Check for
Updates)

Alain
Colmerauer

http://crossmark.crossref.org/dialog/?doi=10.1145%2F79204.79210&domain=pdf&date_stamp=1990-07-01

FOCCOCGSOGCESSTSSSTSSTSECOCOSSSSSSS

nrolog was initially demgned to process natural

]QngllﬂgPQ Tts annhca_tlnn in various problem

solving areas has demonstrated its capabilities,

but has also made clear its limitations. Some of
M. these limitations have been overcome as a result
of increasingly efficient 1mplementat10ns and ever

environments. The fact remains, however, that
the core of Prolog, namely, Alan Robinson’s unification
algorithm [22], has not changed fundamentally since
the time of the first Prolog implementations. Moreover,
it is becoming less and less signficant compared to the
ever-increasing number of external procedures as, for
example, the procedures used for numerical processing.
These external procedures are not easy to use. Their
evocation requires that certain parameters be com-

pletely known, and this is not in line with the general

Prolog philosophy that it should be possible anywhere

and at any time to talk about an unknown object x.

In order to improve this cstate of affairs we have fun-
i oraer 1o improve (nis state of atialrs, we nave iun

damentally reshaped Prolog by integrating at the
unification level: 1) a refined manipulation of trees, in-
cluding infinite trees, together with a specific treatment
of lists; 2) a complete treatment of two-valued Boolean
algebra; 3) a treatment of the operations of addition,
substraction, multiplication by a constant and of the
relations <, <,> =; 4) the general processing of the
relation #. By doing so, we replace the very concept of
unification by the concept of constraint solving in a
chosen mathematical structure. By mathematical struc-
ture, we mean here a domain equipped with operatlons

anr‘ rplqhnnc f]'\p nppr‘ahnnc hplp

erations being n

defined everywhere.
The incorporation of these features into Prolog
resulted in the new programming language, Prolog II1.
In this article we establish its foundations and illustrate

PP | YN using ~ S,

llb Ldydulllllcb ubll s lePrebC d.l.lVC CAdllllJle ThCDC
foundations, which apply to a whole family of “Prolog
I1I-like” programming languages, will be presented by
means of simple mathematical concepts without explicit
recourse to first-order logic.

The research work on Prolog I11 is not an isolated ef-
fort; other research has resulted in languages whose
designs share features with Prolog III. The CLP(R)

language developed by J. Jaffar and S. Michaylov [19]

The prototype interpreter was built as a cooperative effort between the
laboratory (GIA) and the company PrologIA. Substantial financial support
was obtained from the Centre National d’Etudes des Télécommunications
(contract 86 1B 027) and from the CEE within the framework of the Esprit
project P1106 “Further developraent of Prolog and its Validation by KBS in
Technical Areas.”” Additional support was granted by the Commissariat &
I'Energie Atomique in connection with the Association Méditérannénne pour
le Dévelonpement de I'IA: by Digital Eauinmen ¢« Corpora

Développement de I'IA; by Digital Equipment Corporati
with an External Research Grant; and by the Ministére de la Recherche et
de 'Enseignement Supérieur within the two “Programmes de Recherches
Concertés,” “Génie Logiciel” and “Intelligence Artificielle.” Finally, the most
recent work on approximated multiplication, and concatenation has been sup-
ported by the CEE Basic Research initiative in the context of the “Computa-
tional Logic™ project.

-onnection
1in connection

A very preliminary version of this paper has appeared in the Proceedings of the
4th Annual ESPRIT Conference, Brussels, North Holland, 1987, pp. 611-629.

70

emphasizes real number processing, whereas the CHIP
language developed by the team led by M. Dinchas [13]
emphasizes processing of Boolean algebra and
pragmatic processing of integers and elements of finite
sets. We should also note the work by J. Jaffar et J-L.
Lassez [18] on a general theory of “Constraint Logic

Proeramming”’ Finallv, wi e ahanld ion Pealas TT
ITogramimin Linauy, we snouid mention £r 0108 11,

the well-established language which integrates infinite
tress and the # relation, and whose foundations [9, 10]
were already presented in terms of constraint solving.
From a historical point of view, Prolog II can be re-
garded as the first step towards the development of the
type of languages discussed in this article.

The Structure Underlying Prolog 11l

We now present the particular structure which is the
basis of Prolog I1I and specity the general concept of a
structure at the same time. By structure we mean a tri-
nle (D. F. R consisting of a domain D). a set F of shera-

ot
e (i, U, N CONSISUNE O a domain i/, a S€U L' Ol opera
F \5 4 J b

tions and a set of relations on D.

Domain
The domain D of a structure is any set. The domain of
the structure chosen for Prolog 111 is the set of irees whose
nodes are labeled by one of the following:

1. identifiers,

2. characters,

3. Boolean values, 0" and 1,

4., real numbers,

5. special signs <>“, where a is either zero or a

pnqitivp irrational number

2 i [N } ot [] L) 1t
| 94 u P [0 1 [4
FIGURE 1

An element of the domain of Prolog ill.

from left to right; their numbe ris fnlte and indepen-
dent of the label attached to the node. The set of nodes
of the tree can be infinite. We do not differentiate be-
tween a tree having only one node and its label. Iden-

July 1990/V0l.3%, No 7/COMMUNICATIONS OF THE ACM

PROLOG 11E

tifiers, characters, Boolean values, real numbers and
special signs <> will therefore be considered to be par-
ticular cases of trees.

By real numbers we mean perfect real numbers and not
floating point numbers. We make use of the partition
of the reals into two large categories—the rational
numbers, which can be represented by fractions (and
of which the integers are a special case) and the irra-
tional numbers (as for example n and \/2) which no
fraction can represent. In fact, the machine will com-
pute with rational numbers only and this is related to
an essential property of the constraints that can be
employed in Prolog I1I; if a variable is sufficiently con-
strained to represent a unique real number then this
number is necessarily a rational number.

A tree a whose initial node is labeled by <> is called

a list and is written
<@gy 3y>7,

where a,... ay is the (possibly empty) sequence of trees
constituting the immediate daughters of 2. We may omit
a whenever a is zero. The #rue lists are those for which
a is zero : they are used to represent sequences of trees
(the sequence of their immediate daughters). Lists in
which a is not zero are improper lists that we have not
been able to exclude : they represent sequences of trees
(the sequence of their immediate daughters) completed
at their right by something unknown of length a. The
length |a] of the list a is thus the real 7+ a. A true list has
as its length a non-negative integer and an improper list
has as its length a positive irrational number. The list
<> is the only list with length zero; it is called the empty
list. We define the operation of concatenation on a true list
and an arbitrary list by the following equality :

<Latyeny @n>® ¢ <byyoo 0> = <ayyeey by, 0>
This operation is associative, (a+a’)4 = a-(a’-h), and
the empty list plays the role of the neutral element, a-
<> = aet<>-b = b We observe that for any list b,

there exists one and only one true list 4, and one and
only one real a so that

b =a-<>%
This list a is called the prefix of b and is written | 4] .
Operations
Let D" denote the set of tuples a;... a, constructed on
the domain D of a structure. An n-place operation f is a

mapping from a subset E of D” to D,

frar..an > far..a.

COMMUNICATIONS OF THE ACM/July 1990/Vol.33, No.7

Note that if E is strictly included in D", the operation
fis partial; it is not defined for all tuples of size n. The
reader should also note that in order to be systematic,
the result of the operation is written in prefix notation.
The 0-place operations are simply mapping of the form

f:APb f

where A is the empty tuple; they are also called constants
since they can be identified with elements of the
domain.

As far as the chosen structure is concerned, Figure
2 gives the listing of the operations which belong to F.
In this listing we introduce a more general notation than
the prefix notation.

Constants

id : A b id,

‘o' . A C,

0 AR O,

1 i LA T

q M A q,
st AR e,
ey U A "OpaCpy

. Boolean operations

i

L by by,
r b1b2 g bll\bz,
S b11b2 g bl\/bz,
. byby b byoby,
: . ble] bl?‘:-"bz.

Woy< >

Numierical operations

¥t T ATy,
g0 : fl H"*?‘l’,
ERESARE Ty b Tyt
C 2 b Ty,
gt Ty b gxry,
/9 1 n b nr/q

" List operations

“ ' l} P {lllr
<M Ay B <y >,
apage 1 1 b <Ay,

- General operations

O™ eyaglyyn B €4(0 i),
i [j 1: eilz‘ H ﬂluz].

FIGURE 2
A set of operations of Prolog ll.

"

In Figure?2, id designates an identifier, ¢ and ¢; a
character, g et ¢’ rational numbers represented by frac-
tions (or integers), with ¢’ not zero, m a positive integer,
n a non-negative integer and a; an arbitrary tree. The
result of the different operations is defined only if 4; is
a Boolean value, r; a real number /; a list and ¢; a label
not of the form <>“.

To each label corresponds a constant, with the excep-
tion of irrational numbers and labels of the form <>*,
where & is not zero. The constant "c,...¢;, " designates
the true list whose immediate daughters make up the
sequence of characters '¢;"..."¢;y . The operations —,
A, V, D, =, correspond to the classical Boolean opera-
tions when they are defined. The operations +', #% qx,

when they are defined, are the 1-place +, the 2-place
+, multiplication by the constant q (when this does not
lead to confusion we may omit the sign x) and division
by the constant q’. By |/;| we designate the length of the
list /;. By <ay,...,a;> we designate the true list whose
immediate daughters make up the sequence ai,..., am.
The operation a,... ay® applied to alist /; consists in con-
catenating the true list <ay,...,ap> to left of /;. By
e1(z,..., ans2) we designate the tree consisting of an ini-
tial node labeled ¢, and the sequence of immediate
daughters a,,..., ans>. By e[13] we designate the tree con-
sisting of an initial node labeled ¢, and of the sequence
of immediate daughters of the list .

We note the following equalities (provided the dif-
ferent operations used are indeed defined) :

"epom" =

<'e 'y lep' >
ao(@1yenr @) = ol < aryeam> .

Using the constants and the operations we have in-
troduced, we can represent our previous example of a
tree by

NameMarriedWeight(" Dupont ", 1!, 755/10)
or by

NameMarriedWeight[<< 'D’, "u' >-"pont",
0'v1', 75+1/2>].

Relations

Let D" again denote the set of tuples 4;... ay constructed
on the domain D of a structure. An n-place relation 7 is
a subset E of Dj,. To express that the tuple a;... a5 is in
the relation r we write

7 Q... an.

72

With respect to the structure chosen for Prolog III,
Figure 3 shows the relations contained in F. We also in-
troduce a more graceful notation than the prefix
notation.

" One-place relations
apid,

iyk a char,
aj:bool, "

~ Numerical relations.

V:'k'>(x:’ ,f“’;aal >d2, h
L s Say
2y 2ay,
" . ‘Approximated operations

FIGURE 3
A set of relations of Prolog Il

In Figure 3, n designates an integer greater than 1 and
a; an arbitrary tree. The relations id, char, bool, num,
irint, list and leaf are used to specify that the tree a, is
an identifier, a character, a Boolean value, a real

July 1990/Vol.33, No.7/COMMUNICATIONS OF THE ACM

PROLOG I

number, an integer or irrational number, a list, a label
not of the form < > *. The relations = and # corre-
spond of course to the equality and inequality of trees.
The pair of trees aa; is in the relation = only if ¢, and
a, are Boolean values and if g, =1’ entails that a,=1". The
pair of trees aya, 1s in relation <, >, <, = onlyifit
is a pair of reals in the corresponding classical relation.

We use the relation /3 to approx1mate division and
write

az=a;/ a,

to express, on the one hand, that a,, a, and a3 are real
numbers, with a, not equal to zero and, on the other
hand, that if at least one of the reals a, et a; is rational,
it is true that

az = (ll/az.
We use the relations x ™, with n = 2, to approx-
imate a series of multiplications and write

pe1 = a3 X ... X ap

to express, on the one hand, that the g;’s are real
numbers and, on the other hand, that if the sequence
1... 4y contains n or n-1 rational numbers, it is true that

dps1= a1 X...Xay.

We use the relations * **', with n = 2, to approx-

imate a series of concatenations and write
Ape1 = a1* ... "Gy

to express that in all cases the a;’s are lists such that

where & is an arbitrary list and £ is the largest integer
for which the element a,*...* a} is defined.

We recall that a,...a} is defined only if the lists
a1,...,af-; are all true lists, We also recall that |a]
designates the prefix of q, that is to say, the true list
obtained by replacing the initial label < > % of a with

the label < >°.

COMMUNICATIONS OF THE ACM/July 1990/Vol.33, No.7

Terms and Constraints

Let us suppose we are working in a structure
(D, F, R) and let V be a universal set of variables, given
once and for all, used to refer to the elements of its do-
main D. We will assume that V is infinite and countable.
We can now construct syntactic objects of two kinds,
terms and contraints. 7érms are sequences nf‘mxmnnqed

elements from VUF of one of the two forms,

vhora vwica variahla £fom m_n
WIIEIC X 18 a variaoic, j an 7n-p

the ¢;’s are less complex terms. Constraints are sequences
of juxtaposed elements from VUFUR of the form

r tl...tn,

where ris an n-place relation and the #,’s are terms. We
observe that in the definition of terms we have not
imposed any restriction on the semantic compatibility
between f and the ¢;’s. These restrictions, as we will
see, are part of the mechanism which takes a term to
its “value.”

Wp introd uce hrst the notion of an nrmnﬂmwﬂf agtoa
Inireau Irst tnc notion oI an assignmen.

subset W of variables : such an assignment is simply a
mapping from W into the domain D of the structure.
This mapping o extends naturally to a mapping o™ from
a set T, of terms into D specified by

The terms that are not members of T, are those con-
taining variables not in W, and those containing par-
tial operations not defined for the arguments o*(#).
Depending on whether a term ¢ belongm or does not
belong to T, the value of ¢ under the assignment ¢ is
defined and equal to 6*(¢) or is not defined. Intuitively,
the value of a term under an assignment is obtained by
replacing the variables by their values and by evaluating
the term. If this evaluation cannot be carried out, the
value of the term is not defined for this particular
assignment.

We say that the assignment o to a set of variables
satisfies the constraint r ¢...,, if the value ¢ *(t;) of each
term ¢; is defined, and if the tuple o *(#,)...0 *(¢5) is in the
relation 7, that is to say if

7 0*(81)...0 *(ty).

73

Here are some examples of terms associated with the
structure chosen for Prolog III. Instead of using the
prefix notation, we adopt the notations used when the
different operations were introduced.

<x>°y,
[yl
<x>°10,
duo(+x, xVy).

The first term represents a list consisting of an element
x followed by the list 3. The second term represents a
tree, which is not a hst., whose top node is labeled by x
and whose list of immediate daughters is 3. The value
of the third term is never defined, since the concatena-
tion of numbers is not possible. The value of the last

e P e |
term 10 not aciinea unaer arny abbl5lllll\,lll, SINCE x can-

not be a number and a Boolean value at the same time.

The following list offers some examples of constraints.
Again we adopt the notations introduced together with

rry

the different rrowg 111 relations.

z = y-x

XNy = xVg,
i+y+k < 10,
X F y+z,
—x F y+a

We observe that there exist assignments to {x, 3, 2z} which
satisfy the next to the last constraint (for example ¢(x)
=0, 0(y) = 2, 0(z) = 2), but that there is no assign-
ment which satisfies the last constraint (the variable x

cannot DC a numDer dn(] a DOOICd.Il VdJUC at LI]C same
time).

Systems of Constraints
Any finite set S of constraints is called a system of con-

straints. An assignment ¢ to the universal set V of

variables which satisfies every constraint of S is a sofz-
tion of S. If o is a solution of §, and W is a subset of V,

ion of S. is a solution of S, and a subset of
then the assignment o' to W, so that for every Varlable
xin W we have ¢'(x) = 0(x), is called a solution of S on
W. Two systems of constraints are said to be equivalent
if they have the same set of solutions, and are said to be
equivalent on W if they have the same set of solutions
on W.

We illustrate these definitions with some examples
from our structure:
® The assignment ¢ to V where o(x) = 1’ for every
variable x is a solution of the system of constraints
{x = 3 » # 0}, but it is not a solution of the system
{x =3 +p#0L

® The assignment ¢ to {y} defined by o(y) = 4isasolu-
tion on {y} of the system {x = 3, y # 0}.
® The systems {x = 3 +y# 0}and {-x = -y y # 0}

74

are equivalent. Similarly, the system {1 = 1, x = x}is
equivalent to the empty constraint system.

¢ The systems {x < 3, y < 2, x ¥z} and {x < 2} are not
equiva]ent but they are equivalent on the subset of

wariahloc {

: »1
vallaliaey 1»& &

It should be noted that all solvable systems of con-
straints are equivalent on the empty set of variables, and
that all the nonsolvable systems are equivalent. By
solvable system, we obviously mean a system that has at
ieast one solution.

The first thing Prolog I1I provides is a way to deter-
mine whether a system of constraints is solvable and if
so, it solves the system. For example, to determine the
number x of pigeons and the number y of rabbits so that
together there is a total of 12 heads and 34 legs, the
following query

{x +y =12, 2x+4y = 34}?

gives rise to the answer

! el (4]
w =7, =5}
"To compute the sequence z of 10 elements which results
in the same sequence whether 1,2,3 is concatenated to
itsleft or 2,31 is concatenated to its right, it will suffice
to pose the query
{lzl = 10, €1,2,3>+z =

EAV dyly

I8
I8
A
N
(8]
i
\Y

———

")

The unique answer is

{z = <1,2,3,1,2,3,1,2,3,1>}.
If in the query the list <2,3,1> is replaced by the list
<2,1,3> there is no answer, which means that the

system

{izl = 10, <1,23>2=2% <2,3,1>}

is not solvable. In these examples the lsts are all
of integer length and are thus true lists. As a result,

approximated concatenations behave 1ike true
concatenations.
In this connection, the reader should verify that

{<1>2z=2:<2>}

is solvable (it suffices to assign to z any improper list hav-
ing no immediate daughters), whereas the system

{lz} =10, <1>z=2:<2>},

July 1990/Vol.33, No.7/COMMUNICATIONS OF THE ACM

PROLOG 101

which constrains z to be a true list, is not solvable.
The same holds for approximated multiplication and
division. Whereas the system

z=xxpxzly=12<0
J g

is solvable (because the approximated product of two
irrational numbers is any number), the system

{fez=xxpx=1,y=1,2<0,y=<1}

which constrains y to be a rational number, is not
solvable.

Another example of the solving of systems is the
beginning of a proof that God exists, as formalized by
George Boole [4]. The aim is to show that “something
has always existed” using the following five premises :
1. Something is.

2. If something is, either something always was, or the
things that now are have risen out of nothing.

3. If something is, either it exists in the necessity of its
own nature, or it exists by the will of another Being.
4. If it exists by the will of its own nature, something
always was.

5. If it exists by the will of another being, then the
hypothesis, that the things which now are have risen out
of nothing, is false.

We introduce five Boolean variables with the follow-
ing meaning :

a = 1" for “Something is,”

b = 1" for “Something always was,’

¢ = 1" for “The things which now are have risen
from nothing,”

d = 1’ for “Something exists in the necessity of its
own nature,’

¢ = 1" for “Something exists by the will of another
Being.”

The five premises are easily translated into the system

fa=1a=bvega=dved=be= ¢
which when executed as a query produces the answer
{fa=1,6=1,ave=1,evc = 1'}.
One observes that the value 4 is indeed constrained to 1”.

After these examples, it is time to specify what we
mean by solving a system S of constraints involving a
set W of variables. Intuitively, this means that we have
to find all the solutions of S on W. Because there may
be an infinite set of such solutions, it is not possible to
enumerate them all. It is possible, however, to compute
a system in solved form equivalent to S, whose “most
interesting” solutions are explicitly presented. More
precisely through a system in solved form, we understand
a solvable system such that, for every variable x, the

COMMUNICATIONS OF THE ACM/ July 1990/Vol.33, No.7

solution of S on {x} is explicitly given, whenever this
solution is unique. One can verify that in the preceding
examples the systems given as answers were all in
solved form.

Before we conclude this section, we should mention
a useful property for solving systems of constraints in
the chosen structure.

PROPERTY. If S is a system of Prolog III constraints
and W a set of variables, then the two following proposi-
tions are equivalent :

1. for every x in W, there are several numerical solutions
of S on {x};
2. there exists a numerical irrational solution of S on W.

By numerical solution or irrational numerical solution,
on a set of variables, we understand a solution in which
all the variables in this set have real numbers as values,
or irrational numbers as values.

Semantics of Prolog lil-Like
Languages

On the basis of the structure we have chosen, we can
now define the programming language Prolog I11. As
the method employed is independent of the chosen
structure, we define in fact the notion of a “Prolog I1I-
like” language associated with a given structure. The
only assumption we will make is that the equality rela-
tion is included in the set of relations of the structure
in question.

Meaning of a Program
In a Prolog I11-like language, a program is a definition
of a subset of the domain of the chosen structure (the
set of trees in the case of Prolog III). Members of this
subset are called admissible elements. The set of admissi-
ble elements is in general infinite and constitutes—in
a manner of speaking—an enormous hidden database.
The execution of a program aims at uncovering a
certain part of this database.

Strictly speaking, a program is a set of rules: Each rule
has the form

o = bty S

where n can be zero, where the #;’s are terms and where
S is a possibly empty system of constraints (in which
case it is simply absent). The meaning of such a rule
is roughly as follows: “provided the constraints in S
are satisfied, ¢, 1s an admissible element if ¢, and ... and
ty are admissible elements (or if » = 0)”’ Figure 4
depicts such a set of rules. This is our first example of
a Prolog III program. It is an improvement on a pro-
gram which is perhaps too well-known, but which
remains a useful pedagogical tool: the calculation of
well-balanced meals [9].

75

i
3

B
4

LR

G R)

FIGURE a
computing light meals.

The meaning of the first rule is: “provided the four con-
ditions i 2 0,5 = 0, £ = 0, i+7+k =< 10 are satisfied,
the triple 4, m,d constitutes a light meal, if 4 is an hors-
d’oeuvre with calorific value ¢, if m is a main course with
calorific value j and if 4 is a dessert with calorific value
k” The meaning of the last rule is: “Ice-cream is a
dessert with calorific value 6.”

We will now offer a precise definition of the set
of admissible elements: The rules in the program are
in fact rule schemas. Each rule (of the above form)
stands for the set of evaluated rules

o*(to) = *(t)...0*(ty)

obtained by considering all the solutions ¢ of S for which
the values 0*(t;) are defined. Each evaluated rule

ap —* ay...ap,

76

in which only elements g; of the domain occur, can be
interpreted in two ways:
1. as a closure property of certain subsets E of the domain:
if all of a4,..., a,, are members of the subset E, then ao is
alsois a member of E (when n = 0, this property states
that ao is a member of £),
2. as a rewrite rule which, given a sequence of elements
of the domain beginning with a,, sanctions the replace-
ment of this first element a, by the sequence a;...a,
(when n = 0, this is the same as deleting the first
element ag).

Depending on which of these two interpretations is
being considered, we formulate one or the other of the
following definitions:

Definition 1. The set of admissible elements 1s the
smallest subset of the domain (in the sense of inclusion)
which satisfies all the closure properties stemming from
the program.

Definition 2. The admissible elements are the
members of the domain which (considered as unary
sequences) can be deleted by applying rewrite rules
stemmming from the program a finite number of times.

In [10, 11] we show that the smallest subset in the first
definition does indeed exist and that the two definitions
are equivalent. Let us re-examine the previous program
example. Here are some samples of evaluated rules:

LightMeal(p4té,sole,fruit) —
Hors Doeuvre(paté,6) MainCourse(sole,2)
Dessert(fruit,2);
MainCourse(sole, 2) = Fish(sole,2);
HorsDoeuvre(pité,6) —;
Fish(sole,2) —;
Dessert(fruit,2) —;
If we consider these rules to be closure properties of a
subset of trees, we can successively conclude that the
following three subsets are sets of admissible elements,
{HorsDoeuvre(p4té,6), Fish(sole,2), Dessert(fruit,2)},
{MainCourse(sole,2)},
{LightMeal(pAté,sole,fruit)}

and therefore that the tree

LightMeal(pité,sole,fruit)

July 1990/Vol.33, No.7/COMMUNICATIONS OF THE ACM

PROLOG N

is an admissible element. If we take these evaluated rules
to be rewrite rules, the sequence constituted solely by
the last tree can be deleted in the following rewrite steps:

LightMeal(p4té,sole,fruit) —
HorsDoeuvre(pité,6) MainCourse(sole,2)
Dessert(fruit,2) —
MainCourse(sole,2) Dessert(fruit,2) —
Fish(sole,2) Dessert(fruit,2) —
Dessert(fruit,2) —,

which indeed confirms that the above is an admissible
element.

Execution of a Program

We have now described the information implicit in a
Prolog IIl-like program, but we have not yet ex-
plained how such a program is executed. The aim of the
program’s execution is to solve the following problem:
given a sequence of terms f,...f, and a system S of con-
straints, find the values of the variables which transform
all the terms #; into admissible elements, while satisfy-
ing all the contraints in S. This problem is submitted
to the machine by writing the query

footy, S?

Two cases are of particular interest. 1) If the sequence
4.ty is empty, then the query simply asks whether the
system S is solvable and if so, solves it. We have already
seen examples of such queries. 2) If the system S is
empty (or absent) and the sequence of terms is reduced
to one term only, the request can be summarized as:
“What are the values of the variables which transform
this term into an admissible element?”’ Thus, using the
preceding program example, the query

LightMeal(4,m,d)?
will enable us to obtain all the triples of values for 4, m,

and 4 which constitute a light meal. In this case, the
replies will be the following simplified systems :

{k = radishes, m = beef, d = fruit},
{h = radishes, m = pork, d = fruit},
{h = radishes, m = sole, d = fruit},

h

{# = radishes, m = sole, d = icecream},
{# = radishes, m = tuna, d = fruit},
{# = paté, m = sole, d = fruit}.

The method of computing these answers is ex-
plained by introducing an abstract machine. Thisis a
nondeterministic machine whose state transitions are
described by the three formulas in Figure 5.

COMMUNICATIONS OF THE ACM/July 1990/Vol.33, No.7

SEE = i < g i e

FIGURE 5
The three formulas which summatrize the execution
of a Prolog lii-like program.

Formula (1) represents the state of the machine at a
given moment. W is a set of variables whose values we
want to determine, fls...¢, is a sequence of terms which
we are trying to delete and S is a system of constraints
which has to be satisfied. Formula (2) represents the
rules in the program which is used to change the state.
If necessary, the variables of (2) are renamed, so that
none of them are shared with (1). Formula (3) is the new
state of the machine after the application of rule (2). The
transition to this new state is possible only if the system
of constraints in (3) possesses at least one solution ¢
with respect to which all the values 0*(s;) and o*(z;)
are defined.

In order to provide an answer to the query given
above, the machine starts from the initial state

W, to...ty, S),

where W is the set of variables appearing in the query,
and goes through all the states which can be reached by
authorized transitions. Each time it arrives at a state
containing the empty sequence of terms A, it simplifies
the system of constraints associated with it and presents
it as an answer. This simplification can also be carried
out on all the states it passes through.

Let us now reconsider our first program example,
and apply this process to the query.

7?7

LightMeal(h,m,d)?

The initial state of the machine is
({h,m,d}, LightMeal (h,m,d), {}).
By applying the rule
LightMeal(®’, m’, d") -
HorsDoeuvre(#', i) MainCourse(m’, j) Dessert(d’,
k),
{{=0,j=0,k=0,i++k < 10}
we proceed to the state
({hp.d}, HorsDoeuvre(4',7) MainCourse(m’,5)
Dessert(d’,£),
{i=0, k=0, {+7+4£=<10, LightMeal(h,md) =
LightMeal(h', m", d)})
which in turn simplifies to
({hp,d}, HorsDoeuvre(#',i) MainCourse(m’, ;)
Dessert(d’ k),
{i=0,7=0, k=0, i+j+£=<10, h=k", p=p’, d=d'}),
and to
({hp,d}, HorsDoeuvre(k,i) MainCourse(m, 7)
Dessert(d, k),
{i=0, k=0, i+;j +£=<10}).
By applying the rule
HorsDoeuvre(pité, 6) =
and simplifying the result, we progress to the state
({h5.d}, MainCourse(p,) Dessert(4,£), {h=paté, j=0,
k=0, +k<4}).
By applying the rule
MainGourse(p’, i) = Fish(p’, ¢)
and simplifying the result, we proceed to the state
({hm,d}, Fish(m', ?) Dessert(d k),
{h=paté j=0, k=0, j+k<4, m=m, j=1}).
which then simplifies to
({h,m,d}, Fish(m, j) Dessert(d k), {h=paté, j=0, k=0,
J+k=4}).
By applying the rule
Fish(sole, 2) —
we obtain
({4, md}, Dessert(d k), {h=paté, m=sole, k=0, k<2}).
Finally, by applying the rule
Dessert(fruit, 2) —
we obtain
({hmd}, A, {h=paté, m=sole, d={ruit}).

We can conclude that the system
{# = paté, m = sole, d = fruit}
constitutes one of the answers to the query.
To obtain the other answers, we proceed in the same
way, but use the other rules. In [11] we prove that this
method is complete and correct. To be more exact, given

the abstract machine Mp connected to a program P, we
show that the following property holds.

78

PROPERTY. Let {t,...,ty} be a set of terms, S a
system of constraints, and W the set of variables occur-
ring in them. For any assignment o to W, the following
two propositions are equivalent:

1. the assignment o is a solution of S on W and each
0*(+;) 1s an admissible element for P;

2. starting from state (W, A, S") the abstract machine
Mp can reach a state of the form (W, #,...4,, S), where
S’ admits ¢ as solution on W.

It should be recognized that there are many ways
of simplifying the states of the abstract machine and
checking whether they contain solvable systems of con-
straints. Therefore, we should not always expect that the
machine, which uses very general algorithms, arrives at
the same simplifications as those shown above. In [11]
we show that the only principle to which all simplifica-
tions must conform is that states of the abstract machine
are transformed into equivalent states in this sense:

DEFINITION. Two states are equivalent if they have
the form

W, tity, S)and W, 4.4, §)),

and if, by introducing n new variables xi,...,x,, the
systems

SU{xi=t1,..., x5 =t} and S'"U{ux;=t,",...,x, =t,'},
are equivalent on the subset of variables W U {xi,..., xp}.

Treatment of Numbers

Next, we will illustrate the possibilities of Prolog III in
connection with different program examples. We
will consider, one after the other the treatment of the
following: numbers; Boolean values; trees and lists; and
finally, integers.

Computing Installments

The first task is to calculate a series of installments
made to repay capital borrowed at a certain interest rate.
We assume identical time periods between two install-
ments and an interest rate of 10 percent throughout.
The admissible trees will be of the form:

InstallmentsCapital(xc),
where x is the sequence of installments necessary to
repay the capital ¢ with an interest rate of 10 percent

between two installments. In Figure 6 the program itself
is given by two rules:

July 1990/Vol 33, No.7/COMMUNICATIONS OF THE ACM

PROLOG TN

Computing the mstallments to repay aloan.

The first rule expresses the fact that it is not necessary

ingtallments ta renav zero canital The cecond
(AW Pa) 11idlalllliviilo v l\tl.lay L LT \/u}lll.bu. A LIV OuLvviaiug

rule expresses the fact that the sequence of n+1 install-
ments to repay capital ¢ consists of an installment ¢ and
a sequence of n installments to repay capital ¢ in-
creased by 10 percent interest, but the whole reduced
[)y lIlb[dJlIIlCn[Z

This program can be used in different ways. One
of the most spectacular is to ask what value of ¢ is
required to repay $1000 given the sequence of install-
ments <4,27, 37>. All we need to do is to put the query

InstallmentsCapital(<3, 2; 3>, 1000)?
to obtain the answer

{i = 207 + 413/ 641},

Here is an abbreviated trace of how the computa
proceeds. Starting from the initial state
({z}, InstallmentsCapital(<724 3:>,1000). {}).
and applying the rule
InstallmentsCapital(< i > x,¢) = Installments
O ote A0 1 L 107100
Udpllm\ﬂ \1 +iv/ JUU}b 13 }
we progress to the state
({i}, InstallmentsCapital(x,(1+10/100)c-i"),
{InstallmentsCapital(< ¢, 2, 3:>,1000) =
InstallmentsCapital (<i' > *xc)}),
which simplifies to
({&}, InstallmentsGapital(x,(11/10)c-i"),
17 =, x=<2,3i>, c= 10001\
then to
({z}, InstallmentsCapital(< 24, 3: > ,1100-7), {}).
The reader can verify that when the same rule is
applied two more times, we obtain, after simplification,

tha gtates
tll\a OLal\aD

({2}, InstalimentsCapital(< 3:>,1210-(31/10)¢), {}),
({z}, InstallmentsCapital(< >,1331-(641/100):), {}).
By applying the rule
InstallmentsCapital (< >,0) =
to the last state, we finally obtain
(i}, {1331-(641/100):=0}
which simplifies to

(i}, {i=207 +413/641}).

COMMUNICATIONS OF THE ACM/ July 1990/Vol.33, No.7

Here again the reader should be aware that the
simplifications presented here are not necessarily those
the machine will perform.

Compuiing Scalar Producis

As an example of approximated multiplication, Figure
7 shows small program which computes the scalar
product x; X y1 +... +xp Xy of two vectors <xy,..., x>
and <yi,...,9n>.

FIGURE 7
Computing the scalar product.

m1
ine query

ScalarProduct(< 1,1>, X, 12)
ScalarProduct(X, <2,4>, 34)?

produces the answer

a—
»

=< 75>,
~ J

Computing the Periodicity of a Sequence
This problem was proposed in [5]. We consider the
infinite sequence of real numbers defined by

i = | g | = %
where x; and x; are arbitrary numbers. Our aim is to
show that this sequence is always periodic and that
the period is 9, in other words, that the sequences
X2, X3,... AN

are always identical.

Each of these two sequences is completely determined
i irg fir ala rnawn Th chaow that the

i1 ll.D lllDL lVVU \/l\alll\,llla alb DELUVY L. AU O11IVYY I-l.lul. I-ll.\z
sequences are equal, it is therefore sufficient to show
that in any sequence of eleven elements

X1, X2, X3,...5%X10, X11

we have

X1 =X10 and X2=X11.

79

To begin with, Figure 8 illustrates the program that
enumerates all the finite sequences xy,x,...,x, which
respect the rule given above.

Absoiﬁiéi}’%

FIGURE 8
Computing the sequence X;,,=|X;.4| —X;.

The + signsin the first rule constrain x and y to denote
numbers. It will be observed that the sequences are
enumerated from left to right, that is, trees of the form
Sequence(s) are only admissible if s has the form
< Xp,..,X%2,%1 > . If we run this program by asking

Sequence(s), {Is|=11, s = w * v * u, |u|=2, ho|=
2, u F w}?

execution ends without providing an answer. From this
we deduce that there is no sequence of the form
X1Xa,---,X10,X11 such that the subsequences x;x, and x;0,%11
(denoted by u and v) are different, and therefore that
in any sequence xy,x;,..., ¥10,¥11 we have indeed x; =x10
and x;=x;.

Computing a Geometric Covering

Here is a final example which highlights the numerical
part of Prolog III. Given an integer n, we want to
know whether it is possible to have n squares of different
sizes which can be assembled to form a rectangle. If
this is possible, we would like to determine the sizes of
these squares and of the rectangle thus formed. For
example, Figure 9 shows two solutions to this problem,
for n=9.

We will use a to denote the ratio between the length
of the longest side of the constructed rectangle, and the
length of its shortest side. Obviously, we can suppose
that the length of the shortest side is 1, and therefore
that the length of the longest side is a. Thus, we have
to fill a rectangle having the size 1xa with n squares,
all of them different. With reference to Figure 10, the
basis of the filling algorithm will consist of
1. placing a square in the lower left-hand corner of
the rectangle,

2. filling zone A with squares,

3. filling zone B with squares.

Provided zones A and B are not empty, they will be filled
recursively in the same way: placing a square in the
lower left-hand corner and filling two subzones.

The zones and subzones are separated by jagged
lines in the shape of steps, joining the upper right
corner of the squares and the upper right corner of the
rectangle. These jagged lines never go downward, and
if several can be plotted to go from one point to another,
the lowest one is the one we consider. Figure 11 is an ex-
ample of all the separation lines corresponding to the
first solution of the problem for n=9:

To be more precise, a zone or subzone has the form
given in the left box in Figure 12, whereas the entire

FIGURE 10
Recursive procedure to place
the different squares

in the rectangle.

28
¢ 6l :
33
FIGURE 9
(Box right) Filling a rectangle of unknown shape by
n squares of unknown, but different sizes.
First solution for n=9.
(Box left) Filling a rectangle of unknown shape by
n squares of unknown, but different sizes. Second
solution for n=9.
80

July 1990/V0l.33, No.7/COMMUNICATIONS OF THE ACM

PROLOG TH

FIGURE 11
The different subzones in the first solution
with n=9.

rectangle is itself identified with the particular zone
drawn on the right.

Q

L

FIGURE 12
General and initial shape of a zone or subzone.

COMMUNICATIONS OF THE ACM/ July 1990/Vol.33, No.7

The zone is delimited below by a jagged Line L join-
ing a point P to point Q) , and in Figure 12 by a jagged
line L joining the same point P to the same point Q,
Point P is placed anywhere in the rectangle to be filled,
and Q) denotes the upper right corner of the rectangle.
These jagged lines are represented by alternating
sequences of vertical and horizontal segments

o, }lh V150009 }lﬂ) Uns

where v; denotes the length of a vertical segment, and
h; the length of a horizontal segment. The A;’s are always
strictly positive. The v;’s are either zero, either positive
to denote ascending segments, or negative to denote
descending segments. The 2;’s of the upper lines are
never negative, and if a zone is not empty, only the first
vertical segment o, in its lower line is negative.

If these conventions are applied to the entire
rectangle (right diagram above), the lower line L can
be represented by the sequence -1, 4,1 and the upper line
L’ by a sequence having the form 0,4,0,...,4,,0,
where 4, +...+ hy =a, and the £;’s are positive,

The heart of the program consists in admitting trees
of the form

FilledZone(L, L', C, C")

only if the zone delimited below by L can be filled with
squares and can be bounded above by L. The squares
are to be taken from the beginning of the list C, and C’
has to be the list of squares which remain. We also
need to introduce trees of the form

PlacedSquare(b, L, L")

which are admitted only if it is possible to place a square
of size b x5 at the very beginning of line L and if L' is
the line making up the right vertical side of the square
continued by the right part of L (see Figure 13). In fact
L denotes the lower line of a zone from which the first
vertical segment has been removed. The diagram shows
the three cases that can occur and which will show up
in three rules. Either the square overlaps the first step,
which in fact was a pseudostep of height zero, or the
square fits against the first step, or the square is not big
enough to reach the first step.

L' '

L L L

L

FIGURE 13
The three ways to place a square.

The program itself is constituted by the following 10
rules listed in Figure 14.

PlacedSquafe(; : oL;
PlacedSquare(b <h+h >n
b>hy; -

PlacedSquarp(b <h v>i L
b=hy

PlacedSquare(b <h>‘L <~p
{b < h}

FIGURE 14
Program for filling a rectangle of unknown shape by
n squares of unknown, but different sizes.

The call to the program is made with the query
FilledRectangle(a, C), {| Cl=n}?

where 7, the only known parameter, is the number of
squares of different sizes that are to fill the rectangle.
The program computes the possible size 1xa of the rec-
tangle (¢=1) and the list C of the sizes of each of the n
squares. The computation begins by executing the first
rule, which simultaneously constrains a to be greater
than or equal to 1, creates n different squares (of

unknown size), and starts filling the zone constituted by
the entire rectangle. Even if the line L, constituting the
upper limit of this zone, is unknown at the beginning,
given that this line must join—without itself
descending—two points at the same height, this line will
necessarily be a horizontal line (represented by steps of
height zero). If we ask the query

FilledRectangle(a, C), {{ C|=9}?
we obtain 8 answers. The first two

{a = 33/32, C=<15/32, 9/16, 1/4, 7/32, 1/8, 7/16,
1/32, 5/16, 9/32>},
{a = 69/61, C= < 33/61, 36/61, 28/61, 5/61, 2/61,
9/61, 25/61, 7/61, 16/61>>}.

correspond to the two solutions we have drawn
earlier. The other six answers describe solutions which
are symmetrical to these two. In order to locate the
positions of the various squares in the rectangle we can
proceed as follows. One fills the rectangle using all the
squares of the list C in their order of appearance. At each
stage, one considers all the free corners having the same
orientation as the lower left corner of the rectangle and
one chooses the rightmost corner to place the square.

There is a vast amount of literature concerning this
problem. Let us mention two important results. It has
been shown in [25] that for any rational number a
= 1 there always exists an integer z such that the rect-
angle of size 1xa can be filled with n distinct squares.
For the case of ¢ = 1 (when the rectangle to be filled is
a square), it has been shown in [14] that the smallest
possible nisn = 21.

Treatment of Boolean Values
Computing Faults

In this example we are interested in detecting the defec-
tive components in an adder which calculates the binary
sum of three bits x,, x,, x; in the form of a binary
number given in two bits y;9,. As we can see in Figure
15, the circuit proposed in [16] is made up of 5 com-
ponents numbered from 1 to 5: two and gates (marked
And), one or gate (marked Xor) and two exclusive or gates
(marked Xor). We have also used three variables u;, u,,
us to represent the output from gates 1, 2 and 4.

FIGURE 15
An elementary adder.

July 1990/Vol.33, No.7/COMMUNICATIONS OF THE ACM

PROLOG 111

We introduce five more Boolean variables d; to express
by d; = 1’ that “gate number i is defective.” If we adopt
the hypothesis that at most, one of the five components
has a defect, the program connecting the values x;, y;
and d; is shown in Figure 16.

ercmt(<x1,xz(x3>, <y‘i,y2>, <d1 d2,d3,d4,ds>) ~>
v AtMostOné(«:d 1,d2,d3 d4 d5>)
“{=d1- ==>(u1 xleS), -
S A2 = (428 X2Au3),
R & n(ylzulvuz), L
s = U3 -ﬁ(xlv-xs)),
~i ~d5 = (yZ *’KX‘Zwu?»))}, i

iAtMostOne(D)«* E
OrInAtMostOﬂe(D d), ;

'*c

OrlnAtMcstOne(<>; 0)”-—h .
{DrInAtMcvs’cOne(<d> -D dve) .., .
: OrlnAtMostOne(D «e},,
{[dne =0} o

FIGURE 16
Detecting the faults of the adder.

In this program the admissible trees of the form
AtMostOne(D)
are those in which D is a list of Boolean elements
containing at most one 1. The admissible trees of
the form
OrInAtMostOne(D, d)

are those in which D is a list of Boolean elements
containing at most one 1" and where d is the disjunc-
tion of these elements.

If the state of the circuit leads us to write the query

Circuit(<1’, 1, 0'>,<0’, 1'>,<d1, d2, d3, d4, d5>)?

the diagnosis will be that component number 4 is
defective:

{d1=0', d2=0, d3=0", d4=1', d5=0'}.
If the state of the circuit leads us to write the query

Circuit(<1,0', 1'>,<0',0'>,<d1, d2, d3, d4, d5>)?

COMMUNICATIONS OF THE ACM/ July 1990/Vol.33, No.7

SHSOSOSOSSS

the diagnosis will then be that either component
number 1 or component number 3 is the defective one:

{d1vd3 =1, d1Ad3=0", d2=0', d4=0', d5=0'}.

Computing Inferences

We now consider the 18 sentences of a puzzle by Lewis
Carroll [7], which we list here. Questions of the follow-
ing type are to be answered: ‘““‘what connection is there
between being clear-headed, being popular and being
fit to be a Member of Parliament?” or “what connec-
tion is there between being able to keep a secret, being
fit to be a Member of Parliament and being worth one’s
weight in gold?”’

1. Any one, fit to be an M.P,, who is not always speak-
ing, is a public benefactor.
2. Clear-headed people, who express themselves well,
have a good education.
3. A woman, who deserves praise, is one who can keep
a secret.
4. People, who benefit the public, but do not use their
influence for good purpose, are not fit to go into
Parliament.
5. People, who are worth their weight in gold and who
deserve praise, are always unassuming.
6. Public benefactors, who use their influence for good
objects, deserve praise.
7. People, who are unpopular and not worth their
weight in gold, never can keep a secret.
8. People, who can talk for ever and are fit to be
Members of Parliament, deserve praise.
9. Anyone, who can keep a secret and who is unassum-
ing, is a never-to-be-forgotten public benefactor.
10. A woman, who benefits the public, is always popular.
11. People, who are worth their weight in gold, who
never leave off talking, and whom it is impossible to
forget, are just the people whose photographs are in
all the shop-windows.
12. An ill-educated woman, who is not clear-headed, is
not fit to go to Parliament.
13. Anyone, who can keep a secret and is not forever
talking, is sure to be unpopular.
14. A clear-headed person, who has influence and uses
it for good objects, is a public benefactor.
15. A public benefactor, who is unassuming, is not
the sort of person whose photograph is in every
shop-window.
16. People, who can keep a secret and who use their
influence for good purposes, are worth their weight
in gold.
17. A person, who has no power of expression and who
cannot influence others, is certainly not a woman.
18. People, who are popular and worthy of praise, either
are public benefactors or else are unassuming.

Each of these 18 statements is formed from basic
propositions and logical connectives. To each basic

statements can then be expressed in a single rule formed
by a large head term, an empty body, and a sizeable
constraint part depicted in Figure 17.

s e

g Rt g

5,

Bl
Xt

&
oo
i

B

;
A HERe
e
) LA
e e

b

R i

Jgiig gl
. o

ot B
frere)

In order to compute the connection which exists

113

between “clear-headed,” “popular” and “fit to be a
Member of Parliament” it suffices to write the query

ossibleSubCase(<
<p,"clear-headed" >,
<g,"popular" >,
<r"fit to be a Member of Parliament" > >)?

{p: bool, ¢ : bool, r : bool},

which means that there is no connection between

<« 19 6T 9
popular

clear-headed,
Parliament.”

To compute the connection which exists between
‘“able to keep a secret,” “fit to be a Member of
Parliament” and “worth one’s weight in gold™ it suffices
to write the query

PossibleSubCase(<
p,"able to keep a secret” >,
<g,"fit to be a Member of Parliament" >,
<r,"worth one’s weight in gold" > >)?

The answer is
{pAg= 1},

July 1990/Vol.33, No.7/COMMUNICATIONS OF THE ACM

PROLOG 101

which means that persons who can keep secrets and are
fit to be Members of Parliament are worth their weight
in gold.

In fact, in these two examples of program execution
we have assumed that Prolog 111 yields as answers very
simplified solved systems, particularly, those not con-
taining superfluous Boolean variables. If this had not
been the case, to show (as opposed to find) that persons
who can keep secrets and are fit to be Members of
Parliament are worth their weight in gold, we would
have had to pose the query

PossibleSubCase(<
< p,"able to keep a secret™ >,
< g,"fit to be a Member of Parliament" >,
< r,"worth one’s weight in gold " > >),

{x = (pAgDN)}?

and obtain a response of the form {x = 1',...} or obtain
no answer to the query

PossibleSubCase(<
p,"able to keep a secret" >,
<g,"fit to be a Member of Parliament" >,
<r,"worth one’s weight in gold" > >)?

{(eAgDr) = 0P

Treatment of Trees and LIiSstS
Computing the Leaves of a Tree

Here is, first of all, an example in which we access labels
and daughters of a tree by the operation []. We want to
calculate the list of the leaves of a finite tree without
taking into account the leaves labeled < > . Figure 19
illustrates the program.

{u=

4 g
X N
S W
T s\usecawwfﬁs },“’
e

FIGURE 19
Computing the leaves of a tree.

CGOMMUNICATIONS OF THE ACM/ July 1990/Vol.33, No.7

Trees of the form
Leaves(a, x)

are admissible only if x is the list of leaves of the finite
tree a (not including the leaves labeled < >7). The

query

Leaves(height("Max ", < 180/100,meters > 1), x)?
produces the answer

{x = <™, 'a', 'x', 9/5, meters, 1'>}.

Computing Decimal Integers

Our second example shows how we can use approx-
imated concatenation to access the last element of a list.
We want to transform a sequence of digits into the in-
teger it represents. Figure 20 shows the program
without comments.

i
Hyety

FIGURE 20
Computing an integer from the list of its digit.

As a reply to the query
Value(<1,9,9,0>, x)?

we obtain

{x=1990}.

Computing the Reverse of Lists

If one knows how to access the first and the last elements
of alist, it must be possible to write an elegant program
computing the reverse of a list. The one I propose is

FIGURE 21
Reversing a list.

Each of the two queries

Reverse(<1,2,3,4,5>, x)?
Reverse(x, <1,2,3,4,5>)?

produces the same answer
r=<5,4321>}.
For the query
Reverse(x, y) Reverse(y, 2), {x # z, |x|=10}?

we get no answer at all, which confirms that reversing
a list twice yields the initial list.

Context-Free Recognizer

The treatment of concatenation provides a systematic
and natural means of relating “context-free” grammar
rules with Prolog III rules, thus constructing a
recognizer. Let us for example consider the grammar

{S>AX,A—> A A aA X = A X — aXb}
which defines the language consisting of sequences of

symbols of the form a”*b" with m =7 The program in
Figure 22 corresponds to the grammar;

FIGURE 22
Recognizer associated with a context-free grammar.

Sform("aaabbb")?

produces the answer

{}

which signifies that the string “‘aaabb” belongs to the
language, whereas the query

Sform("aaabbb")?

produces no response, which means that the string
" 'taaabbbb'' does not belong to the language.

Treatment of Integers

The algorithms used for solving constraints on integers
are complex and quite often inefficient. It is for
this reason that the structure underlying Prolog IIT does
not contain a relation restricting a number to be only
an integer. However, we have considered a way of
enumerating integers satisfying the set of current
constraints.

Enumeration of Integers
The Prolog IIT abstract machine is modified to
behave as if the following infinite set of rules

enum(0) —;

enum(—1) —=;
enum(1) —;
enum(-2) —;
enum(2) —;

had been added to every program. Moreover, the
abstract machine is implemented to guarantee that
the search for applicable rules takes a finite amount of
time whenever this set is itself finite. In connection with
the definition of the abstract machine, this can be re-
garded as adding all the transitions of the form

(W, totr.tim, 8) = (W, ti..tp, SU{to=enum(n)}),

where n is an integer such that the styem SU{p,=enum
(n)} admits at least one solution in which the values of
the ¢;’s are all defined.

For example, if in the current state of the abstract
machine, the first term to be deleted is «enum(x)» and
if the system S of constraints is equivalent on {x} to
{3/4<x, x=<3+1/4}, then there will be two transitions:
one to a state with a system equivalent to SU {x=1}, the
other to a state with a system equivalent to SU{x=2}.

July 1990/Vol.33, No.7/COMMUNICATIONS OF THE ACM

PROLOG 11

We should add in this connection that if S is a system
forcing the variable x to represent a number, then, in
the most complex case, the system S is equivalent on {x}
to a system of the form

{x = ao, x # ar,e., x # ap, x < apu},

where the a,’s are rational numbers.

A problem, taken from one of the many books of
M. Gardner [15], illustrates nicely the enumeration of
integers. The problem goes like this. When prices of
farm animals were much lower than they are now, a

fo v ar anon + 10N +4 by 100 animale of three different
Iarmer spent $ivy to DUy LUV animais O1 Uire auicrernt

kinds: cows, pigs and sheep. Each cow cost $10, each pig
$3 and each sheep 50 cents. Assuming that he bought
at least one cow, one pig and one sheep, how many of
each animal did the farmer buy?

Let x, y and z be the number of cows, pigs and sheep
that the farmer bought. The query

enum (x) enum(y) enum (),
{x+y+2=100, 10x+3y+2/2=100, x =1, y =1, z =1}?

{x=5, y=1, z=94}.

This problem reminds us of a problem mentioned at the
begmnmg of this article. Find the number x of l.ugcuua
and the number y of rabbits such that together there is
atotal of 12 heads and 34 legs. It was solved by putting
the query

{x+y=12, 2x +4y=34}?

But, given that a priori, we have no guarantee that the
solutions of thls system are non-negative and integer

smmbare Mare annrantiate fa niiF the arians

uuulu\,x Dy ll is 111ulL o a}J}Jl UPI 1alc w lJuL Lllb \-iucl)’
enum(x) enum(y), {x +y=12, 2x +4y=34, x=0, y=0}?
which produces the same answer

{x=7, y=5}.

Cripto-Arithmetic
Next we look at another problem that illustrates the
enumeration of integers. We are asked to solve a clas-

sical cripto-arithmetic puzzle: assign the ten digits
0192 24qﬁ7RQfﬂf‘]ﬁPfPhlefPY‘c DFPDFATRA T,T

in such a way that the addition DONALD + GERALD
= ROBERT holds. We deterministically install the

maximum number of constraints on the reals and use

COMMUNICATIONS OF THE ACM/ July 1990/Vol.33, No.7

the nondeterminism to enumerate all the integers which
are to satisfy these constraints. Figure 23 indicates the
program without any comments:

Squtxon(r, joi+R -
© Value(<D, O N,A,L,D>, 1)
Value(<G,E,R,ALD>,j)

. Value(<R,0,B,E,R,T>, i+))

DifferentAndBetween09(x)

Intecors(y)

AIEHEISAS,

{<DGR£NBALTO> =X,
D#0,G=0, R¢0}

: Value(<>, Q)——-)
Value(y, 10i+f) —
Value(x, 1), {y x~<;>}

DifferentAndBetween09(‘<>) 35

DxfferentAndBetweeﬁO9(<:>~x) -
OutOf(, x) L
DxfferentAndBetWeenO%x)

1U\£,£.>7}, e,

» OutOf(z‘, <>) —;
OutOf(i, <j>ex) = -
OutOf(i, x), (i # J};

Integers(<>) —-;

Integar re{<isex) <3
Inte GErS\<i>eX) —3

enum(i) Integers(x)

{i=526485, j=197485, k=723970}.

Self-Referential Puzzle

The last example is a typical combinatorial problem
that is given a natural solution by enumeration of
integers involving approximated concatenation and
multiplication. Given a positive integer n, we are asked
to find n integers x;,..., ¥ so the following property holds:

“In the sentence that I am presently uttering, the

number 1 occurs x; times, the number 2 occurs x,
times,..., the number n occurs x,, times.”

87

One proceeds as if one were using true (and not
approximated) concatenation and one writes the
program whose admissible trees are of the form

Counting(< xy,..., %y >, <p1+1l,...,9p +1>),
each x; being an integer between 0 and m, each y;
being the number of occurrences of the integer 7 in the
list <x,,...,x%;,>. Figure 24 illustrates the program:

FIGURE 24
counting the occurrences of each integerina
list of integer.

The constraint { <1>+Y = ¥-<1>}is an elegant way
of forcing Yto be alist of I’s. If everything were perfect,
we could simply ask the query “Counting (X, X), {|X]|
= n}” to obtain the list of the desired n integers. Since
Prolog I11 is not perfect, we have to substitute approx-
imate concatenations for true concatenations. We must,
therefore, complete the program with an enumeration
of the integers xi,...,x, that we are looking for. All the
lists are thus constrained to be of integer length—to be
true lists; consequently all the approximated concatena-
tions become true concatenations. In order to reduce
the enumeration of integers,we introduce two proper-
ties: The first property is
X1+ ... +xy =2n,

which expresses that the total number of occurrences of
numbers in the sentences is both x; +... +x, and 2n. The
second 1s

Oxy +1x, + ... +(n—Dxy =n(n+1)/2,

which expresses that the sum of numbers which appear
in the sentence is both 1x; +2x; +... +nxp and X1 +... +x,
+1+...4n. From all these considerations the final
program results in Figure 25.

- éolution(X) -
Sum(X, 2n)
WexghtedSum(X m)
ing(X,

. ~4Wexghted8um(<>, 0) -
,We;ghtedSum(X-<x> z+y) =
WelghfedSum(X ¥

{z lXixx} |

: »Countmg(<> Y) -,
U kDY R Y1)
Countmg(<k>»X; Y) >
Countmg(X Y),
{Y = Ue<y+1>4V,

LI -<y>-V
‘U x""I}I
- Integers(<>) . 5;5'

e Integers(<x>~X) -
* Integers(X)
‘ enum(x), .

FIGURE 25
Solving the self-referential puzzle.

Assigning successively to n the values 1,2,...,20 and

asking the query
Solution(X), {|X] = »}?

July 1990/Vol.33, No.7/COMMUNICATIONS OF THE ACM

PROLOG I

we obtaln as answers

X = <3,1,3,1>},
X = <2,3,2,1>},
X = <323,1,1>},

(X = <4,3,221,1,1>},

X = <53212,1,1,1>},
X = <6,3,2,1,1,2,1,1,1>},
X = <732,,1,1,2,1,1,1>},
(X = <8,3,2,1,1,1,1,2,1,1,1>},

The regularity in the answer gives rise to the idea of
proving that for n = 7 there always exists a solution of

the form

Light meals 4 sec
Installments, n = 3 2 sec
Installments, n = 50 6 sec
Installments, n = 100 23 sec
Periodic sequence 3 sec

Squares, n=9

13 min 15 sec

Squares, n = 9, Ist solution

1 min 21 sec

Squares, n = 10, 1st solution 6 min 36 sec
Squares, n = 11, 1si solution 1 min 38 sec
Squares, n = 12, 1st solution 5 min 02 sec
Squares, nn = 13, 1st solution 4 min 17 sec
Squares, n = 14, 1st solution 13 min 05 sec
Squares, n = 15, 1st solution 11 min 29 sec
Faults detection, 2nd query 3 sec
Lewis Carrol, 2nd query 3 sec
Donald+Gerald... 68 sec
Self-referential-puzzle, n = 4 3 sec
Self-referential-puzzle, n = 5 4 sec
Self-referential-puzzle, n = 10 11 sec
Self-referential-puzzle, n = 15 36 sec

Self-referential-puzzle, n = 20

1 min 54 sec

Self-referential-puzzie, n = 25

5 min 51 sec

Self-referential-puzzle, n = 30

17 min 55 sec

FIGURE 26
Benchmarks

COMMUNICATIONS OF THE ACM/ July 1990/Vol.33, No.7

S e S 8 58 085 00 e a e o]
Practical Realization

Prolog IIT is obviously more than an intellectual exer-
cise. A prototype of a Prolog I1I interpreter has been
running in our laboratory since the end of 1987. A com-
mercial version based on this prototype is now being
distributed by the company ProloglA at Marseilles

(Prslae TTT version 1) This nroduct incornorates the
(£ Y0108 i1 VEYSION 1). 1018 ProGuct Incorporates ine

functions described in this article as well as facilities
calculating maximum and minimum values of numer-
ical expressions. We have been able to use it to test our
examples and to establish the following benchmarks (on
a Mac I, first model).

All the figures in Figure 26, except when stated other-
wise, are the complete execution times of complete pro-
grams including the backtracking, input of queries and
UULPUL Ufauavvclb Thc lllblalllllblll, La—‘lbuldl—lull LUllD‘lStS
of computing a sequence of installments ¢, 2, 31,...,m
needed to reimburse a capital of 1000. In order to do
Justice to these results, one must take into account the
fact that all the calculations are carried out in infinite
precision. In the instaliment exampie with =100, a
simplified fraction with a numerator and a denominator
with more than 100 digits is produced!

B B T ¢ conclude this article with information on
‘ l ,the implementation of Prolog III. The
kernel of the Prolog 1111
' ' of a two-stack machine which explores the
search space of the abstract machine via
W W backtracking. These two stacks are filled
and emptied simultaneously. In the first stack, one
stores the structures representing the states through
which one passes. In the second stack, one keeps track
of all the modifications made on the first stack; for this
purpose address-value pairs are used to make the
needed restorations upon backtracking. A general
system of garbage collection [23] is able to detect those
structures that have become inaccessible and to regain

the snace thev occunv hy comnactine the two qf';l{‘]zc
tac¢ Space ncy oCcupy Dy compaciing tne tWo §1aCxs.

ntarnmratar ~rnnaoiotg
TRCIPItCr LOIIN

During this compaction the topography of the stacks is
completely retained. The kernel of the interpreter also
contains the central part of the solving algorithms for
the = and # constraints. These algorithms are essen-
tially an extension of those already used in Prolog IT and
described in [8]. The extension concerns the treatment
of list concatenation and the treatment of linear
numerical equations containing at least one variable not
restricted to represent a non-negative number. A
general mechanism for the delaying of constraints,
which is used to implement approximated multiplica-
tion and concatenation, is also provided in the kernel.
Two submodules are called upon by the interpreter, one
for the treatment of Boolean algebra, the other for the
remaining numerical part.

The Boolean algebra module works with clausal

PROLOG 11

POCSSEOSOSSSSSHSHSSSOSOSSSSHSS

forms. The algorithms used [2] are an incremental
version of those developed by P. Siegel [24], which are
themselves based on SL-resolution [20]. They deter-
mine if a set of Boolean constraints is solvable, and they
simplify these constraints into a set of constraints
containing only a minimal subset of variables. Related
experiments have been performed with an algorithm
based on model enumeration [21]. Although significant
improvement has been achieved as far as solvability tests
are concerned, a large part of these ameliorations is lost
when it comes to simplifying the constraints on output.
We should mention that W. Biittner and H. Simonis ap-
proach the incremental solving of Boolean constraints
with quite different algorithms [6].

The numerical module treats linear equations, the
variables of which are constrained to represent non-
negative numbers. (These variables x are introduced to
replace constraints of the form p= 0 by constraints x =
p and x = 0). The module consists essentially of an in-
cremental implementation of G. Dantzig’s simplex
algorithm [12]. The choice of pivots follows a method
proposed in M. Balinski and R. Gomory [1] which, like
the well-known method of R. Bland [3], avoids cycles.
The simplex algorithm is used both to verify whether
the numerical constraints have solutions and to detect
those variables having only one possible value. This
allows us to simplify the constraints by detecting the hid-
den equations in the original constraints. For example,
the hidden equation x = y will be detected in {x = j,
» = x}. The module also contains various subprograms
needed for addition and multiplication operations in in-
finite precision, that is to say, on fractions whose
numerators and denominators are unbounded integers.
Unfortunately, we have not included algorithms for the
systematic elimination of useless numerical variables
in the solved systems of constraints. The work of J-L.
Imbert [17] should be noted in this connection.

Acknowledgments.

I thank the entire research team which has been work-
ing on the Prolog IlI interpreter: Jean-Marc Boi and
Frédéric Benhamou for the Boolean algebra module,
Pascal Bouvier for the supervisor, Michel Henrion for
the numerical module, Touraivane for the kernel of the
interpreter and for his work on approximated multipli-
cation and concatenation. I also thank Jacques Cohen
of Brandeis University whose strong interest has been
responsible for my writing this article, and Franz
Guenthner of the University of Ttibingen who helped
in the preparation of the final version. Finally, I thank
Rudiger Loos of the University of Tubingen who
pointed my attention to two particularly interesting
numerical problems: the periodical sequence and the
filling of a rectangle by squares. [§

References

1. Balinski, M.L. and Gomory, R.E. A mutual primal-dual simplex method.
In Recent Advanges in Mathematical Programming, R.L. Graves and P. Wolfe, Eds.

McGraw-Hill, New York, 1963, pp. 17-26.

2. Benhamou F. and Boi, J-M. Le traitement des contraintes Booléennes dans
Prolog ITI. Theses de doctorat, GIA, Faculté des Sciences de Luminy, Univer-
sité Aix-Marseille IT. Novembre 1988.

3. Bland R.G. New finite pivoting for the simplex method. Math Oper. Res. 2,
(May 1977), 103-107.

4. Boole G. The Laws of Thought. Dover Publication Inc., New York. 1958.
5. Brown M. Problem proposed in: Am. Math. Monthly 90, 8 (1983), 569.
6. Bittner W. and Simonis, H. Embedding Boolean expressions into logic
programming. Symbolic Comput. 4, (October 1987), 191-205.

7. Garroll L. Symbolic Logic and the Game of Logic. Dover, New York. 1958,
8. Colmerauer A. Equations and inequations on finite and infinite trees. In-
vited lecture. In Proceedings of the International Confe on Fifth Generation Com-
puter Systems, (Tokyo, November 1984), pp. 85-99.

9. Colmerauer A. Prolog in 10 figures. Commun. ACM 28, 12 (December 1985),
1296-1310.

10. Colmerauer A. Theoretical model of Prolog 11. /n Logic Programming and
its Application, M. Van Caneghem and D. Warren, Eds. Ablex Publishing
Corp., Norwood, N.J., 1986, 3-31.

11, Colmerauer A. Final specifications for Prolog 111, Esprit I project P1106.
February, 1988.

12. Dantzig G.B. Linear Programming and Extensions. Princeton University Press,
Princeton, N_J., 1963.

13. Dincbas M. et al. The constraint logic programming CHIP. In Proceedings
of the International Conference on Fifth Generation Computer Spstems, (Japan,
December 1988), FGCS 88, pp. 693-702.

14. Duijvestijn A.JW. Simple perfect squared square of lowest order. Comb.
Theory. ser. B 25, (1978), 240-243.

15. Gardner M. Wheels, Life and Other Mathematical Amusements. W.H. Freeman
and Co., 1983.

16. Genesereth M.R. and Ginsberg, M.L. Logic programming. Commun.
ACM 28, (September 1985), 933-941.

17. Imbert J-L. About redundant inequalities generated by Fourier’s
algorithm. AIMSA'90, Fourth International Conference on Artificial Intelli-
gence: Methodology, Systems, Applications. Albena-Varna, Bulgaria. (September
1990), To be published.

18. Jaffar J. and Lassez,]-L. Constraint logic programming. Fourteenth ACM
Symposium on the Principle of Programming Languages, (1987). pp. 111-119.

19. Jaffar J. and Michaylov, 8. Methodology and Implementation of a Gon-
straint Logic Programming System. In Proceedings of the Fourteenth International
Conference on Logic Programming (Melbourne). MIT Press, Cambridge, Mass.
1987, pp. 196-218.

20. Kowalski R. and Kuehner, D. Resolution with Selection Function. Artif
Intell. 3, (1970), 227-260.

21. Oxusoff L. and Rauzy, A. Evaluation sémantique en calcul proposition-
nel. Theses de doctorat. GIA, Faculté des Sciences de Luminy, Université Aix-
Marseille 11. January 1989.

22. Robinson A. A machine-oriented logic based on the resolution princi-
ple. J. ACM 12, (December 1965).

23. Touraivane. La récupération de mémoire dans les machines non déter-
ministes. These de doctorat, Faculté des Sciences de Luminy, Université Aix-
Marseille I1, November 1988.

24. Siegel P. Représentation et utilisation de la connaissance en calcul pro-
positionnel, Thése de doctorat d’Etat, GIA, Faculté des Sciences de Luminy,
Université Aix-Marseille 1T, July 1987.

25. Sprague R. Uber die Zerlegung von Rechtecken in lauter verschiedene
Quadrate. J. fiir die reine und angewandte Mathematik 182, (1940).

CR Categories and Subject Descriptors: D.3.2 [Programming
Languages] Language Classifications: .2.3. [Artificial Intelligence] Deduc-
tion and Theorem Proving

General Terms: Design, Languages

Additional Key Words and Phrases: Constraints, logic programming,
Prolog

About the Author:

Alain Colmerauer is a professor in computer science at the University I1 of
Marseille. His current research interests include solving systems of constraints
in various domains and design of very high-level programming languages.
Author’s Present address: Faculté des Sciences de Luminy, 13288 Marseille,
Cedex 9, France.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for Com-
puting Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.

July 1990/Vol.33, No.7/COMMUNICATIONS OF THE ACM

