. For any assignment (T to W, the following 
two propositions are equivalent: 
1. the assignment u is a solution of S on W and each 
u*( + 3 is an admissible element for P; 
2. starting from state (W, A, S’) the abstract machine 
MP can reach a state of the form (W, tl...tn, S), where 
S’ admits u as solution on W. 

It should be recognized that there are many ways 
of simplifying the states of the abstract machine and 
checking whether they contain solvable systems of con- 
straints. Therefore, we should not always expect that the 
machine, which uses very general algorithms, arrives at 
the same simplifications as those shown above. In [11] 
we show that the only principle to which all simplifica- 
tions must conform is that states of the abstract machine 
are transformed into equivalent states in this sense: 

DEFINITION. Two states are equivalent if they have 
the form 

(W, t,...t,, S) and (W, t,‘..&‘, S’), 

and if, by introducing n new variables xl,...,xn, the 
systems 

SU{xl=tl ,..., x,=t,} and S’U{xl=tl’ ,..., xn=tn’}, 

are equivalent on the subset ofvariables WU{xr,...,x,}. 

Treatment 06 NUmberS 

Next, we will illustrate the possibilities of Prolog III in 
connection with different program examples. We 
will consider, one after the other the treatment of the 
following: numbers; Boolean values; trees and lists; and 
finally, integers. 

Computing Installments 
The first task is to calculate a series of installments 

made to repay capital borrowed at a certain interest rate. 
We assume identical time periods between two install- 
ments and an interest rate of 10 percent throughout. 
The admissible trees will be of the form: 

InstallmentsCapitaQc), 

where x is the sequence of installments necessary to 
repay the capital c with an interest rate of 10 percent 
between two installments. In Figure 6 the program itself 
is given by two rules: 
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FIGURE 6 
Computing the installments to repay a loan. 

The first rule expresses the fact that it is not necessary 
to pay installments to repay zero capital. The second 
rule expresses the fact that the sequence of n + 1 install- 
ments to repay capital c consists of an installment i and 
a sequence of n installments to repay capital c in- 
creased by 10 percent interest, but the whole reduced 
by installment i. 

This program can be used in different ways. One 
of the most spectacular is to ask what value of i is 
required to repay $1000 given the sequence of install- 
ments < <Pi, 3i>. All we need to do is to put the query 

InstallmentsCapital( < i, Zi, 3i>, lOOO)? 

to obtain the answer 

{i = 207 + 413 / 641). produces the answer 

Here is an abbreviated trace of how the computation 
proceeds. Starting from the initial state 

({i}, InstallmentsCapital( < i,Zi,3i> ,100O). {}). 
and applying the rule 

{X= c 7,5>}. 

InstallmentsCapital( < i’ > l x,c) + Installments 
Capital(x,(l + lO/lOO)c-i’) 

we progress to the state 
({i}, InstallmentsCapital(x,(l+ lO/lOO)c-i’), 
{InstallmentsCapital( < <2i,3i> ,lOOO)= 
InstallmentsCapital (< i’ > *x,c)}), 

which simplifies to 

Computing the Periodicity of a Sequence 
This problem was proposed in [5]. We consider the 
infinite sequence of real numbers defined by 

where xi and x2 are arbitrary numbers. Our aim is to 
show that this sequence is always periodic and that 
the period is 9, in other words, that the sequences 

(!,i>, Insta.llmentsCapital(x,(llllO)c-i’), 
,,iz;: x=<Zi,3i>, c=lOOO}), 

({i}, InstallmentsCapital( < 2i,3i> ,1100-i), 0). 
The reader can verify that when the same rule is 
applied two more times, we obtain, after simplification, 
the states 

XI, X2, X3 ,... and X1+9, x2+9, X3+9 ,... 

are always identical. 

Each of these two sequences is completely determined 
if its first two elements are known. To show that the 
sequences are equal, it is therefore sufficient to show 
that in any sequence of eleven elements 

(Ii}, InstallmentsCapital( < 3i> ,1210-(31/1O)i), I}), 
({i}, InstallmentsCapital( < > ,1331-(641/1OO)z), 0). 

By applying the rule 
InstallmentsCapital (< > ,O) + 

to the last state, we finally obtain 
({i}, {1331-(641/1OO)i=O) 

which simplifies to 
({i}, {i=207 +413/641}). 

Here again the reader should be aware that the 
simplifications presented here are not necessarily those 
the machine will perform. 

Computing Scalar Products 
As an example of approximated multiplication, Figure 
7 shows small program which computes the scalar 
product x1 xy, + . . . +x, xyn of two vectors <xl,...,xn > 
and <yI,...,yn>. 

FIGURE 7 
Computing the scalar product. 

The query 

ScalarProduct( < 1,l > , X, 12) 
ScalarProduct(X, < 2,4 > , 34)? 

we have 

Xl, x2, x3 ,..., 3c10, x11 

xl=xIO and x2=x11. 
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To begin with, Figure 8 illustrates the program that 
enumerates all the finite sequences x1,x2,...,xn which 
respect the rule given above. 

Sequence(c+& *x>) 4; 

FBGURE 8 
Computing the sequence xi+2 = IJ$+~ ) -xi. 

The + signs in the first rule constrain x andy to denote 
numbers. It will be observed that the sequences are 
enumerated from left to right, that is, trees of the form 
Sequence(s) are only admissible if s has the form 
<xn,..,x2,x1 >. If we run this program by asking 

Sequence(s), { JsJ =ll, s i w ; v : u, JUJ =2, JWI = 
2, 24 # w}? 

execution ends without providing an answer. From this 
we deduce that there is no sequence of the form 
x~x~,...,x~~,x~~ such that the subsequencesx,~, and x10,.x11 
(denoted by u and v) are different, and therefore that 
in any sequence x~,x~,...,x~~,x~~ we have indeed x,=x~~ 
and xZ=xI1. 

61 

FIGURE 8 
(BOX right) Filling a rectangle of unknown shape bv 

n squares of unknown, but different Sizes. 
First solution for n=9. 

(Box left) Filling a rectangle of unknown shape? bv 
n squares of unknown, but different sizes. Second 

solution for n=9. 

Computing a Geometric Covering 
Here is a final example which highlights the numerical 
part of Prolog III. Given an integer n, we want to 
know whether it is possible to have n squares of different 
sizes which can be assembled to form a rectangle. If 
this is possible, we would like to determine the sizes of 
tjhese squares and of the rectangle thus formed. For 
example, Figure 9 shows two solutions to this problem, 
tbr n=9. 

We will use a to denote the ratio between the length 
of the longest side of the constructed rectangle, and the 
length of its shortest side. Obviously, we can suppose 
that the length of the shortest side is 1, and therefore 
that the length of the longest side is a. Thus, we have 
to fill a rectangle having the size 1 XU with n squares, 
all of them different. With reference to Figure 10, the 
basis of the filling algorithm will consist of 
:I. placing a square in the lower left-hand corner of 
the rectangle, 
2. filling zone A with squares, 
3. filling zone B with squares. 
Provided zones A and B are not empty, they will be ftied 
recursively in the same way: placing a square in the 
lower left-hand corner and filling two subzones. 

The zones and subzones are separated by jagged 
lines in the shape of steps, joining the upper right 
(corner of the squares and the upper right corner of the 
rectangle. These jagged lines never go downward, and 
if several can be plotted to go from one point to another, 
the lowest one is the one we consider. Figure 11 is an ex- 
ample of all the separation lines corresponding to the 
first solution of the problem for n = 9: 

To be more precise, a zone or subzone has the form 
given in the left box in Figure 12, whereas the entire 

FlGURE 10 
ReCUrSiVe procedure to place 

the different squares 
in the rectangle. 
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FIGURE II 
The different subzones in the first solution 

with n=9. 

rectangle is itself identified with the particular zone 
drawn on the right. 

The zone is delimited below by a jagged Line L join- 
ing a point P to point Q, and in Figure 12 by a jagged 
line L’ joining the same point P to the same point Q 
Point P is placed anywhere in the rectangle to be fdled, 
and Qdenotes the upper right corner of the rectangle. 
These jagged lines are represented by alternating 
sequences of vertical and horizontal segments 

~0, h, VI,..., hn, vn, 

where vi denotes the length of a vertical segment, and 
h; the length of a horizontal segment. The hi’s are always 
strictly positive. The vi’s are either zero, either positive 
to denote ascending segments, or negative to denote 
descending segments. The vi’s of the upper lines are 
never negative, and if a zone is not empty, only the first 
vertical segment vO in its lower line is negative. 

If these conventions are applied to the entire 
rectangle (right diagram above), the lower line L can 
be represented by the sequence -1, a,1 and the upper line 
L’ by a sequence having the form O,h,,O ,..., h,,O, 
where hi+ . ..+h. =a, and the hi’s are positive. 

The heart of the program consists in admitting trees 
of the form 

FilledZone(L, L’, C, C’) 

only if the zone delimited below by L can be tilled with 
squares and can be bounded above by L’. The squares 
are to be taken from the beginning of the list C, and C’ 
has to be the list of squares which remain. We also 
need to introduce trees of the form 

PlacedSquare(b, L, L’) 

which are admitted only if it is possible to place a square 
of size b xb at the very beginning of line L and if L’ is 
the line making up the right vertical side of the square 
continued by the right part of L (see Figure 13). In fact 
L denotes the lower line of a zone from which the first 
vertical segment has been removed. The diagram shows 
the three cases that can occur and which will show up 
in three rules. Either the square overlaps the first step, 
which in fact was a pseudostep of height zero, or the 
square fits against the first step, or the square is not big 
enough to reach the first step. 

J!. FlGURE W3 
The three ways to Place a square. 

FIGURE I2 
General and initial shape of a zone or SUbZOne. 
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The program itself is constituted by the following 10 
rules listed in Figure 14. 

FlGURE 14 

Program for filling a rectangle of unknown shape by 
n squares of unknown, but different sizes. 

The call to the program is made with the query 

FilledRectangle(u, C), { 1 C( = n}? 

where n, the only known parameter, is the number of 
squares of different sizes that are to fill the rectangle. 
The program computes the possible size 1 xa of the rec- 
tangle (a 2 1) and t.he list C of the sizes of each of the n 
squares. The computation begins by executing the first 
rule, which simultaneously constrains a to be greater 
than or equal to 1, creates n different squares (of 

unknown size), and starts filing the zone constituted by 
the entire rectangle. Even if the line L, constituting the 
upper limit of this zone, is unknown at the beginning, 
given that this line must join-without itself 
descending-two points at the same height, this line will 
necessarily be a horizontal line (represented by steps of 
height zero). If we ask the query 

FilledRectangle(u, C), { 1 C( = 9}? 

we obtain 8 answers. The first two 

(a = 33/32, C= <15/32, 9116, l/4, 7132, 118, 7/16, 
1132, 5/16, 9132 >}, 

{a = 69161, C= < 33161, 36161, 28161, 5161, 2161, 
9161, 25161, 7161, 16/61>}. 

correspond to the two solutions we have drawn 
earlier. The other six answers describe solutions which 
are symmetrical to these two. In order to locate the 
positions of the various squares in the rectangle we can 
proceed as follows. One fills the rectangle using all the 
squares of the list C in their order of appearance. At each 
stage, one considers all the free corners having the same 
orientation as the lower left corner of the rectangle and 
one chooses the rightmost corner to place the square. 

There is a vast amount of literature concerning this 
problem. Let us mention two important results. It has 
been shown in [25] that for any rational number a 
L 1 there always exists an integer n such that the rect- 
angle of size 1 x a can be filled with n distinct squares. 
For the case of a = 1 (when the rectangle to be filled is 
a square), it has been shown in [14] that the smallest 
possible n is n = 21. 

Treatment 09 Boolean vafues 
Computing Faults 
In this example we are interested in detecting the defec- 
tive components in an adder which calculates the binary 
sum of three bits x1, xZ, xa in the form of a binary 
number given in two bitsyly2. As we can see in Figure 
15, the circuit proposed in [16] is made up of 5 com- 
ponents numbered from 1 to 5: two and gates (marked 
And), one or gate (marked Xor) and two exclusive or gates 
(marked Xor). We have also used three variables uI, uZ, 
uJ to represent the output from gates 1, 2 and 4. 

FIGURE q5 

An elementary adder 
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We introduce five more Boolean variables di to express 
by di = 1’ that “gate number i is defective.” If we adopt 
the hypothesis that at most, one of the five components 
has a defect, the program connecting the values xi, yi 
and di is shown in Figure 16. 

‘__ ,_. *’ ‘/ n 
PLO I ‘;.. 

eI .:~~,.~ir~~t(;xl,~~~x3;!:.~~1,~2~, .~dI,d2,d$i&dfM + 
,’ AtM6stOacz(<iil~Z,d~;d4jd5r), ., .x d. *a 

, ‘(*dl & (ul’,g X1.&3)) r ’ 
-d2 Ai $112 E.x2A\u3); ._ 

Detecting the faults of the adder. 

In this program the admissible trees of the form 

AtMostOne(D) 

are those in which D is a list of Boolean elements 
containing at most one 1’. The admissible trees of 
the form 

OrInAtMostOne(D, d) 

are those in which D is a list of Boolean elements 
containing at most one 1’ and where d is the disjunc- 
tion of these elements. 

If the state of the circuit leads us to write the query 

Circuit(<l’, l’, O’>,<O’, l’>,<dl,d2, d3, d4, d5>)? 

the diagnosis will be that component number 4 is 
defective: 

{dl=O’, d2=0’, d3=0’, d4=1’, d5=0’}. 

If the state of the circuit leads us to write the query 

Circuit(<l’, 0’, l’>,<O’, O’>,<dl, d2, d3, d4,d5>)? 
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the diagnosis will then be that either component 
number 1 or component number 3 is the defective one: 

{dlVdS=l’, dlAd3=0’, d2=0’, d4=0’, d5=0’}. 

Computing Inferences 
We now consider the 18 sentences of a puzzle by Lewis 
Carroll [7], which we list here. Questions ofthe follow- 
ing type are to be answered: “what connection is there 
between being clear-headed, being popular and being 
fit to be a Member of Parliament?” or “what connec- 
tion is there between being able to keep a secret, being 
fit to be a Member of Parliament and being worth one’s 
weight in gold?” 

1. Any one, iit to be an Ml?, who is not always speak- 
ing, is a public benefactor. 
2. Clear-headed people, who express themselves well, 
have a good education. 
3. A woman, who deserves praise, is one who can keep 
a secret. 
4. People, who benefit the public, but do not use their 
influence for good purpose, are not fit to go into 
Parliament. 
5. People, who are worth their weight in gold and who 
deserve praise, are always unassuming. 
6. Public benefactors, who use their influence for good 
objects, deserve praise. 
7. People, who are unpopular and not worth their 
weight in gold, never can keep a secret. 
8. People, who can talk for ever and are fit to be 
Members of Parliament, deserve praise. 
9. Anyone, who can keep a secret and who is unassum- 
ing, is a never-to-be-forgotten public benefactor. 
10. A woman, who benefits the public, is always popular. 
11. People, who are worth their weight in gold, who 
never leave off talking, and whom it is impossible to 
forget, are just the people whose photographs are in 
all the shop-windows. 
12. An ill-educated woman, who is not clear-headed, is 
not fit to go to Parliament. 
13. Anyone, who can keep a secret and is not forever 
talking, is sure to be unpopular. 
14. A clear-headed person, who has influence and uses 
it for good objects, is a public benefactor. 
15. A public benefactor, who is unassuming, is not 
the sort of person whose photograph is in every 
shop-window. 
16. People, who can keep a secret and who use their 
influence for good purposes, are worth their weight 
in gold. 
17. A person, who has no power of expression and who 
cannot influence others, is certainly not a woman. 
18. People, who are popular and worthy of praise, either 
are public benefactors or else are unassuming. 

Each of these 18 statements is formed from basic 
propositions and logical connectives. To each basic 
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proposition corresponds a name, in the form of a 
character string, and a logical value represented by a 
Boolean variable. The information contained in the 18 
statements can then be expressed in a single rule formed 
by a large head term, an empty body, and a sizeable 
constraint part depicted in Figure 17. 

The world described in Lewis Carroll’s puzzle. 

To be able to deal with subcases, we introduce Figure 18: 

FIGURE 18 
The subworlds described in Lewis Carroll’s puzzle. 

In order to compute the connection which exists 
between “clear-headed,” “popular” and “fit to be a 
Member of Parliament” it suffices to write the query 

PossibleSubCase( < 
<P,“clear-headed I1 > , 
< 4,” popular ‘I > , 
< r,” fit to be a Member of Parliament If > > )? 

The answer is the set of constraints 

@: bool, q : bool, r : bool}, 

which means that there is no connection between 
“clear-headed,” “ popular” and “fit to be a Member of 
Parliament.” 

To compute the connection which exists between 
“able to keep a secret,” “fit to be a Member of 
Parliament” and “worth one’s weight in gold” it suffices 
to write the query 

PossibleSubCase( < 
p;“able to keep a secret ‘I > , 
< 4,” fit to be a Member of Parliament ” > , 
< r,” worth one’s weight in gold ” > > )? 

The answer is 
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which means that persons who can keep secrets and are 
fit to be Members of Parliament are worth their weight 
in gold. 

In fact, in these two examples of program execution 
we have assumed that Prolog III yields as answers very 
simplified solved systems, particularly, those not con- 
taining superfluous Boolean variables. If this had not 
been the case, to show (as opposed to find) that persons 
who can keep secrets and are fit to be Members of 
Parliament are worth their weight in gold, we would 
have had to pose the query 

PossibleSubCase( < 
<~,“able to keep a secret ‘I > , 
< q,“lit to be a Member of Parliament ” > , 
< r,” worth one’s weight in gold ” > > ), 

{x = (fAq>r)}? 

and obtain a response of the form {x = l’,...} or obtain 
no answer to the query 

PossibleSubCase( < 
p,“able to keep a secret r’ > , 

<q,” fit to be a Member of Parliament II > , 
< r,” worth one’s weight in gold It > > )? 

{(pAq>r) = O’}? 

Treatment 0F Trees and Lists 
Computing the Leaves of a Tree 
Here is, first of all, an example in which we access labels 
and daughters of a tree by the operation [I. We want to 
calculate the list of the leaves of a finite tree without 
taking into account the leaves labeled < >u. Figure 19 
illustrates the program. 

FIGURE 19 
Computing the leaves of a tree. 

Trees of the form 
Leaves(u, x) 

are admissible only if x is the list of leaves of the finite 
tree a (not including the leaves labeled < > “). The 

query 

Leaves(height( ” Max I’, < 180400,meters > ,l’), x)? 
produces the answer 

{x = < ‘Ml, ‘a’, lx’, 9/5, meters, l’>}. 

Computing Decimal Integers 
Our second example shows how we can use approx- 
imated concatenation to access the last element of a list. 
We want to transform a sequence of digits into the in- 
teger it represents. Figure 20 shows the program 
without comments. 

FIGURE 20 
Computing an integer from the list of its digit. 

As a reply to the query 

Value( < 1,9,9,0 > , x)? 

we obtain 
{x=1990}. 

Computing the Reverse of Lists 
If one knows how to access the first and the last elements 
of a list, it must be possible to write an elegant program 
computing the reverse of a list. The one I propose is 
illustrated in Figure 21. 

FBGURE 21 
Reversing a list. 
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Each of the two queries 

Reverse(< 1,2,3,4,5 > , x)? 
Reverse(x, < 1,2,3,4,5 >)? 

produces the same answer 

{x- < 5,4,3,2,1>}. 

For the query 

Reverse(x, r) Reverse& z), {x # z, 1x1 =lO}? 

we get no answer at all, which confirms that reversing 
a list twice yields the initial list. 

Context-Free Recognizer 
The treatment of concatenation provides a systematic 
and natural means ofrelating “context-free” grammar 
rules with Prolog III rules, thus constructing a 
recognizer. Let US for example consider the grammar 

{S + AX, A + A, A + aA, X --* A, X -+ aXb} 

which defines the language consisting of sequences of 
symbols of the form ambn with m 2 n. The program in 
Figure 22 corresponds to the grammar: 

FIGURE 22 
Recognizer associated with a context-free grammar. 
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The query 

Sform( “aaabbb”)? 

produces the answer 

which signifies that the string “‘aaabb” belongs to the 
language, whereas the query 

Sform( “aaabbb” )? 

produces no response, which means that the string 
’ ‘aaabbbb’ ’ does not belong to the language. 

Treatment 06 Integers 
The algorithms used for solving constraints on integers 
are complex and quite often inefficient. It is for 
this reason that the structure underlying Prolog III does 
not contain a relation restricting a number to be only 
an integer. However, we have considered a way of 
enumerating integers satisfying the set of current 
constraints. 

Enumeration of Integers 
The Prolog III abstract machine is modified to 

behave as if the following infinite set of rules 

enum(0) + ; 
enum( - 1) + ; 
enum(1) --) ; 

enum( - 2) -+; 
enum(2) +; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

had been added to every program. Moreover, the 
abstract machine is implemented to guarantee that 
the search for applicable rules takes a finite amount of 
time whenever this set is itself finite. In connection with 
the definition of the abstract machine, this can be re- 
garded as adding all the transitions of the form 

(W, t&...t,, S) + (W, t,...tm, SU{t,=enum(n)}), 

where n is an integer such that the styem S U b,, = enum 
(n)} admits at least one solution in which the values of 
the t;‘s are all defined. 

For example, if in the current state of the abstract 
machine, the first term to be deleted is <<enurn(x and 
if the system S of constraints is equivalent on {x} to 
(314 IX, x5 3 + l/4}, then there will be two transitions: 
one to a state with a system equivalent to S U {x= I}, the 
other to a state with a system equivalent to S U {x=2}. 
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We should add in this connection that if S is a system 
forcing the variable x to represent a number, then, in 
the most complex case, the system S is equivalent on {x} 
to a system of the form 

the nondeterminism to enumerate all the integers which 
are to satisfy these constraints. Figure 23 indicates the 
program without any comments: 

{x 2 ao, x # al )...) x # a,, x I ++I}, 

where the ai’s are rational numbers. 

A problem, taken from one of the many books of 
M. Gardner [15], illustrates nicely the enumeration of 
integers. The problem goes like this. When prices of 
farm animals were much lower than they are now, a 
farmer spent $100 to buy 100 animals of three different 
kinds: cows, pigs and sheep. Each cow cost $10, each pig 
$3 and each sheep 50 cents. Assuming that he bought 
at least one cow, one pig and one sheep, how many of 
each animal did the farmer buy? 

‘_ /I&_ ‘_ /I&_ 
‘;,‘a: .-(. ‘;,‘a: .-(. 

,’ ,’ 

X_’ X_’ ._ ._ 
. . . . Solution(i,j, i+j) -+ Solutionti, j, i+j) -+ 

.:, .:, V&.NZ(<D,O,N;A,L,D>, i) V&.e(<D,O,N;A,L.,D>, i) 
ValuekG,E,R,AL,D>, j) ValuekG,E,R,AL,D>, j) 
Value(cR,O,B,E;R,T>, i+j) Value(cR,O,B,E;R,T>, i+j) 

, DifferentAndBeeweenO9(x) 
Integers(x), 

‘_ (cD,G,R,E,N,B,A,L,T,O~ =x, 
D # 0, G’+ 0, R + 0):: 

Value(o, 0)-t ; ‘I_‘. 
Value(y, lOi+j) -+ 

Valueb, i), Cy 4+); 

Let x, y and z be the number of cows, pigs and sheep 
that the farmer bought. The query 

enum (x) enurn enum (z), 
{x+y+z=lOO, lOx+3y+z/2=100, x 21,~ rl, t >l}? 

DifferentAndB&weknO9(<r) -+; 
DiffftrentAndgetweeaDS(cijrx).-t 

OutOf(i, i) ,. 
DifferentAndBetw$&nOB(w), 
(OSi,i2;9]; ‘. ‘_. Li _ 

produces the answer 

{x=5,y=l, e=94}. 

This problem reminds us of a problem mentioned at the 
beginning of this article. Find the number x of pigeons 
and the numbery of rabbits such that together there is 
a total of 12 heads and 34 legs. It was solved by putting 
the query 

OutOfC, 0) -3; ~ 
OutOf(i, cj>*x) --f .( 

outof(i, x), (i +p; L 

Integers(<:>) +; .L 
Integers(c:iz*x) -+ 

enurn Integers(x); 

{x+y=12, 2~+4y=34}? 
FIGURE 23 

SOlVing DONALD+GERALD=ROBERT. 

But, given that a priori, we have no guarantee that the 
solutions of this system are non-negative and integer 
numbers, it is more appropriate to put the query 

The answer to the query 

Solution (t j, k)? 

enum(x) enum(y), {x+y=12, 2x+4y=34, x20, ylO}? is 

which produces the same answer {i=526485,j=197485, k=723970}. 

{x=7,y=5}. Self-Referential Puzzle 

Cripto-Arithmetic 
Next we look at another problem that illustrates the 
enumeration of integers. We are asked to solve a clas- 
sical cripto-arithmetic puzzle: assign the ten digits 
012 3456789tothetenletters,D,G,R,O,E,&B,A,L,T ,>>,,,,,3 
in such a way that the addition DONALD + GERALD 
= ROBERT holds. We deterministically install the 

maximum number of constraints on the reals and use 

The last example is a typical combinatorial problem 
that is given a natural solution by enumeration of 
integers involving approximated concatenation and 
multiplication. Given a positive integer n, we are asked 
to find 71 integersxl,..., x, so the following property holds: 

“In the sentence that I am presently uttering, the 
number 1 occurs x1 times, the number 2 occurs x2 
times,..., the number 71 occurs x, times.” 

,)._ _, 
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One proceeds as if one were using true (and not 
approximated) concatenation and one writes the 
program whose admissible trees are of the form 

Counting(<xl ,..., x,>, <y,+l,..., yn+l>), 

each xi being an integer between 0 and m, each yi 
being the number of occurrences of the integer i in the 
list <x l,...,~m>. Figure 24 illustrates the program: 

FIGURE 24 
Counting the occurrences of each integer in a 

list of integer. 

The constraint { < 1:> *Y = F < 1 >} is an elegant way 
of forcing Yto be a list of 1’s. If everything were perfect, 
we could simply ask the query “Counting (X,x), { 1x1 
= n}” to obtain the list of the desired n integers. Since 
Prolog III is not perfect, we have to substitute approx- 
imate concatenations for true concatenations. We must, 
therefore, complete the program with an enumeration 
of the integers xl,...,xn that we are looking for. All the 
lists are thus constrained to be of integer length-to be 
true lists; consequently all the approximated concatena- 
tions become true concatenations. In order to reduce 
the enumeration of integers,we introduce two proper- 
ties: The first property is 

x1+...+xn=2n, 
which expresses that the total number of occurrences of 
numbers in the sentences is both x1 + . . +x, and 2n. The 
second is 

Ox,+1x2+...+(n-l)xn=n(n+1)/2, 

which expresses that the sum of numbers which appear 
in the sentence is bot.h lx, +2x2 + . + nxn and x1 + . . +x, 
+l+ . . . +n. From all these considerations the final 
program results in Figure 25. 

FIGURE 25 
Solving the self-referential PUZZle. 

Assigning successively to n the values 1,2,...,20 and 
asking the query 

Solution(X), (14 = n}? 

88 



PROLOG III 

we obtain as answers 

<3,1,3,1>], 
< 2,3m > 1, 
< 3,2,U1> 1, 
<4,3,2,2,1M > 1, 
c 5,3,2,1,2,1,1,1> ], 
~6,3,2,1,1,2,1,1,1> 1, 
<7,321112111>}, ,,,,Y,,V 
<8,3211112111>}, ,,,,,,,Y, 
~;8j.,i.~;i.;;.l.;i.l.;i.~i.l.~,j )...... 

,,,,,,,9,,9,>,9,,9 
<173211111111111112111>]. ,,,, 3 ,,,,,,, ,,v,,vv 

The regularity in the answer gives rise to the idea of 
proving that for n 2 7 there always exists a solution of 
the form 

Xl,...& = n-3, 3, 2, l,...) 1, 2, 1, 1, 1. 

Self-referential-puzzle, n = 25 1 5 min 51 set 
Self-referential-puzzle, n = 30 1 17 min 55 set 

FIGURE 26 
Benchmarks 
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Practical ReuUzation 
Prolog III is obviously more than an intellectual exer- 
cise. A prototype of a Prolog III interpreter has been 
running in our laboratory since the end of 1987. A com- 
mercial version based on this prototype is now being 
distributed by the company PrologIA at Marseilles 
(Prolog III version 1). This product incorporates the 
functions described in this article as well as facilities 
calculating maximum and minimum values of numer- 
ical expressions. We have been able to use it to test our 
examples and to establish the following benchmarks (on 
a Mac II, first model). 

All the figures in Figure 26, except when stated other- 
wise, are the complete execution times of complete pro- 
grams including the backtracking, input of queries and 
output of answers. The installment calculation consists 
of computing a sequence of installments i, 2i, 3i,...,ni 
needed to reimburse a capital of 1000. In order to do 
justice to these results, one must take into account the 
fact that all the calculations are carried out in infinite 
precision. In the installment example with n=lOO, a 
simplified fraction with a numerator and a denominator 
with more than 100 digits is produced! 

W 
e conclude this article with information on 
the implementation of Prolog III. The 
kernel of the Prolog III interpreter consists 
of a two-stack machine which explores the 
search space of the abstract machine via 
backtracking. These two stacks are filled 

and emptied simultaneously. In the first stack, one 
stores the structures representing the states through 
which one passes. In the second stack, one keeps track 
of all the modifications made on the first stack; for this 
purpose address-value pairs are used to make the 
needed restorations upon backtracking. A general 
system of garbage collection [23] is able to detect those 
structures that have become inaccessible and to regain 
the space they occupy by compacting the two stacks. 
During this compaction the topography of the stacks is 
completely retained. The kernel of the interpreter also 
contains the central part of the solving algorithms for 
the = and # constraints. These algorithms are essen- 
tially an extension of those already used in Prolog II and 
described in [8]. The extension concerns the treatment 
of list concatenation and the treatment of linear 
numerical equations containing at least one variable not 
restricted to represent a non-negative number. A 
general mechanism for the delaying of constraints, 
which is used to implement approximated multiplica- 
tion and concatenation, is also provided in the kernel. 
Two submodules are called upon by the interpreter, one 
for the treatment of Boolean algebra, the other for the 
remaining numerical part. 

The Boolean algebra module works with clausal 
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forms. The algorithms used [2] are an incremental 
version of those developed by P Siegel [24], which are 
themselves based on SL-resolution [20]. They deter- 
mine if a set of Boolean constraints is solvable, and they 
simplify these constraints into a set of constraints 
containing only a minimal subset of variables. Related 
experiments have been performed with an algorithm 
based on model enumeration [21]. Although significant 
improvement has been achieved as far as solvability tests 
are concerned, a large part of these ameliorations is lost 
when it comes to simplifying the constraints on output. 
We should mention that W. Biittner and H. Simonis ap- 
proach the incremental solving of Boolean constraints 
with quite different (algorithms [6]. 

The numerical module treats linear equations, the 
variables of which are constrained to represent non- 
negative numbers. (These variables x are introduced to 
replace constraints of the formpr 0 by constraints x = 
p and x 2 0). The module consists essentially of an in- 
cremental implementation of G. Dantzig’s simplex 
algorithm [12]. The choice of pivots follows a method 
proposed in M. Balinski and R. Gomory [l] which, like 
the well-known method of R. Bland [3], avoids cycles. 
The simplex algorithm is used both to verify whether 
the numerical constraints have solutions and to detect 
those variables having only one possible value. This 
allows us to simplify the constraints by detecting the hid- 
den equations in the original constraints. For example, 
the hidden equation x = y will be detected in {X L y, 
y > x}. The module also contains various subprograms 
needed for addition and multiplication operations in in- 
finite precision, that is to say, on fractions whose 
numerators and denominators are unbounded integers. 
Unfortunately, we have not included algorithms for the 
systematic elimination of useless numerical variables 
in the solved systems of constraints. The work of J-L. 
Imbert [17] should be noted in this connection. 
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