
http://crossmark.crossref.org/dialog/?doi=10.1145%2F79204.79210&domain=pdf&date_stamp=1990-07-01

P
rolog was initially designed to process natural
languages. Its application in various problem
solving areas has demonstrated its capabilities,
but has also made clear its limitations. Some of
these limitations have been overcome as a result

of increasingly efficient implementations and ever
richer environments. The fact remains, however, that
the core of Prolog, namely, Alan Robinson’s unification
algorithm [22], h as not changed fundamentally since
the time of the first Prolog implementations. Moreover,
it is becoming less and less signficant compared to the
ever-increasing number of external procedures as, for
example, the procedures used for numerical processing.
These external procedures are not easy to use. Their
evocation requires that certain parameters be com-
pletely known, and this is not in line with the general
Prolog philosophy that it should be possible anywhere
and at any time to talk about an unknown object x.

In order to improve this state of affairs, we have fun-
damentally reshaped Prolog by integrating at the
unification level: 1) a refined manipulation of trees, in-
cluding infinite trees, together with a specific treatment
of lists; 2) a complete treatment of two-valued Boolean
algebra; 3) a treatment of the operations of addition,
substraction, multiplication by a constant and of the
relations <, I ,>, 2; 4) the general processing of the
relation #. By doing so, we replace the very concept of
unification by the concept of constraint solving in a
chosen mathematical sfructure. By mathematical struc-
ture, we mean here a domain equipped with operations
and relations, the operations being not necessarily
defined everywhere.

The incorporation of these features into Prolog
resulted in the new programming language, Prolog III.
In this article we establish its foundations and illustrate
its capabilities using representative examples. These
foundations, which apply to a whole family of “Prolog
III-like” programming languages, will be presented by
means of simple mathematical concepts without explicit
recourse to first-order logic.

The research work on Prolog III is not an isolated ef-
fort; other research has resulted in languages whose
designs share features with Prolog III. The CLP(R)
language developed by J. Jaffar and S. Michaylov [19]

The prototype mterpreter was built as a cooperative effort between the
laboratory (GIA) and the company Prolog-IA. Substantial financial support
was obtained from the Centre National d’Etudes des T<communications
(contract 86 1B 027) and from the CEE within the framework ofthe Esprit
project PI106 “Further dcvcloprnent of Prolog and its Validation by KBS in
Xchnical Areas.” Additional support was granted by the Commissariat B
I’Energie Atomiquc in connection with the Association M~dttfrannOnne pour
lc DOveloppement de I’IA; by Digital Equipment Corporation in connection
mith an External Research Grant; and by the Ministtre de la Recherche et
de I’Enseignement Sup&ieur within the two “Programmes de Recherches
Concert&,” “Genie Logiciel” and “Intelligence Artificielle.” Finally, the most
recent work on approximated multiplication, and concatenation has been sup-
ported by the CEE Basic Research initiative in the context ofthe “Computa-
tlonal Logic” project.

A very preliminary version ofthis paper has appeared in the Proceedinpof!he
4!h Annual ESPRIT Conference, Brussels, North Holland, 1987, pp. 611.629.

70

emphasizes real number processing, whereas the CHIP
language developed by the team led by M. Dincbas [13]
emphasizes processing of Boolean algebra and
pragmatic processing of integers and elements of finite
sets. We should also note the work by J. Jaffar et J-L.
Lassez [18] on a general theory of “Constraint Logic
Programming.” Finally, we should mention Prolog II,
the well-established language which integrates infinite
tress and the # relation, and whose foundations [9, lo]
were already presented in terms of constraint solving.
From a historical point of view, Prolog II can be re-
garded as the first step towards the development of the
type of languages discussed in this article.

The Structure Underlying Prolog 111
We now present the particular structure which is the
basis of Prolog III and specify the general concept of a
structure at the same time. By structure we mean a tri-
ple (D, F, R) consisting of a domain D, a set F of operu-
tiom and a set of relations on D.

Domain
The domain D of a structure is any set. The domain of
the structure chosen for Prolog III is the set of trees whose
nodes are labeled by one of the following:

1. identifiers,
2. characters,
3. Boolean values, 0’ and l’,
4. real numbers,
5. special signs <>“, where a is either zero or a

positive irrational number.

Figure 1 illustrates such a tree:

Name&$arriedWeight

/I\
(. //[\\I’

755/10

FIGURE 1
An element Of the dOt?Iain Of PrOlOQ III.

The branches emanating from each node are ordered
from left to right; their number is finite and indepen-
dent of the label attached to the node. The set of nodes
of the tree can be infinite. We do not differentiate be-
tween a tree having only one node and its label. Iden-

PROLOG III

tifiers, characters, Boolean values, real numbers and
special signs <>” will therefore be considered to be par-
ticular cases of trees.

By real numbers we mean perfect real numbers and not
floating point numbers. We make use of the partition
of the reals into two large categories-the rational
numbers, which can be represented by fractions (and
of which the integers are a special case) and the irra-
tional numbers (as for example T[and 0) which no
fraction can represent. In fact, the machine will com-
pute with rational numbers only and this is related to
an essential property of the constraints that can be
employed in Prolog III; if a variable is sufficiently con-
strained to represent a unique real number then this
number is necessarily a rational number.

A tree a whose initial node is labeled by <>* is called
a list and is written

where a 1... a, is the (possibly empty) sequence of trees
constituting the immediate daughters of a. We may omit
a whenever a is zero. The true lists are those for which
a is zero : they are used to represent sequences of trees
(the sequence of their immediate daughters). Lists in
which a is not zero are improper lists that we have not
been able to exclude : they represent sequences of trees
(the sequence of their immediate daughters) completed
at their right by something unknown of length a. The
length Ial of the list a is thus the real n + a. A true list has
as its length a non-negative integer and an improper list
has as its length a positive irrational number. The list
<> is the only list with length zero; it is called the empty
Itit. We define the operation of concatenation on a true list
and an arbitrary list by the following equality :

<a 1 ,..., a,>” * <b, ,..., b,>” = <a, ,..., a,,bl ,..., b,>“.

This operation is associative, (a .a’)*b = a*(a’*b), and
the empty list plays the role of the neutral element, a*
<> = a et <>*b = b. We observe that for any list b,
there exists one and only one true list a, and one and
only one real a so that

b = a*<>“.

This list a is called the prejYx of b and is written Lb] .

Operations
Let Dn denote the set of tuples al... a, constructed on
the domain D of a structure. An n-place operation f is a
mapping from a subset E of Da to D,

f. al...a. I+ fal...a,.

Note that if E is strictly included in Dn, the operation
f is partial; it is not defined for all tuples of size n. The
reader should also note that in order to be systematic,
the result of the operation is written in prefix notation.
The O-place operations are simply mapping of the form

f:A*J

where A is the empty tuple; they are also called constants
since they can be identified with elements of the
domain.

As far as the chosen structure is concerned, Figure
2 gives the listing of the operations which belong to F.
In this listing we introduce a more general notation than
the prefix notation.

‘: Constants

id : A k-3 id,
. . (C’ A t, k“

,‘, 0’ :, A t+ o’,
_n 1’ ,: A I-+ l’,

q. : A I-+ q,
<> : “A~<>,

_’ q...cm : A f-3 “C1...crn(‘.

n’ 3 .,
_ Badean operations

a’
: --‘.l : n.(. ~. b, I-+ ‘bl,

‘ h : bib:! I-, bv%,
js : v :. b,b, I-+ b&r

* _. 3 : .) bjbz I+ bpbzr
e : blb2 J-+ bl=b2.

Num+caI operations

n List operations

44 : 11 I-+ 441,
<,>a : al...a, b3 cal,...,am>,
(I~...U,’ : I1 t, -cal,...p,>*I~.

-. ,_n
~’ bm3ral operations

FIGURE 2
A set of operations of Prolog III.

COMMuNlCATlON~OFTllEACYlJuly 19901Vo1.33, No.7 71

In Figure 2, id designates an identifier, c and ci a
character, 4 et q’ rational numbers represented by frac-
tions (or integers), with q’ not zero, ma positive integer,
n a non-negative integer and a; an arbitrary tree. The
result of the different operations is defined only if bi is
a Boolean value, r; a real number 1; a list and ei a label
not of the form <>“.

To each label corresponds a constant, with the excep-
tion of irrational numbers and labels of the form <>“,
where a is not zero. The constant tici... cm” designates
the true list whose immediate daughters make up the
sequence of characters ‘cl ‘...‘c,‘. The operations 1,
A, V, 1, =, corresp0n.d to the classical Boolean opera-
tions when they are defined. The operations f’, +‘, q x ,
when they are defined, are the l-place + , the 2-place
k, multiplication by the constant q (when this does not

lead to confusion we may omit the sign x) and division
by the constant q’. By]I,] we designate the length of the
list I,. By <al,...,am> ,we designate the true list whose
immediate daughters make up the sequence ~~,...,a,.
The operation a,. . a, * applied to a list I, consists in con-
catenating the true list <a,,...,~,> to left of I,. By
e1(u2,...,%+2) we designate the tree consisting of an ini-
tial node labeled e1 and the sequence of immediate
daughters a*,..., IZ~+~. By e,[l,] we designate the tree con-
sisting of an initial node labeled e, and of the sequence
of immediate daughters of the list 12.

We note the following equalities (provided the dif-
ferent operations used are indeed defined) :

11 Cl...C, II := < ‘Cl I,... ,‘c,’ >

UIJ(UI ,..., Um) = Uo[< UI ,..., am>].

Using the constants and the operations we have in-
troduced, we can represent our previous example of a
tree by

NameMarriedWei.ght(” DuPont ‘I, 1 ‘, 755/10)

or by

NameMarriedWeight[< < ’ D ‘, ’ u ’ > * ” pont ‘I,
O’vl ‘, 75+1/2>].

Relations
Let Dn again denote the set of tuples ai... a, constructed
on the domain D of a structure. An n-place relation r is
a subset E of D,. To express that the tuple ai... a, is in
the relation r we write

r al...an.

With respect to the structure chosen for Prolog III,
Figure 3 shows the relations contained in l? We also in-
troduce a more graceful notation than the prefix
notation.

: One-place relations
s n .n In

I

id e.l :

FIGURE 3
A set of relations of Prolog III.

In Figure 3, n designates an integer greater than 1 and
0.; an arbitrary tree. The relations id, char, bool, num,
irint, list and leaf are used to specify that the tree a, is
an identifier, a character, a Boolean value, a real

72 July 199O/Vo1.33. Na.7ICOYMUNICITlOWSOFT”EbCY

PROLOC 111

number, an integer or irrational number, a list, a label
not of the form < > LT. The relations = and # corre-
spond of course to the equality and inequality of trees.
The pair of trees u1u2 is in the relation *only if a, and
az are Boolean values and if a1 = 1’ entails that u2 = 1’. The
pair of trees aia2 is in relation <, > , I, 2 only if it
is a pair of reals in the corresponding classical relation.

We use the relation I3 to approximate division and
write

us f a, i u2

to express, on the one hand, that a,, u2 and u3 are real
numbers, with u2 not equal to zero and, on the other
hand, that if at least one of the reals u2 et u3 is rational,
it is true that

u3 = uJaz.

We use the relations x n+‘, with n 2 2, to approx-
imate a series of multiplications and write

a,+, i a, A . . k a,

to express, on the one hand, that the ai’s are real
numbers and, on the other hand, that if the sequence
al... a, contains n or n-l rational numbers, it is true that

u~+~= a,x...xa,.

We use the relations * “+I, with n 2 2, to approx-
imate a series of concatenations and write

a,+1 A UI* . . . ;a,

to express that in all cases the ai’s are lists such that

IQ+11 = Iall +...+ IanI

and that, according to whether the element ul*..:un is
or is not defined,

a,+1 = u,*..:un

a,+, is of the for: Lul*..:ukJ * b,

where b is an arbitrary list and k is the largest integer
for which the element ul*..:uk is defined.

We recall that al-..:uk is defined only if the lists
ar,...,Uk+ are all true lists. We also recall that Lu]
designates the prefuc of a, that is to say, the true list
obtained by replacing the initial label < > u of a with
the label < >O.

Terms and Constraints
Let us suppose we are working in a structure

(D, F, R) and let V be a uniuersul set of variables, given
once and for all, used to refer to the elements of its do-
main D. We will assume that V is infinite and countable.
We can now construct syntactic objects of two kinds,
terms and contraints. T&rn.~ are sequences ofjuxtaposed
elements from VU F of one of the two forms,

x orfti...t,,

where x is a variableJan n-place operation and where
the ti’s are less complex terms. Comtraints are sequences
of juxtaposed elements from V U FUR of the form

r tl...tn,

where r is an n-place relation and the t;‘s are terms. We
observe that in the definition of terms we have not
imposed any restriction on the semantic compatibility
betweenf and the t;‘s. These restrictions, as we will
see, are part of the mechanism which takes a term to
its “value.”

We introduce first the notion of an assignment o to a
subset W of variables : such an assignment is simply a
mapping from W into the domain D of the structure.
This mapping u extends naturally to a mapping u* from
a set T, of terms into D specified by

u*(x) = u(x),
d”Cftl...tn) = fa*(t,)...d(t,).

The terms that are not members of T, are those con-
taining variables not in W, and those containing par-
tial operations not defined for the arguments u*(d).
Depending on whether a term t belongs or does not
belong to T, , the value oft under the assignment u is
defined and equal to u*(t) or is not defined. Intuitively,
the value of a term under an assignment is obtained by
replacing the variables by their values and by evaluating
the term. If this evaluation cannot be carried out, the
value of the term is not defined for this particular
assignment.

We say that the assignment u to a set of variables
satisfies the constraint r tl...n if the value u*(t;) of each
term ti is defined, and if the tuple u *(tl)...u *(tn) is in the
relation r, that is to say if

r u*(t,)...u*(t,).

CClum”nlCaslCrrsCFT”EACY/July 199O/Vo1.33, No.7 73

Here are some examples of terms associated with the
structure chosen for F’rolog III. Instead of using the
prefix notation, we adopt the notations used when the
different operations were introduced.

<X>Y,
-4Yl~

<x>*lO,
duo(+x, Sy).

The first term represents a list consisting of an element
x followed by the listy. The second term represents a
tree, which is not a list, whose top node is labeled by x
and whose list of immediate daughters isy. The value
of the third term is never defined, since the concatena-
tion of numbers is not possible. The value of the last
term is not defined under any assignment, since x can-
not be a number and a. Boolean value at the same time.

The following list offers some examples of constraints.
Again we adopt the notations introduced together with
the different Prolog III relations.

z = y-x,
xA1y * xvz,
i-tj+k 5 10,

TX # y+z,
TX #y+x.

We observe that there exist assignments to {x, y, z} which
satisfy the next to the last constraint (for example a(x)
= 0’, a(y) = 2, u(t) := 2), but that there is no assign-

ment which satisfies the last constraint (the variable x
cannot be a number and a Boolean value at the same
time).

Systems of Constraints
Any finite set S of constraints is called a system of con-
straints. An assignment u to the universal set V of
variables which satisfies every constraint of S is a solu-
tion of S. If u is a solution of S, and W is a subset of V,
then the assignment (J' to W, so that for every variable
x in W we have u’(x) = u(x), is called a solution of S on
W. Two systems of constraints are said to be equivalent
if they have the same :set of solutions, and are said to be
equivalent on W if they have the same set of solutions
on W.

We illustrate these definitions with some examples
from our structure:
l The assignment u to V where u(x) = 1’ for every
variable x is a solution of the system of constraints
{x = y, y Z 0}, but it is not a solution of the system
{x = y, +y # O}.
l The assignment u to b} defined by u(y) = 4 is a solu-
tion on 01) of the system {x = y, y # O}.
l The systems {x = J +y # 0) and {-x = -y, y # 0}

a.re equivalent. Similarly, the system (1 = 1, x = x} is
equivalent to the empty constraint system.
. The systems {x I 2, y I z, x Zz} and {x < z} are not
equivalent, but they are equivalent on the subset of
variables {x, z}.

It should be noted that all solvable systems of con-
straints are equivalent on the empty set of variables, and
that all the nonsolvable systems are equivalent. By
solvable system, we obviously mean a system that has at
lceast one solution.

The first thing Prolog III provides is a way to deter-
mine whether a system of constraints is solvable and if
so, it solves the system. For example, to determine the
number x of pigeons and the numbery of rabbits so that
together there is a total of 12 heads and 34 legs, the
following query

{x + y = 12, 2x+4y = 34}?

gives rise to the answer

{x = 7, y = 5).

‘To compute the sequence z of 10 elements which results
in the same sequence whether 1,2,3 is concatenated to
its left or 2,3,1 is concatenated to its right, it will suffice
to pose the query

(1~1 = 10, <1,2,3>*zAzz <2,3,1>}?

The unique answer is

(z = <1,2,3,1,2,3,1,2,3,1>}.

If in the query the list < 2,3,1> is replaced by the list
<2,1,3> there is no answer, which means that the
isystem

(1.~1 = 10, <1,2,3>*z k .a: <2,3,1>}

is not solvable. In these examples the lists are all
<of integer length and are thus true lists. As a result,
approximated concatenations behave like true
concatenations.

In this connection, the reader should verify that
the system

{<l>~Z~Z~ <2>}

is solvable (it suffices to assign to z any improper list hav-
ing no immediate daughters), whereas the system

(121 = 10, <l>Y~z: <2>},

74 July 1990/W 33, No.7ICONYUNICATlONS OF TRE ACM

PROLOG 111

which constrains z to be a true list, is not solvable.
The same holds for approximated multiplication and
division. Whereas the system

{t~xxJx2 l,yZ l,z<O}

is solvable (because the approximated product of two
irrational numbers is any number), the system

which constrains y to be a rational number, is not
solvable.

Another example of the solving of systems is the
beginning of a proof that God exists, as formalized by
George Boole [4]. Th ’ . e dun is to show that “something
has always existed” using the following live premises :
1. Something is.
2. If something is, either something always was, or the
things that now are have risen out of nothing.
3. If something is, either it exists in the necessity of its
own nature, or it exists by the will of another Being.
4. If it exists by the will of its own nature, something
always was.
5. If it exists by the will of another being, then the
hypothesis, that the things which now are have risen out
of nothing, is false.

We introduce live Boolean variables with the follow-
ing meaning :
a = 1’ for “Something is,”
b = 1’ for “Something always was,”
c = 1’ for “The things which now are have risen
from nothing,”
d = 1’ for “Something exists in the necessity of its
own nature,”
e = 1’ for “Something exists by the will of another
Being.”
The live premises are easily translated into the system

{u= l’a*bVc,a*dVe,d*b,e* -16)

which when executed as a query produces the answer

{u = l’, b = l’, &e = l’, eVc = l’}.

One observes that the value b is indeed constrained to 1’.

After these examples, it is time to specify what we
mean by solving a system S of constraints involving a
set W of variables. Intuitively, this means that we have
to find all the solutions of S on W. Because there may
be an infinite set of such solutions, it is not possible to
enumerate them all. It is possible, however, to compute
a system in solved form equivalent to S, whose “most
interesting” solutions are explicitly presented. More
precisely through a system in solved form, we understand
a solvable system such that, for every variable X, the

solution of S on {x} is explicitly given, whenever this
solution is unique. One can verify that in the preceding
examples the systems given as answers were all in
solved form.

Before we conclude this section, we should mention
a useful property for solving systems of constraints in
the chosen structure.

PROPERTY If S is a system of Prolog III constraints
and W a set of variables, then the two following proposi-
tions are equivalent :
1. for every x in W, there are several numerical solutions
of S on {x};
2. there exists a numerical irrational solution of S on W.

By numerical solution or irrational numerical solution,
on a set of variables, we understand a solution in which
all the variables in this set have real numbers as values,
or irrational numbers as values.

Semantics 06 Prolog Ill-Like
Lanmuages
On the basis of the structure we have chosen, we can
now define the programming language Prolog III. As
the method employed is independent of the chosen
structure, we define in fact the notion of a “Prolog III-
like” language associated with a given structure. The
only assumption we will make is that the equality rela-
tion is included in the set of relations of the structure
in question.

Meaning of a Program
In a Prolog III-like language, a program is a definition
of a subset of the domain of the chosen structure (the
set of trees in the case of Prolog III). Members of this
subset are called admissible elements. The set of admissi-
ble elements is in general infinite and constitutes-in
a manner of speaking-an enormous hidden database.
The execution of a program aims at uncovering a
certain part of this database.

Strictly speaking, a program is a set of rules: Each rule
has the form

where n can be zero, where the ti’s are terms and where
S is a possibly empty system of constraints (in which
case it is simply absent). The meaning of such a rule
is roughly as follows: “provided the constraints in S
are satisfied, to is an admissible element if l1 and . . . and
t, are admissible elements (or if n = O).” Figure 4
depicts such a set of rules. This is our first example of
a Prolog III program. It is an improvement on a pro-
gram which is perhaps too well-known, but which
remains a useful pedagogical tool: the calculation of
well-balanced meals [9].

75

FlGURE Q
Computing light meals.

The meaning of the first rule is: “provided the four con-
ditions i 2 0,j 2 0, k > 0, i+j+k s 10 are satisfied,
the triple h,m,d constitutes a light meal, if h is an hors-
d’oeuvre with calor&: value i, if m is a main course with
calorific valuej and ifd is a dessert with calorik value
k.” The meaning of the last rule is: “Ice-cream is a
dessert with calorific value 6.”

We will now offer a precise definition of the set
of admissible elements: The rules in the program are
in fact rule schemas. Each rule (of the above form)
stands for the set of evaluated rules

u*(to) + a*(t,)...a*(t,)

obtained by considering all the solutions u of S for which
the values o*(ti) are defined. Each evaluated rule

in which only elements ai of the domain occur, can be
interpreted in two ways:
1. as a closureproper& of certain subsets E of the domain:
ifallofa ~,...,a, are members of the subset E, then a is
also is a member of E (when n = 0, this property states
that 6 is a member of E),
2. as a rewrite rule which, given a sequence of elements
of the domain beginning with ao, sanctions the replace-
ment of this first element a0 by the sequence al...a,
(when n = 0, this is the same as deleting the first
element a~).

Depending on which of these two interpretations is
being considered, we formulate one or the other of the
following definitions:

Definition 1. The set of admissible elements is the
smallest subset of the domain (in the sense of inclusion)
which satisfies all the closure properties stemming from
the program.

Definition 2. The admissible elements are the
members of the domain which (considered as unary
sequences) can be deleted by applying rewrite rules
stemming from the program a finite number of times.

In [lo, 111 we show that the smallest subset in the first
definition does indeed exist and that the two definitions
are equivalent. Let us re-examine the previous program
example. Here are some samples of evaluated rules:

LightMeal(pbtC,sole,fruit) --)
Hors Doeuvre(pkk,G) MainCourse(sole,B)
Dessert(fiuit,2);

MainCourse(sole, 2) + Fish(sole,P);

HorsDoeuvre(pkC,G) +;

Fish(sole,2) +;

Dessert(fiuit,2) +;

If we consider these rules to be closure properties of a
subset of trees, we can successively conclude that the
following three subsets are sets of admissible elements,

{HorsDoeuvre(pkC,G), Fish(sole,P), Dessert(fruit,2)},
{MainCourse(sole,2)},

{LightMeal(pbtC,sole,fiuit))

and therefore that the tree

LightMeal(pbtt,sole,fruit)
(~0 -b aI...a,,

July 19901Vo1.33, No.7/MYYUNIUTiON8OF~NE AC”

PROlOC 111

is an admissible element. If we take these evaluated rules
to be rewrite rules, the sequence constituted solely by
the last tree can be deleted in the following rewrite steps:

LightMeal(pltC,sole,fruit) +
HorsDoeuvre(pAtC,G) MainCourse(sole,2)

Dessert(fruit,S) +
MainCourse(sole,2) Dessert(fruit,2) +

Fish(sole,P) Dessert(fiuit,2) +
Dessert(fruit,2) + ,

which indeed confirms that the above is an admissible
element.

Execution of a Program
We have now described the information implicit in a
Prolog III-like program, but we have not yet ex-
plained how such a program is executed. The aim of the
program’s execution is to solve the following problem:
given a sequence of terms tl...tn and a system S of con-
straints, find the values of the variables which transform
all the terms ti into admissible elements, while satisfy-
ing all the contraints in S. This problem is submitted
to the machine by writing the query

ti...tn, S?

Two cases are of particular interest. 1) If the sequence
tl...tn is empty, then the query simply asks whether the
system S is solvable and if so, solves it. We have already
seen examples of such queries. 2) If the system S is
empty (or absent) and the sequence of terms is reduced
to one term only, the request can be summarized as:
“What are the values of the variables which transform
this term into an admissible element?” Thus, using the
preceding program example, the query

LightMeal(h,m,d)?

will enable us to obtain all the triples of values for h, m,
and d which constitute a light meal. In this case, the
replies will be the following simplified systems :

{h = radishes, m = beef, d = fruit},
{h = radishes, m = pork, d = fruit},
{h = radishes, m = sole, d = fruit},

{h = radishes, m = sole, d = icecream},
{/r = radishes, m = tuna, d = fruit},

{/z = p&C, m = sole, d = fruit}.

The method of computing these answers is ex-
plained by introducing an abstract machine. This is a
nondeterministic machine whose state transitions are
described by the three formulas in Figure 5.

FIGURE 5
The three formulas which summarize the execution

of a Prolog Ill-like program.

Formula (1) represents the state of the machine at a
given moment. W is a set of variables whose values we
want to determine, totI.. .t, is a sequence of terms which
we are trying to delete and S is a system of constraints
which has to be satisfied. Formula (2) represents the
rules in the program which is used to change the state.
If necessary, the variables of (2) are renamed, so that
none of them are shared with (1). Formula (3) is the new
state of the machine after the application of rule (2). The
transition to this new state is possible only if the system
of constraints in (3) possesses at least one solution 0
with respect to which all the values a*(si) and a*(tj)
are defined.

In order to provide an answer to the query given
above, the machine starts from the initial state

(W to...tn, S),

where W is the set of variables appearing in the query,
and goes through all the states which can be reached by
authorized transitions. Each time it arrives at a state
containing the empty sequence of terms A, it simplifies
the system of constraints associated with’it and presents
it as an answer. This simplification can also be carried
out on all the states it passes through.

Let us now reconsider our first program example,
and apply this process to the query.

couw”“lcrno”*OFT”~~Y/July 19901Vol.33, No.7

LightMeal(k,m,d)?

The initial state of the machine is
(hwd, LightMeal (fmd), 0).

By applying the rule
LightMeal(h’, m’, (i’) +
HorsDoeuvre(h’, i) MainCourse(m’, j) Dessert(d’,

4
{i 2 0,~’ > 0, k r 0, i+j+k I 10)

we proceed to the state
({h,p,d}, HorsDoeu.vre(h’,i) MainCourse(m’j)

Dessert(d’, k),
{irO, k>O, i+j+k<lO, LightMeal(h,m,d) =
LightMeal(h’, m’, d’)})

which in turn simplijies to
({h&J}, HorsDoeuvre(h’,i) MainCourse(m’,j)
Dessert(d’,k),

ant;O,j-‘O, kr0, i+j+k510, h=h’, p=p’, d=d’}),

({k,p,d}, HorsDoeuvre(h, z) MainCourse(m,j)
Dessert(d, k),
(2~0, kz0, i+j+kllO}).

By applying the rule
HorsDoeuvre(pBtC, 6) +

and simplifying the result, we progress to the state
({h&d}, MainCourse Dessert(d,k), {h=pgt-tC,jr 0,
krO,j+kc4}).

By applying the rule
MainCourse@‘, i) --* Fish@‘, ;)

and simplifying the result, we proceed to the state
({h,m,d}, Fish(m’, ;) Dessert(d,k),
{h=pbte,j?O, kzO,j+kl4, m=m’,j=i}).

which then simplifies to
({h,m,d}, Fish(m,j) Dessert(d,k), {h=p&5,j>O, k>O,
j+ks4}).

By applying the rule
Fish(sole, 2) *

we obtain
((/z,m,d), Dessert(G!k), {h=pkC, m=sole, kr0, ks2)).

Finally, by applying the rule
Dessert(fruit, 2) ,+

we obtain
({h,m,d}, A, {h=pkt, m=sole, d=fruit}).

We can conclude that the system

{h = p&C, m = sole, d = fruit}

constitutes one of the answers to the query.

To obtain the other answers, we proceed in the same
way, but use the other rules. In [ll] we prove that this
method is complete and correct. To be more exact, given
the abstract machine Mp connected to a program P, we
show that the following property holds.

PROPERTY. Let {tr,...,td be a set of terms, S a
isystem of constraints, and W the set of variables occur-
ring in them. For any assignment (T to W, the following
two propositions are equivalent:
1. the assignment u is a solution of S on W and each
u*(+ 3 is an admissible element for P;
2. starting from state (W, A, S’) the abstract machine
MP can reach a state of the form (W, tl...tn, S), where
S’ admits u as solution on W.

It should be recognized that there are many ways
of simplifying the states of the abstract machine and
checking whether they contain solvable systems of con-
straints. Therefore, we should not always expect that the
machine, which uses very general algorithms, arrives at
the same simplifications as those shown above. In [11]
we show that the only principle to which all simplifica-
tions must conform is that states of the abstract machine
are transformed into equivalent states in this sense:

DEFINITION. Two states are equivalent if they have
the form

(W, t,...t,, S) and (W, t,‘..&‘, S’),

and if, by introducing n new variables xl,...,xn, the
systems

SU{xl=tl ,..., x,=t,} and S’U{xl=tl’ ,..., xn=tn’},

are equivalent on the subset ofvariables WU{xr,...,x,}.

Treatment 06 NUmberS

Next, we will illustrate the possibilities of Prolog III in
connection with different program examples. We
will consider, one after the other the treatment of the
following: numbers; Boolean values; trees and lists; and
finally, integers.

Computing Installments
The first task is to calculate a series of installments

made to repay capital borrowed at a certain interest rate.
We assume identical time periods between two install-
ments and an interest rate of 10 percent throughout.
The admissible trees will be of the form:

InstallmentsCapitaQc),

where x is the sequence of installments necessary to
repay the capital c with an interest rate of 10 percent
between two installments. In Figure 6 the program itself
is given by two rules:

July 199O/Vol.33, Na.7ICOYMUNlCITIONSOFT”E~~.CDI

PROLOG JJJ

FIGURE 6
Computing the installments to repay a loan.

The first rule expresses the fact that it is not necessary
to pay installments to repay zero capital. The second
rule expresses the fact that the sequence of n + 1 install-
ments to repay capital c consists of an installment i and
a sequence of n installments to repay capital c in-
creased by 10 percent interest, but the whole reduced
by installment i.

This program can be used in different ways. One
of the most spectacular is to ask what value of i is
required to repay $1000 given the sequence of install-
ments < <Pi, 3i>. All we need to do is to put the query

InstallmentsCapital(< i, Zi, 3i>, lOOO)?

to obtain the answer

{i = 207 + 413 / 641). produces the answer

Here is an abbreviated trace of how the computation
proceeds. Starting from the initial state

({i}, InstallmentsCapital(< i,Zi,3i> ,100O). {}).
and applying the rule

{X= c 7,5>}.

InstallmentsCapital(< i’ > l x,c) + Installments
Capital(x,(l + lO/lOO)c-i’)

we progress to the state
({i}, InstallmentsCapital(x,(l+ lO/lOO)c-i’),
{InstallmentsCapital(< <2i,3i> ,lOOO)=
InstallmentsCapital (< i’ > *x,c)}),

which simplifies to

Computing the Periodicity of a Sequence
This problem was proposed in [5]. We consider the
infinite sequence of real numbers defined by

where xi and x2 are arbitrary numbers. Our aim is to
show that this sequence is always periodic and that
the period is 9, in other words, that the sequences

(!,i>, Insta.llmentsCapital(x,(llllO)c-i’),
,,iz;: x=<Zi,3i>, c=lOOO}),

({i}, InstallmentsCapital(< 2i,3i> ,1100-i), 0).
The reader can verify that when the same rule is
applied two more times, we obtain, after simplification,
the states

XI, X2, X3 ,... and X1+9, x2+9, X3+9 ,...

are always identical.

Each of these two sequences is completely determined
if its first two elements are known. To show that the
sequences are equal, it is therefore sufficient to show
that in any sequence of eleven elements

(Ii}, InstallmentsCapital(< 3i> ,1210-(31/1O)i), I}),
({i}, InstallmentsCapital(< > ,1331-(641/1OO)z), 0).

By applying the rule
InstallmentsCapital (< > ,O) +

to the last state, we finally obtain
({i}, {1331-(641/1OO)i=O)

which simplifies to
({i}, {i=207 +413/641}).

Here again the reader should be aware that the
simplifications presented here are not necessarily those
the machine will perform.

Computing Scalar Products
As an example of approximated multiplication, Figure
7 shows small program which computes the scalar
product x1 xy, + . . . +x, xyn of two vectors <xl,...,xn >
and <yI,...,yn>.

FIGURE 7
Computing the scalar product.

The query

ScalarProduct(< 1,l > , X, 12)
ScalarProduct(X, < 2,4 > , 34)?

we have

Xl, x2, x3 ,..., 3c10, x11

xl=xIO and x2=x11.

COM~UNlCAllONSOFTRSliCY/July 199O/Vo1.33, No.7 79

To begin with, Figure 8 illustrates the program that
enumerates all the finite sequences x1,x2,...,xn which
respect the rule given above.

Sequence(c+& *x>) 4;

FBGURE 8
Computing the sequence xi+2 = IJ$+~) -xi.

The + signs in the first rule constrain x andy to denote
numbers. It will be observed that the sequences are
enumerated from left to right, that is, trees of the form
Sequence(s) are only admissible if s has the form
<xn,..,x2,x1 >. If we run this program by asking

Sequence(s), { JsJ =ll, s i w ; v : u, JUJ =2, JWI =
2, 24 # w}?

execution ends without providing an answer. From this
we deduce that there is no sequence of the form
x~x~,...,x~~,x~~ such that the subsequencesx,~, and x10,.x11
(denoted by u and v) are different, and therefore that
in any sequence x~,x~,...,x~~,x~~ we have indeed x,=x~~
and xZ=xI1.

61

FIGURE 8
(BOX right) Filling a rectangle of unknown shape bv

n squares of unknown, but different Sizes.
First solution for n=9.

(Box left) Filling a rectangle of unknown shape? bv
n squares of unknown, but different sizes. Second

solution for n=9.

Computing a Geometric Covering
Here is a final example which highlights the numerical
part of Prolog III. Given an integer n, we want to
know whether it is possible to have n squares of different
sizes which can be assembled to form a rectangle. If
this is possible, we would like to determine the sizes of
tjhese squares and of the rectangle thus formed. For
example, Figure 9 shows two solutions to this problem,
tbr n=9.

We will use a to denote the ratio between the length
of the longest side of the constructed rectangle, and the
length of its shortest side. Obviously, we can suppose
that the length of the shortest side is 1, and therefore
that the length of the longest side is a. Thus, we have
to fill a rectangle having the size 1 XU with n squares,
all of them different. With reference to Figure 10, the
basis of the filling algorithm will consist of
:I. placing a square in the lower left-hand corner of
the rectangle,
2. filling zone A with squares,
3. filling zone B with squares.
Provided zones A and B are not empty, they will be ftied
recursively in the same way: placing a square in the
lower left-hand corner and filling two subzones.

The zones and subzones are separated by jagged
lines in the shape of steps, joining the upper right
(corner of the squares and the upper right corner of the
rectangle. These jagged lines never go downward, and
if several can be plotted to go from one point to another,
the lowest one is the one we consider. Figure 11 is an ex-
ample of all the separation lines corresponding to the
first solution of the problem for n = 9:

To be more precise, a zone or subzone has the form
given in the left box in Figure 12, whereas the entire

FlGURE 10
ReCUrSiVe procedure to place

the different squares
in the rectangle.

July 199O/Vo1.33, No.7ICOLIUUNICITIOWSOFTNE~~,CU

PROLOG 111

FIGURE II
The different subzones in the first solution

with n=9.

rectangle is itself identified with the particular zone
drawn on the right.

The zone is delimited below by a jagged Line L join-
ing a point P to point Q, and in Figure 12 by a jagged
line L’ joining the same point P to the same point Q
Point P is placed anywhere in the rectangle to be fdled,
and Qdenotes the upper right corner of the rectangle.
These jagged lines are represented by alternating
sequences of vertical and horizontal segments

~0, h, VI,..., hn, vn,

where vi denotes the length of a vertical segment, and
h; the length of a horizontal segment. The hi’s are always
strictly positive. The vi’s are either zero, either positive
to denote ascending segments, or negative to denote
descending segments. The vi’s of the upper lines are
never negative, and if a zone is not empty, only the first
vertical segment vO in its lower line is negative.

If these conventions are applied to the entire
rectangle (right diagram above), the lower line L can
be represented by the sequence -1, a,1 and the upper line
L’ by a sequence having the form O,h,,O ,..., h,,O,
where hi+ . ..+h. =a, and the hi’s are positive.

The heart of the program consists in admitting trees
of the form

FilledZone(L, L’, C, C’)

only if the zone delimited below by L can be tilled with
squares and can be bounded above by L’. The squares
are to be taken from the beginning of the list C, and C’
has to be the list of squares which remain. We also
need to introduce trees of the form

PlacedSquare(b, L, L’)

which are admitted only if it is possible to place a square
of size b xb at the very beginning of line L and if L’ is
the line making up the right vertical side of the square
continued by the right part of L (see Figure 13). In fact
L denotes the lower line of a zone from which the first
vertical segment has been removed. The diagram shows
the three cases that can occur and which will show up
in three rules. Either the square overlaps the first step,
which in fact was a pseudostep of height zero, or the
square fits against the first step, or the square is not big
enough to reach the first step.

J!. FlGURE W3
The three ways to Place a square.

FIGURE I2
General and initial shape of a zone or SUbZOne.

CONMUNlCATlONSOFTHEACM/July 1990/W 33, No.7

The program itself is constituted by the following 10
rules listed in Figure 14.

FlGURE 14

Program for filling a rectangle of unknown shape by
n squares of unknown, but different sizes.

The call to the program is made with the query

FilledRectangle(u, C), { 1 C(= n}?

where n, the only known parameter, is the number of
squares of different sizes that are to fill the rectangle.
The program computes the possible size 1 xa of the rec-
tangle (a 2 1) and t.he list C of the sizes of each of the n
squares. The computation begins by executing the first
rule, which simultaneously constrains a to be greater
than or equal to 1, creates n different squares (of

unknown size), and starts filing the zone constituted by
the entire rectangle. Even if the line L, constituting the
upper limit of this zone, is unknown at the beginning,
given that this line must join-without itself
descending-two points at the same height, this line will
necessarily be a horizontal line (represented by steps of
height zero). If we ask the query

FilledRectangle(u, C), { 1 C(= 9}?

we obtain 8 answers. The first two

(a = 33/32, C= <15/32, 9116, l/4, 7132, 118, 7/16,
1132, 5/16, 9132 >},

{a = 69161, C= < 33161, 36161, 28161, 5161, 2161,
9161, 25161, 7161, 16/61>}.

correspond to the two solutions we have drawn
earlier. The other six answers describe solutions which
are symmetrical to these two. In order to locate the
positions of the various squares in the rectangle we can
proceed as follows. One fills the rectangle using all the
squares of the list C in their order of appearance. At each
stage, one considers all the free corners having the same
orientation as the lower left corner of the rectangle and
one chooses the rightmost corner to place the square.

There is a vast amount of literature concerning this
problem. Let us mention two important results. It has
been shown in [25] that for any rational number a
L 1 there always exists an integer n such that the rect-
angle of size 1 x a can be filled with n distinct squares.
For the case of a = 1 (when the rectangle to be filled is
a square), it has been shown in [14] that the smallest
possible n is n = 21.

Treatment 09 Boolean vafues
Computing Faults
In this example we are interested in detecting the defec-
tive components in an adder which calculates the binary
sum of three bits x1, xZ, xa in the form of a binary
number given in two bitsyly2. As we can see in Figure
15, the circuit proposed in [16] is made up of 5 com-
ponents numbered from 1 to 5: two and gates (marked
And), one or gate (marked Xor) and two exclusive or gates
(marked Xor). We have also used three variables uI, uZ,
uJ to represent the output from gates 1, 2 and 4.

FIGURE q5

An elementary adder

July 1990/V&33, Na.7ICOYWUNICATIONSOFT”E ACCW

PROLOG III

We introduce five more Boolean variables di to express
by di = 1’ that “gate number i is defective.” If we adopt
the hypothesis that at most, one of the five components
has a defect, the program connecting the values xi, yi
and di is shown in Figure 16.

‘__ ,_. *’ ‘/ n
PLO I ‘;..

eI .:~~,.~ir~~t(;xl,~~~x3;!:.~~1,~2~, .~dI,d2,d$i&dfM +
,’ AtM6stOacz(<iil~Z,d~;d4jd5r), ., .x d. *a

, ‘(*dl & (ul’,g X1.&3)) r ’
-d2 Ai $112 E.x2A\u3); ._

Detecting the faults of the adder.

In this program the admissible trees of the form

AtMostOne(D)

are those in which D is a list of Boolean elements
containing at most one 1’. The admissible trees of
the form

OrInAtMostOne(D, d)

are those in which D is a list of Boolean elements
containing at most one 1’ and where d is the disjunc-
tion of these elements.

If the state of the circuit leads us to write the query

Circuit(<l’, l’, O’>,<O’, l’>,<dl,d2, d3, d4, d5>)?

the diagnosis will be that component number 4 is
defective:

{dl=O’, d2=0’, d3=0’, d4=1’, d5=0’}.

If the state of the circuit leads us to write the query

Circuit(<l’, 0’, l’>,<O’, O’>,<dl, d2, d3, d4,d5>)?

COMMUNlCATlONSOFTNEACMlJuly 19901Vol.33, No.7

the diagnosis will then be that either component
number 1 or component number 3 is the defective one:

{dlVdS=l’, dlAd3=0’, d2=0’, d4=0’, d5=0’}.

Computing Inferences
We now consider the 18 sentences of a puzzle by Lewis
Carroll [7], which we list here. Questions ofthe follow-
ing type are to be answered: “what connection is there
between being clear-headed, being popular and being
fit to be a Member of Parliament?” or “what connec-
tion is there between being able to keep a secret, being
fit to be a Member of Parliament and being worth one’s
weight in gold?”

1. Any one, iit to be an Ml?, who is not always speak-
ing, is a public benefactor.
2. Clear-headed people, who express themselves well,
have a good education.
3. A woman, who deserves praise, is one who can keep
a secret.
4. People, who benefit the public, but do not use their
influence for good purpose, are not fit to go into
Parliament.
5. People, who are worth their weight in gold and who
deserve praise, are always unassuming.
6. Public benefactors, who use their influence for good
objects, deserve praise.
7. People, who are unpopular and not worth their
weight in gold, never can keep a secret.
8. People, who can talk for ever and are fit to be
Members of Parliament, deserve praise.
9. Anyone, who can keep a secret and who is unassum-
ing, is a never-to-be-forgotten public benefactor.
10. A woman, who benefits the public, is always popular.
11. People, who are worth their weight in gold, who
never leave off talking, and whom it is impossible to
forget, are just the people whose photographs are in
all the shop-windows.
12. An ill-educated woman, who is not clear-headed, is
not fit to go to Parliament.
13. Anyone, who can keep a secret and is not forever
talking, is sure to be unpopular.
14. A clear-headed person, who has influence and uses
it for good objects, is a public benefactor.
15. A public benefactor, who is unassuming, is not
the sort of person whose photograph is in every
shop-window.
16. People, who can keep a secret and who use their
influence for good purposes, are worth their weight
in gold.
17. A person, who has no power of expression and who
cannot influence others, is certainly not a woman.
18. People, who are popular and worthy of praise, either
are public benefactors or else are unassuming.

Each of these 18 statements is formed from basic
propositions and logical connectives. To each basic

83

proposition corresponds a name, in the form of a
character string, and a logical value represented by a
Boolean variable. The information contained in the 18
statements can then be expressed in a single rule formed
by a large head term, an empty body, and a sizeable
constraint part depicted in Figure 17.

The world described in Lewis Carroll’s puzzle.

To be able to deal with subcases, we introduce Figure 18:

FIGURE 18
The subworlds described in Lewis Carroll’s puzzle.

In order to compute the connection which exists
between “clear-headed,” “popular” and “fit to be a
Member of Parliament” it suffices to write the query

PossibleSubCase(<
<P,“clear-headed I1 > ,
< 4,” popular ‘I > ,
< r,” fit to be a Member of Parliament If > >)?

The answer is the set of constraints

@: bool, q : bool, r : bool},

which means that there is no connection between
“clear-headed,” “ popular” and “fit to be a Member of
Parliament.”

To compute the connection which exists between
“able to keep a secret,” “fit to be a Member of
Parliament” and “worth one’s weight in gold” it suffices
to write the query

PossibleSubCase(<
p;“able to keep a secret ‘I > ,
< 4,” fit to be a Member of Parliament ” > ,
< r,” worth one’s weight in gold ” > >)?

The answer is

July 199OWol.33, No.7ICOYYUNICITIONSOFTRE AC,”

PROLOG 111

which means that persons who can keep secrets and are
fit to be Members of Parliament are worth their weight
in gold.

In fact, in these two examples of program execution
we have assumed that Prolog III yields as answers very
simplified solved systems, particularly, those not con-
taining superfluous Boolean variables. If this had not
been the case, to show (as opposed to find) that persons
who can keep secrets and are fit to be Members of
Parliament are worth their weight in gold, we would
have had to pose the query

PossibleSubCase(<
<~,“able to keep a secret ‘I > ,
< q,“lit to be a Member of Parliament ” > ,
< r,” worth one’s weight in gold ” > >),

{x = (fAq>r)}?

and obtain a response of the form {x = l’,...} or obtain
no answer to the query

PossibleSubCase(<
p,“able to keep a secret r’ > ,

<q,” fit to be a Member of Parliament II > ,
< r,” worth one’s weight in gold It > >)?

{(pAq>r) = O’}?

Treatment 0F Trees and Lists
Computing the Leaves of a Tree
Here is, first of all, an example in which we access labels
and daughters of a tree by the operation [I. We want to
calculate the list of the leaves of a finite tree without
taking into account the leaves labeled < >u. Figure 19
illustrates the program.

FIGURE 19
Computing the leaves of a tree.

Trees of the form
Leaves(u, x)

are admissible only if x is the list of leaves of the finite
tree a (not including the leaves labeled < > “). The

query

Leaves(height(” Max I’, < 180400,meters > ,l’), x)?
produces the answer

{x = < ‘Ml, ‘a’, lx’, 9/5, meters, l’>}.

Computing Decimal Integers
Our second example shows how we can use approx-
imated concatenation to access the last element of a list.
We want to transform a sequence of digits into the in-
teger it represents. Figure 20 shows the program
without comments.

FIGURE 20
Computing an integer from the list of its digit.

As a reply to the query

Value(< 1,9,9,0 > , x)?

we obtain
{x=1990}.

Computing the Reverse of Lists
If one knows how to access the first and the last elements
of a list, it must be possible to write an elegant program
computing the reverse of a list. The one I propose is
illustrated in Figure 21.

FBGURE 21
Reversing a list.

COMMUNlCATlONSOCTHEliCY/July 19901Vo1.33, No.7 85

Each of the two queries

Reverse(< 1,2,3,4,5 > , x)?
Reverse(x, < 1,2,3,4,5 >)?

produces the same answer

{x- < 5,4,3,2,1>}.

For the query

Reverse(x, r) Reverse& z), {x # z, 1x1 =lO}?

we get no answer at all, which confirms that reversing
a list twice yields the initial list.

Context-Free Recognizer
The treatment of concatenation provides a systematic
and natural means ofrelating “context-free” grammar
rules with Prolog III rules, thus constructing a
recognizer. Let US for example consider the grammar

{S + AX, A + A, A + aA, X --* A, X -+ aXb}

which defines the language consisting of sequences of
symbols of the form ambn with m 2 n. The program in
Figure 22 corresponds to the grammar:

FIGURE 22
Recognizer associated with a context-free grammar.

88

The query

Sform(“aaabbb”)?

produces the answer

which signifies that the string “‘aaabb” belongs to the
language, whereas the query

Sform(“aaabbb”)?

produces no response, which means that the string
’ ‘aaabbbb’ ’ does not belong to the language.

Treatment 06 Integers
The algorithms used for solving constraints on integers
are complex and quite often inefficient. It is for
this reason that the structure underlying Prolog III does
not contain a relation restricting a number to be only
an integer. However, we have considered a way of
enumerating integers satisfying the set of current
constraints.

Enumeration of Integers
The Prolog III abstract machine is modified to

behave as if the following infinite set of rules

enum(0) + ;
enum(- 1) + ;
enum(1) --) ;

enum(- 2) -+;
enum(2) +;

.

had been added to every program. Moreover, the
abstract machine is implemented to guarantee that
the search for applicable rules takes a finite amount of
time whenever this set is itself finite. In connection with
the definition of the abstract machine, this can be re-
garded as adding all the transitions of the form

(W, t&...t,, S) + (W, t,...tm, SU{t,=enum(n)}),

where n is an integer such that the styem S U b,, = enum
(n)} admits at least one solution in which the values of
the t;‘s are all defined.

For example, if in the current state of the abstract
machine, the first term to be deleted is <<enurn(x and
if the system S of constraints is equivalent on {x} to
(314 IX, x5 3 + l/4}, then there will be two transitions:
one to a state with a system equivalent to S U {x= I}, the
other to a state with a system equivalent to S U {x=2}.

July 199O/Vd33, Na,7ICONYUNICITIONSOFTnE*CU

PROLOC III

We should add in this connection that if S is a system
forcing the variable x to represent a number, then, in
the most complex case, the system S is equivalent on {x}
to a system of the form

the nondeterminism to enumerate all the integers which
are to satisfy these constraints. Figure 23 indicates the
program without any comments:

{x 2 ao, x # al)...) x # a,, x I ++I},

where the ai’s are rational numbers.

A problem, taken from one of the many books of
M. Gardner [15], illustrates nicely the enumeration of
integers. The problem goes like this. When prices of
farm animals were much lower than they are now, a
farmer spent $100 to buy 100 animals of three different
kinds: cows, pigs and sheep. Each cow cost $10, each pig
$3 and each sheep 50 cents. Assuming that he bought
at least one cow, one pig and one sheep, how many of
each animal did the farmer buy?

‘_ /I&_ ‘_ /I&_
‘;,‘a: .-(. ‘;,‘a: .-(.

,’ ,’

X_’ X_’ ._ ._
. . . . Solution(i,j, i+j) -+ Solutionti, j, i+j) -+

.:, .:, V&.NZ(<D,O,N;A,L,D>, i) V&.e(<D,O,N;A,L.,D>, i)
ValuekG,E,R,AL,D>, j) ValuekG,E,R,AL,D>, j)
Value(cR,O,B,E;R,T>, i+j) Value(cR,O,B,E;R,T>, i+j)

, DifferentAndBeeweenO9(x)
Integers(x),

‘_ (cD,G,R,E,N,B,A,L,T,O~ =x,
D # 0, G’+ 0, R + 0)::

Value(o, 0)-t ; ‘I_‘.
Value(y, lOi+j) -+

Valueb, i), Cy 4+);

Let x, y and z be the number of cows, pigs and sheep
that the farmer bought. The query

enum (x) enurn enum (z),
{x+y+z=lOO, lOx+3y+z/2=100, x 21,~ rl, t >l}?

DifferentAndB&weknO9(<r) -+;
DiffftrentAndgetweeaDS(cijrx).-t

OutOf(i, i) ,.
DifferentAndBetw$&nOB(w),
(OSi,i2;9]; ‘. ‘_. Li _

produces the answer

{x=5,y=l, e=94}.

This problem reminds us of a problem mentioned at the
beginning of this article. Find the number x of pigeons
and the numbery of rabbits such that together there is
a total of 12 heads and 34 legs. It was solved by putting
the query

OutOfC, 0) -3; ~
OutOf(i, cj>*x) --f .(

outof(i, x), (i +p; L

Integers(<:>) +; .L
Integers(c:iz*x) -+

enurn Integers(x);

{x+y=12, 2~+4y=34}?
FIGURE 23

SOlVing DONALD+GERALD=ROBERT.

But, given that a priori, we have no guarantee that the
solutions of this system are non-negative and integer
numbers, it is more appropriate to put the query

The answer to the query

Solution (t j, k)?

enum(x) enum(y), {x+y=12, 2x+4y=34, x20, ylO}? is

which produces the same answer {i=526485,j=197485, k=723970}.

{x=7,y=5}. Self-Referential Puzzle

Cripto-Arithmetic
Next we look at another problem that illustrates the
enumeration of integers. We are asked to solve a clas-
sical cripto-arithmetic puzzle: assign the ten digits
012 3456789tothetenletters,D,G,R,O,E,&B,A,L,T ,>>,,,,,3
in such a way that the addition DONALD + GERALD
= ROBERT holds. We deterministically install the

maximum number of constraints on the reals and use

The last example is a typical combinatorial problem
that is given a natural solution by enumeration of
integers involving approximated concatenation and
multiplication. Given a positive integer n, we are asked
to find 71 integersxl,..., x, so the following property holds:

“In the sentence that I am presently uttering, the
number 1 occurs x1 times, the number 2 occurs x2
times,..., the number 71 occurs x, times.”

,)._ _,

COYMUNlCITlONSOCTNE ACM/July 199O/Vo1.33, No.7 87

One proceeds as if one were using true (and not
approximated) concatenation and one writes the
program whose admissible trees are of the form

Counting(<xl ,..., x,>, <y,+l,..., yn+l>),

each xi being an integer between 0 and m, each yi
being the number of occurrences of the integer i in the
list <x l,...,~m>. Figure 24 illustrates the program:

FIGURE 24
Counting the occurrences of each integer in a

list of integer.

The constraint { < 1:> *Y = F < 1 >} is an elegant way
of forcing Yto be a list of 1’s. If everything were perfect,
we could simply ask the query “Counting (X,x), { 1x1
= n}” to obtain the list of the desired n integers. Since
Prolog III is not perfect, we have to substitute approx-
imate concatenations for true concatenations. We must,
therefore, complete the program with an enumeration
of the integers xl,...,xn that we are looking for. All the
lists are thus constrained to be of integer length-to be
true lists; consequently all the approximated concatena-
tions become true concatenations. In order to reduce
the enumeration of integers,we introduce two proper-
ties: The first property is

x1+...+xn=2n,
which expresses that the total number of occurrences of
numbers in the sentences is both x1 + . . +x, and 2n. The
second is

Ox,+1x2+...+(n-l)xn=n(n+1)/2,

which expresses that the sum of numbers which appear
in the sentence is bot.h lx, +2x2 + . + nxn and x1 + . . +x,
+l+ . . . +n. From all these considerations the final
program results in Figure 25.

FIGURE 25
Solving the self-referential PUZZle.

Assigning successively to n the values 1,2,...,20 and
asking the query

Solution(X), (14 = n}?

88

PROLOG III

we obtain as answers

<3,1,3,1>],
< 2,3m > 1,
< 3,2,U1> 1,
<4,3,2,2,1M > 1,
c 5,3,2,1,2,1,1,1>],
~6,3,2,1,1,2,1,1,1> 1,
<7,321112111>}, ,,,,Y,,V
<8,3211112111>}, ,,,,,,,Y,
~;8j.,i.~;i.;;.l.;i.l.;i.~i.l.~,j)......

,,,,,,,9,,9,>,9,,9
<173211111111111112111>]. ,,,, 3 ,,,,,,, ,,v,,vv

The regularity in the answer gives rise to the idea of
proving that for n 2 7 there always exists a solution of
the form

Xl,...& = n-3, 3, 2, l,...) 1, 2, 1, 1, 1.

Self-referential-puzzle, n = 25 1 5 min 51 set
Self-referential-puzzle, n = 30 1 17 min 55 set

FIGURE 26
Benchmarks

COYM”WlCdTlONSOFT”EACD1/July 199O/Vo1.33, No.7

Practical ReuUzation
Prolog III is obviously more than an intellectual exer-
cise. A prototype of a Prolog III interpreter has been
running in our laboratory since the end of 1987. A com-
mercial version based on this prototype is now being
distributed by the company PrologIA at Marseilles
(Prolog III version 1). This product incorporates the
functions described in this article as well as facilities
calculating maximum and minimum values of numer-
ical expressions. We have been able to use it to test our
examples and to establish the following benchmarks (on
a Mac II, first model).

All the figures in Figure 26, except when stated other-
wise, are the complete execution times of complete pro-
grams including the backtracking, input of queries and
output of answers. The installment calculation consists
of computing a sequence of installments i, 2i, 3i,...,ni
needed to reimburse a capital of 1000. In order to do
justice to these results, one must take into account the
fact that all the calculations are carried out in infinite
precision. In the installment example with n=lOO, a
simplified fraction with a numerator and a denominator
with more than 100 digits is produced!

W
e conclude this article with information on
the implementation of Prolog III. The
kernel of the Prolog III interpreter consists
of a two-stack machine which explores the
search space of the abstract machine via
backtracking. These two stacks are filled

and emptied simultaneously. In the first stack, one
stores the structures representing the states through
which one passes. In the second stack, one keeps track
of all the modifications made on the first stack; for this
purpose address-value pairs are used to make the
needed restorations upon backtracking. A general
system of garbage collection [23] is able to detect those
structures that have become inaccessible and to regain
the space they occupy by compacting the two stacks.
During this compaction the topography of the stacks is
completely retained. The kernel of the interpreter also
contains the central part of the solving algorithms for
the = and # constraints. These algorithms are essen-
tially an extension of those already used in Prolog II and
described in [8]. The extension concerns the treatment
of list concatenation and the treatment of linear
numerical equations containing at least one variable not
restricted to represent a non-negative number. A
general mechanism for the delaying of constraints,
which is used to implement approximated multiplica-
tion and concatenation, is also provided in the kernel.
Two submodules are called upon by the interpreter, one
for the treatment of Boolean algebra, the other for the
remaining numerical part.

The Boolean algebra module works with clausal

89

PROLOG III

forms. The algorithms used [2] are an incremental
version of those developed by P Siegel [24], which are
themselves based on SL-resolution [20]. They deter-
mine if a set of Boolean constraints is solvable, and they
simplify these constraints into a set of constraints
containing only a minimal subset of variables. Related
experiments have been performed with an algorithm
based on model enumeration [21]. Although significant
improvement has been achieved as far as solvability tests
are concerned, a large part of these ameliorations is lost
when it comes to simplifying the constraints on output.
We should mention that W. Biittner and H. Simonis ap-
proach the incremental solving of Boolean constraints
with quite different (algorithms [6].

The numerical module treats linear equations, the
variables of which are constrained to represent non-
negative numbers. (These variables x are introduced to
replace constraints of the formpr 0 by constraints x =
p and x 2 0). The module consists essentially of an in-
cremental implementation of G. Dantzig’s simplex
algorithm [12]. The choice of pivots follows a method
proposed in M. Balinski and R. Gomory [l] which, like
the well-known method of R. Bland [3], avoids cycles.
The simplex algorithm is used both to verify whether
the numerical constraints have solutions and to detect
those variables having only one possible value. This
allows us to simplify the constraints by detecting the hid-
den equations in the original constraints. For example,
the hidden equation x = y will be detected in {X L y,
y > x}. The module also contains various subprograms
needed for addition and multiplication operations in in-
finite precision, that is to say, on fractions whose
numerators and denominators are unbounded integers.
Unfortunately, we have not included algorithms for the
systematic elimination of useless numerical variables
in the solved systems of constraints. The work of J-L.
Imbert [17] should be noted in this connection.

Acknowledgments.
I thank the entire research team which has been work-
ing on the Prolog III interpreter: Jean-Marc Boi’ and
Frederic Benhamou for the Boolean algebra module,
Pascal Bouvier for the supervisor, Michel Henrion for
the numerical module, Touraivane for the kernel of the
interpreter and for his work on approximated multipli-
cation and concatenation. I also thank Jacques Cohen
of Brandeis University whose strong interest has been
responsible for my writing this article, and Franz
Guenthner of the Ilniversity of Tiibingen who helped
in the preparation of the final version. Finally, I thank
Riidiger Loos of the University of Ttibingen who
pointed my attenti.on to two particularly interesting
numerical problems: the periodical sequence and the
filling of a rectangle by squares. Q

References

1. Balinski, M.L. and Gomory, R.E. A mutual primal-dual simplex method.
In Recent Advances in Mathematical Propmmin~ R.L. Graves and P. Wolfe, Eds,

McGraw-Hill, New York, 1963, pp. 17-26.
2. Benhamou F. and Boi, J-M. LC traitement des contraintcs Bool&nnes dans
Prolog III. Th&ses de doctorat, GIA, Facult& dcs Sciences de Luminy, Univer-
siti Aix-Marseille II. Novcmbre 1988.
3. Bland R.G. New finite pivoting for the simplex method. Math Oper: Res. 2,
(Mav 19771. 103-107.
4. Bbolc G:‘The Laws of Thoqht. Dover Publication Inc., New York. 1958.
5. Brown M. Problem proposed in: Am. Math. Monthb 90, 8 (1983), 569.
6. Biittner W. and Simonis, H. Embedding Boolean expressions into logic
programming. Symbolic Comput. 4, (October 1987), 191.205.
7. Carroll L. Symbolic Logic and the Game of Losic. Dover, New York. 1958.
8. Colmerauer A. Equations and inequations on finite and infinite trees. In-
vited lecture. In Proceediqs of& International Confrence on Fz$h Generation Com-
puter .Sjmm, (Tokyo, November 1984), pp. 85-99.
9. Colmerauer A. Prolog in IO figures. Commun ACMZB, 12 (December 1985),
1296-1310.
IO. Colmerauer A. Theoretical model of Prolog II. In Lgic Pm~mmming and
its Af@ication, M. Van Caneghem and D. Warren, Eds. Ablex Publishing
Corp., Norwood, NJ., 1986, 3-31.
Il. Colmerauer A. Final specifications for Prolog III, Esprit I project P1106.
February, 1988.
12. Dant2igG.B. Linear~~~mmingandExtensionr. Princeton University Press,
Princeton, N.J., 1963.
13. Dincbas M. et al. The constraint logic programming CHIP. In Proceedings
oj the International Conference on Fifth Generation Computer Systems, @pan,
December 1988), FGCS ‘88, pp. 693-702.
14. Duijvestijn A.J.W. Simple perfect squared square of lowesr order. Comb.
Theory. ser 825, (1978), ‘240-243.
15. Gardner M. Wheels, L$aand OtherMathmzaticalAm~~rementr. W.H. Freeman
and Co., 1983.
16. Genesererh M.R. and Ginsberg, M.L. Logic programming. Commun.
ACM 28, (September 1985), 933-941.
17. Imbert J-L. About redundant inequalities generated by Fourier’s
algorithm. AIMSA’90, Fourth International Conference on Artificial Intelli-
psce: Methodology, @stems, Applicatiom Albena-Varna, Bulgaria. (September
1990), To be published.
18. Jaffar J. and Lassez, J-L. Constraint logic programming. Fourtienfh ACM
Sympxium on the Principle ojProgrammins Languages, (1987). pp. 111-119.
19. JaffarJ. and Michaylov, S. Methodology and Implementation ofa Con-
straint Logic Programming System. In Proceedings ojthe Fourteenth International
ConJerenceon Logic~os~atrrming(Melboume). MIT Press, Cambridge, Mass.
1987, pp. 196-218.
20. Kowalski R. and Kuehner. D. Resolution with Selection Function. Artif _I
InteN 3, (1970), 227-260.
21. Oxusoff L. and Rauzy, A. Evaluation s&mantique en calcul proposition-
nel. Th&ses de doctorat. GIA, Faculte des Sciences de Luminy, UnivcrsitC Aix-
Marseille II. January 1989.
22. Robinson A. A machine-oriented logic bawd on the resolution princi-
p1e.J. ACM 12, (December 1965).
23. Touraivane. La rtcup&ation de mtmoire dans les machines non dtter-
ministes. Th&se de doctorat, Facultt des Sciences de Luminy, Universitt Aix-
Marseille II, November 1988.
24. Siegel P. RcprCsentation et utilisation de la connaissance en c&u1 pro-
positionnel, ThZse de doctorat d’Etat, GIA, Facultt des Sciences de Luminy,
Universitt Aix-Marseille II, July 1987.
25. Sprague R. Uber die Zerlegung van Rcchtecken in later vcrschiedene
Quadrate. J. jiir die rerne und angewandte Mathematik 182, (1940).

CR Categories and Subject Descriptors: D.3.2 [Programming
Languages] Language Classifications: 1.2.3. [Artificial Intelligence] Deduc-
tion and Theorem Proving

General Terms: Design, Languages
Additional Key Words and Phrases: Constraints, logic programming,

Prolog

About the Author:
Alain Colmerauer is a professor in computer science at the University I1 of
Marseille. His current research interests include solving systems ofconstraints
in various domains and design of very high-level programming languages.
Author’s Present address: Facultt des Sciences de Luminy, 13288 Marseille,
Cedex 9, France.

Permission to copy without fee all or part of this material is granted provided
that the copies arc not made or distributed for direct commercial advantage,
the ACM copyright notice and the title ofthc publication and its date appear,
and notice is given that copying is by permission of the Association for Com-
puting Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.

July 199WVol.33, No. 7/COWMUNICITIONS OF T”E ICY

