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Explicit Runge-Kutta methods (RKMs) are among the most popular classes of formulas for the 
approximate numerical integration of nonstiff, initial value problems. However, high-order Runge- 
Kutta methods require more function evaluations per integration step than, for example, Adams 
methods used in PECE mode, and so, with RKMs, it is especially important to avoid rejected steps. 
Steps are often rejected when certain derivatives of the solution are very large for part of the region 
of integration. This corresponds, for example, to regions where the solution has a sharp front or, in 
the limit, some derivative of the solution is discontinuous. In these circumstances the assumption 
that the local truncation error is changing slowly is invalid, and so any step-choosing algorithm is 
likely to produce an unacceptable step. In this paper we derive a family of explicit Runge-Kutta 
formulas. Each formula is very efficient for problems with smooth solutions as well as problems 
having rapidly varying solutions. Each member of this family consists of a fifth-order formula that 
contains imbedded formulas of all orders 1 through 4; By computing solutions at several different 
orders, it is possible to detect sharp fronts or discontinuities before all the function evaluations 
defining the full Runge-Kutta step have been computed. We can then either accept a lower order 
solution or abort the step, depending on which course of action seems appropriate. The efficiency of 
the new algorithm is demonstrated on the DETEST test set as well as on some difficult test problems 
with sharp fronts or discontinuities. 

Categories and Subject Descriptors: G.1.7 [Numerical Analysis]; Ordinary Differential Equations 
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1. INTRODUCTION 
Explicit Runge-Kutta methods (RKMs) are among the most popular classes of 
formulas for the numerical integration of the nonstiff initial value problem 

2 = fb, Y), Ybo) = 3/o. 
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Because of their one-step nature, Runge-Kutta methods are self-starting, and 
can change the step size of integration as often and by as much as required. 
Efficient Adams formulas, such as the widely used code STEP [14], can also 
change step size at every step, but in order to reduce overhead and to enhance 
its theoretical support, it is strongly biased against doing so. RKMs also have 
the advantage that the theory supporting the interpolation in a variable step 
Adams code is less well developed than for Runge-Kutta methods. 

One frequently quoted disadvantage of RKMs is that they require more 
function evaluations per step than do linear multistep methods used in PEC or 
PECE mode, and so may be uncompetitive with Adams methods if function 
evaluations are very expensive. However, one of the present authors (AHK) has 
been heavily involved in a spectral method for the solution of oil-reservoir 
problems. These investigations have shown that, despite the fact that function 
evaluations are extremely expensive, the great flexibility of step size allowed by 
RKMs often solves these problems somewhat more efficiently, and with consid- 
erably less storage space, than when using Adams methods. 

This is due primarily to the erratic behavior of the solution, which typically 
has smooth regions coupled to very sharp fronts. An effective method for such 
problems needs to make frequent changes of step size. In solving these oil- 
reservoir problems, it was very noticeable that in regions where the solution 
trajectory was particularly rough, there were many rejected steps, which resulted 
in an expensive integration. In part, the present investigation arose from a desire 
to predict that a step will be rejected and to quit, or accept a lower order solution, 
before all the function evaluations required to complete a full Runge-Kutta step 
had been computed. 

It is clear that, even though linear multistep methods use fewer function 
evaluations per step than Runge-Kutta methods, this advantage can be lost when 
the solution requires frequent changes in step size. Thus the claim that Runge- 
Kutta methods are generally less efficient than linear multistep methods when 
function evaluations are expensive-because they do more function evaluations 
per step-is not always valid. In practice it is often found that Runge-Kutta 
methods take larger steps, on average; and it is the distance divided by the cost 
that is important. However, when the step size is restricted by, for example, 
output requirements or nonsmooth behavior such as singularities, so that Runge- 
Kutta methods are unable to take a relatively large step, it is the absolute cost 
that is relevant. 

For the oil-reservoir problems that one of us has solved, it is the flexibility of 
the step-size selection in the Runge-Kutta methods that is important. Typically 
the step size is cut by a large factor every 20 or so steps and by smaller amounts 
every 5 to 10 steps. While a Runge-Kutta method can decrease the step size a 
small amount, or increase the step size by a large amount at every step (typical 
codes allow a step increase by a factor of 5), linear multistep methods (as typified 
by [14]) can only halve the step size or double it every few steps. The ability of 
Runge-Kutta methods to change the step size by small amounts, as needed by 
the problem, in addition to increasing the step size rapidly when entering a 
smooth region, gives the Runge-Kutta methods a larger average step size than 
multistep methods on our reservoir problems. 
ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990. 
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Once we became interested in problems with solutions exhibiting very sharp 
fronts, it was natural for us to consider discontinuous initial value problems 
which are, in a sense, the limiting case. We use the term discontinuous initial 
value problem rather loosely to refer to a problem with a solution having a 
discontinuous derivative of some order. Such problems have recently become the 
focus of renewed attention [4, 7, 81, and there is considerable interest in solving 
them efficiently, reliably, and automatically. Although discontinuous IVPs are 
not our main topic of interest, we show in Section 4 that the algorithms developed 
in this paper do perform very efficiently on a large class of such problems. 

A very widely used fixed-order Runge-Kutta code is RKF45 of Shampine and 
Watts [16]. The RKM on which this code is based uses a total of six function 
evaluations per step to give a main formula of order 5 and an imbedded formula 
of order 4. The difference between these two solutions gives a local error estimate 
in the fourth-order solution. If this error is less than a prescribed tolerance, it is 
normally the fifth-order solution that is accepted (i.e., local extrapolation is 
performed). This procedure is, of course, simply the well-known Fehlberg imbed- 
ding technique applied to a 5(4) formula. 

An important extension to this idea was given by Bettis [l], and further 
developed by Verner [ 171. Verner constructed special Runge-Kutta formulas, 
which he called CSIRK methods, that contain a complete set of imbedded RKMs. 
He gave families of order p that contain imbedded methods of all orders 1,2, . . . , 
p - 1 for p = 5, 6, 7, and 8. One possible application of these formulas is in the 
construction of a family of variable-order, imbedded Runge-Kutta methods with 
order sp. Shampine et al. [15] used a similar idea to choose between 4(3) and 
B(7) explicit Runge-Kutta methods. They showed that there is often a big 
advantage in varying the order of Runge-Kutta codes. An important conclusion 
of Shampine et al. is that Runge-Kutta methods are very efficient if the order is 
properly matched to the accuracy required. Furthermore, they claim that if one 
could select at each step the best fixed-order Runge-Kutta code for that step, the 
resulting algorithm would compete with the best Adams codes in terms of 
derivative evaluations, and would possess several important advantages. We have 
found this to be especially true for problems having solutions with sharp fronts 
or discontinuities where a low-order solution often has very good accuracy while 
a higher order one has very poor accuracy. 

Although there are some similarities between our approach and that of 
Shampine et al. [15], the two differ in several important respects. First, we 
implement a complete set of Runge-Kutta formulas, whereas they consider only 
4(3) and 8(7) formulas. Second, we only accept a lower order solution that passes 
the error test if higher order solutions fail this test. This strategy is justified later 
in this paper. Finally, we are mainly interested in applying our formulas to 
problems having regimes where the solution is “rough” or discontinuous. In 
particular, our approach has proved to be very effective for integrating through 
points where certain low-order derivatives of the solution are either discontinuous 
or extremely large. For such problems, a low-order formula is normally more 
effective than a higher order one, and also has the possibility of giving 
a reasonable error estimate. Shampine et al. explicitly exclude this class of 
problem. 
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The variable order RKM which we describe reduces substantially the number 
of function evalutions for many of the problems we have solved and requires only 
a slight increase in overhead, which can normally be neglected if function 
evaluations are reasonably expensive. The basic formula we use is (6,5) CSIRK, 
derived using the theory developed by Verner [17]. A six-stage CSIRK formula 
allows the construction of RKMs of all orders from 1 to 5, but as we explain in 
Section 3, we only allow the possibility of accepting orders 2, 3, or 5. At each 
step we use Fehlberg imbedding to compute an estimate of the error in lower 
order solutions. If the local error estimate in a low-order solution indicates that 
the step is likely to be rejected at order 5, we immediately reject the step and 
investigate the possibility of accepting a lower order solution. 

This strategy has a number of advantages. If the solution has a sharp front or 
discontinuity, we frequently get the largest increase in step size in fewer than six 
function evaluations. More importantly, since we can often detect when the step 
needs to be cut, without computing all six function evaluations, the penalty for 
rejecting a step is greatly reduced. We have modified the code RKF45 of Shampine 
and Watts to incorporate these ideas. A listing of the code is available from one 
of the present authors (JRC) and from NETLIB. 

(2) 

2. A MODIFIED CSIRK METHOD 

In this section we derive a special Runge-Kutta formula of the form 

0 0 
c2 a21 0 
c3 a31 a32 0 
c4 a41 a42 a43 0 
c5 a51 a52 a53 a54 0 
C6 a3 a62 a63 a64 a65 0 

bl b2 b3 b4 b5 b6 

which has order 5, and also contains a complete family of imbedded Runge-Kutta 
formulas of orders 1, 2, 3, and 4. Runge-Kutta formulas with a complete family 
of imbedded methods, called CSIRK methods, have been studied in detail by 
Verner [17], who derived CSIRK formulas of order 5, 6, 7, and 8. Because of the 
special application we have in mind, we derive a different CSIRK formula from 
the one given by Verner. In what follows, we describe the design criteria for our 
formulas. 

Our first concern is to derive formulas and error estimates that are of “good 
quality” for general initial value problems. With this in mind, we chose the 
coefficients of our CSIRK formulas so that their local truncation errors have the 
form suggested by Dormand and Prince [5] and Shampine [13]. It is useful to 
give a brief summary of these ideas here. 

For discussion, we wish to compute a numerical solution of the initial value 
problem (1) using a Runge-Kutta formula of order p. We further assume that the 
numerical solution y,, at the step point x, has already been computed and that 
our pth-order Runge-Kutta formula gives a solution Y,,+~ at the step point 
ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990. 
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x,+~ = X, + h. The local solution u(x) is defined to be the solution of 

2 = fb, u), U(&) = Yn- 

It is well known that 

$+I x,+2 
= h p+l C Tp+l,jDp+l,j + hp+2 2 Tp+z,jDp+2,j + O(hp+3)y 

(4) 

j=l j=l 

where A,+, and A,+, are integers depending on p, the Dp+i,j are elementary 
differentials depending on the problem, and the Tp+i,j are error coefficients 
depending on the Runge-Kutta formula. It has been suggested by Dormand and 
Prince [5] that every elementary differential should contribute to both the local 
error and its estimate. We have constructed our formulas in line with this 
suggestion. From Eq. (4), we see that this requirement is Tp+l,j # 0 for allj. 

The next design criterion of interest concerns the relative size of the local 
error in the imbedded formula compared with that of the higher order formula. 
The larger the error in the imbedded formula, the more accurate the local error 
estimate will tend to be. However, the step control procedure will be more 
conservative, resulting in smaller steps and a generally more expensive integra- 
tion. This question has been investigated by Shampine [13], and we have derived 
our formulas with his suggestions in mind. For further comments on this subject 
and for additional references, see Cash [3]. 

There is a third important design criterion we need to take into account: the 
fact that we are particularly interested in nonsmooth solutions. We wish to 
choose the ci so that they span the range [0, l] with reasonable uniformity. To 
explain the need for this criterion, we describe our approach for detecting 
nonsmooth behavior, which can best be done by considering imbedded formulas 
of order 2 and 3. The second-order formula involves function evaluations at 
points x, and x, + c2h, while the third-order formula involves function evaluations 
at x, + cih, 1 5 i I 4. Embedded in the second-order formula we have a formula 
of order 1, and an estimate of the error in the first- and second-order solutions 
can be obtained by imbedding in the usual way. If the order 1 and 2 solutions are 
sufficiently accurate (in a precisely defined sense, to be explained in Section 3), 
then we go on to compute the fourth-order solution with the expectation that 
the step length is sufficiently small to allow a highly accurate, high-order solution 
to be computed. If, however, the first-order solution has good accuracy while the 
second-order solution has very poor accuracy, then we would expect a “trouble 
spot” in the range [x, + czh, x, + cqh]. If this were the case, we would accept the 
order 1 solution and reduce the step (as described in Section 3). Similarly, we 
have a well-defined course of action if the first-order solution has poor accuracy. 

Given this strategy, it is clear that we would like the ci to span the range [0, l] 
and to be reasonably equally spaced, with one of the ci = 1. This choice gives us 
a very good chance of detecting bad behavior in the right-hand side of Eq. (l), if 
it occurs. After having derived all the order relations for our CSIRK formulas, 
we attempted to choose the coefficients to satisfy all of these (somewhat impre- 
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cise) design criteria. The formula that we finally derived is: 

0 

1 

s 

3 
lo 

3 
5 

1 

7 
s 

0 

1 

Ei 

3 
40 

3 
lo 

11 -- 
54 

1631 
55296 

0 

9 0 
40 

9 6 0 -- 
10 5 

5 70 35 
5 

-- 
27 27 

175 575 44275 - -___ 
512 13824 110592 

0 

253 0 
4096 

(5) 

37 
378 

2825 

0 250 
621 

0 18575 
27648 

19 

54 

3 -- 
2 

1 

48384 

0 10 

-27 

5 0 
2 

0 0 

125 0 512 Order 5 
594 1771 

13525 277 1 Order 4 
55296 14336 2 

55 0 0 Order 3 
54 

0 0 0 Order 2 

0 0 0 Order 1 

When used as a fixed-order method, we refer to Eq. (5) as RKFNC; when used 
as a variable order method, as VRKF. 

It is interesting to examine the first few terms in the local error expansion of 
this formula and to compare them with the errors in certain other widely used 
5(4) formulas. A reasonable way of measuring the local error in a @h-order 
formula, which has been used by several other authors, is to compute 

(See Eq. (4).) These relations give the 2-norm of the error coefficients of order 
p + 1 and p + 2 which are the first two nonvanishing terms in Eq. (4). For the 
formula described in this paper and two reference formulas, the details are given 
in Table I. 

We note that, using these measures to quantify the local error, RKFNC has 
considerably smaller terms in its local error than either RKF45 or Verner’s fifth- 
order CSIRK method. The hope is that on problems with reasonably smooth 
solutions, using RKFNC will result in increased efficiency. As we will see in 
Section 4, this hope is realized for the DETEST test set. Before giving any 
ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990. 
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Table I. Error Terms 
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Formula Order II T5 II 2 II ‘f6 II 2 II ‘I’, II 2 
RKF45 Main 5 0 0.0034 0.0068 

Embedded 4 0.0018 0.0058 - 
Verner 5(4) Main 5 0 0.0037 0.0070 

Embedded 4 0.0012 0.0054 - 
RKFNC Main 5 0 0.0009 0.0013 

Embedded 4 0.0005 0.0011 - 

numerical results, however, we first explain in detail our computational procedure 
for dealing with any regions where the solution of our problem exhibits particu- 
larly nonsmooth behavior. 

3. A STRATEGY FOR DEALING WITH NONSMOOTH BEHAVIOR 

The Runge-Kutta formula derived in the previous section has the special property 
that it contains imbedded solutions of all orders less than five. In addition, the 
formula has been designed so that the first five ci values span the range [0, l] 
with reasonable uniformity, so that we have a very good chance of spotting bad 
behavior in f if it occurs. Our aim is to derive an automatic strategy that allows 
us to quit early, i.e., before all six function evaluations have been computed on 
the current step, if we suspect trouble, and to accept a lower order solution if 
appropriate. 

We assume that we have computed a numerical solution ynel at the step point 
x,-~ and that for the current step, from x,-~ to x, = x,-~ + h, all six function 
evaluations are computed so that solutions of all orders from 1 to 5 are available. 
(We guarantee this situation for the first step with n = 1). We denote the 
imbedded solution of order i at x, by y:‘, 1 I i 5 5, and define 

ERR(n, i) = 11 yf+l) - yx’ 11 l/(i+l), for i E 1, 2, 4. (6) 

We exclude the case i = 3 for two reasons. First, following the approach of 
Shampine et al. [ 151, we allow only a few different orders to be used, and we have 
chosen to allow orders 2, 3, or 5. Second, ERR(n, 3) is of no use in predicting 
when to quit early since all six ki’s are required before y lp’ can be computed. 

Suppose now that we were to_accept the solution of order 5 at x,. We wish to 
compute a suitable step length, h4, to be used in integrating from?,, to xnfl using 
a 5(4) formula. A typical step-choosing strategy would compute h4 as 

h =SFxh ERR(n, 4) 
4 

Eh 4) ’ 
where E(n, 4) = E1/5 . 

Here E is the local accuracy required (as specified by the user) and SF is a safety 
factor often taken to be 0.9. Similarly, if we were to accept either the second- or 
third-order solution at x,, the steplengths h,, h,, respectively, that would be 
selected at the next step by our step-control algorithm would be 

h. = SF x h 
’ E(n, i) ’ 

ERR(n, i) 
where E(n, i) = E l/G+ 1) , i E 1, 2. (8) 
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From relations (7) and (8), we can compute what we call our quitting factors, 

h, Eh, i) QUIT(n, i) = = = ~ 
hi Eh 4) ’ 

i E 1, 2. 

To explain how these quitting factors are used, it is convenient to assume that 
the fifth-order solution yi5’ is accepted at x,. We now consider what happens in 
integrating from x, to x~+~. The first stage in integrating forward from x, is to 
compute two function evaluations k, and ha, and use these to compute first- and 
second-order solutions, ~21,’ and y:i,, at x,+~. We can now compute 

ERR(n + 1, 1) = lly!il - y?il l11’2. (10) 

Use of this error estimate allows us to compute the step 6, which would be used 
for the next step if we were to accept the first-order solution: 

(11) 

where E(n + 1, 1) is defined as in Eq. (8). 
We now have sufficient information to allow us to estimate the step h, which 

would be selected for the next step if all six function evaluations defining the 
current step were computed and a fifth-order solution, y?i,, accepted. By 
definition & = QUIT(n + 1, 1) x h,. We now assume that QUIT(n + 1, 1) = 
QUIT(n, l), where QUIT(n, 1) is available from the previous step. Now we can 
make the approximation 

i, = QUIT(n, 1) X h, = 
QUIT(n, 1) X SF X h 

E(n + 1, 1) ’ 
(12) 

If 6d < SF x h, that is, 

QUIT(n, 1) < E(n + 1, l), (13) 

then we expect that the fifth-order solution will be rejected, and we should 
abandon the current step. It is important to realize that this test can be performed 
after only two function evaluations have been computed. Although this approach 
forms the basis of our strategy, it is not quite the strategy that is used in practice, 
as we now explain. 

An important part of our strategy is the assumption that the quit factors are 
changing slowly from step to step (as they normally will with smooth solutions), 
so a big change in the quit factor for a low-order solution signals trouble and 
causes us to abandon the current step. However, we must allow the quit factors 
to increase slowly from step to step, which means that the satisfaction of 
Eq. (13) is too severe a requirement to impose. We overcome this problem by 
introducing a twiddle factor, so that our code will quit early when 

E(n + 1, 1) > QUIT(n, 1) x TWIDDLE(n, 1). 
ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990. 
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We experimented with several twiddle factors using only the information that 
they should be greater than unity and not “too big,” i.e., probably less than 1.5. 
Our experiments showed clearly that the optimal value of these twiddle factors 
was problem-dependent, and so in our implementation we allowed them to be 
chosen dynamically. At the end of this section we list our complete strategy in 
step-by-step form. Before doing so, we explain what happens when a lower order 
solution is accepted. We first explain under what circumstances we accept 
solutions of various orders. 

We assume that the current step is successful, i.e., E(n, i) < 1 for at least one 
i E [ 1, 2, 41. Then if 

(i) E(n, 1) < 1, E(n, 2) > 1, E(n, 4) > 1, accept y?il 
(ii) E(n, 1) < 1, E(n, 2) < 1, E(n, 4) > 1, accept y?ll 

(iii) E(n, 1) < 1, E(n, 2) < 1, E(rz, 4) < 1, accept yi5i1. 

Thus, we see that at each step we only accept the second-, third-, or fifth-order 
solutions. This strategy of allowing only a few different orders in a variable 
order Runge-Kutta code (i.e., not allowing first- or fourth-order solutions in our 
case) is in line with the results of Shampine et al. [15], who found this approach 
to be the most efficient. 

Let us now suppose that case (i) holds, and we wish to accept the order 2 
solution. The error estimate in this solution is based on the following information. 

0 0 
1 

c 

1 
5 5 0 

Since we have only used values of ci up to l/5, and we suspect there may be 
trouble ahead due to the unacceptability of higher order solutions, it would be 
dangerous to integrate past x, + h/5 on the current step. Thus, using the above 
information, the solution we compute at x,,+~ = x, + h/5 is 

Yn+1 = yn + $) (Izl + k2). 

The corresponding order 1 solution is 

and the error estimate for this solution is 

E:(1/5) = ~n+l - %+I = $ (h - h). 

If ]I E,?,( l/5) (1 > 6, then the step is abandoned and the integration is continued 
from (x,, y,) with a step h/5. Otherwise, the solution yn+l is accepted, and the 
value h/5 is used for the next integration step starting from (x, + h/5, Y,,+~). 

ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990. 



210 ’ J. R. Cash and A. H. Karp 

A similar strategy is used if the third-order solution, y?il, is accepted. The 
information on which this solution and its error estimate are based is as follows. 

0 0 

1 1 0 
s 5 

3 3 9 0 
lo 40 40 

3 3 9 6 0 
s lo -- 10 5 

19 0 10 55 Order 3 
54 -- 27 54 

3 5 -- 
2 2 

Order 2 

Similar arguments to those used for the first-order solution can now be applied. 
Since the order 3 solution is acceptable, while the order 4 solution is not, we 
anticipate possible trouble in the range [x, + 3h/5, x, + h]. As a result, it is only 
safe to integrate forward a distance 3h/5 during the current step. We therefore 
seek a third-order formula of the form 

yn+3/5 = yn + ; h&h + bakz + bska + bdk4) 

which uses information that has already been computed to integrate forward a 
distance 3h/5 rather than h. It is straightforward to show that the choice bl = 
b4 = l/6, b3 = 2/3, b2 = 0 satisfies this requirement. Our strategy is to accept the 
third-order solution with 

yn+3/5 = yn + h $j k, + $ kr, + j+j kq (16) 

as the solution at x, + 3h/5, providing that it satisfies an appropriate error 
criterion. A second-order formula at x,,+~/~ is 

Yn+3/5 = yn + ; h$. 

An estimate of the error for this solution is 

If ]] E2,(3/5) ]] > E, then we abandon the third-order solution and test the 
acceptability of a second-order solution at x, + h/5, as previously described. 
Otherwise, the solution Y,,+~/~ is accepted, and we continue the integration from 
(x, + 3h/5, yn+3,5) using a step 3h/5. 

We see from this approach that important use is made of what Shampine 
et al. refer to in [15] as “fall back” formulas. The idea is that, if an integration 
ACM Transactions on Mathematical Software, Vol. 16, No. 3, September 1990. 
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over the whole step [x,, X, + h] using the 5(4) pair fails because of something 
bad in the region (x, + h/5, x, + h], then it is possible to use an independent, 
lower order solution that uses information taken only from the first part of the 
step. In our algorithm we have a “fall back” formula that uses information only 
in the region [x,, x, + h/5] if the third-order solution appears bad, and a second 
“fall back” formula that uses information in the region [x,, X, + 3h/5] if the 
fourth-order solution appears bad. 

There are two different interpretations of what might go wrong in a step to 
cause a higher order solution to be rejected. It is convenient to discuss this point 
in terms of the lower order formulas. If the (1, 2) pair succeeds, but the (2, 3) 
pair does not, it may be that the (1, 2) pair has not sampled the function in the 
range (x, + h/5, x, + h] where something bad happens that the third-order 
formula detects. Alternatively, it may be that the problem “looks” smooth to the 
second-order formula, but does not look smooth to the third-order formula. In 
the latter case, the third-order formula may be accurately reflecting the true 
behavior of the solution, and there may be nothing wrong with the last part of 
the step. In constructing our algorithm we have adopted the first point of view, 
i.e., that failure of a high-order solution, but success in a low-order solution, 
indicates bad behavior in the latter part of the step. 

We now explain our complete algorithm in more detail. First, we initialize the 
constants. 

(1) Set the twiddle factors. 
These factors can be arbitrary, but they should be set just larger than unity. 
In our code we take TWIDDLE(0, 1) = 1.5 and TWIDDLE(0, 2) = 1.1. As 
explained earlier, these values will be changed automatically by the code. 

(2) Set the quit factors. 
These values should be set to be quite large initially to make the code take a 
full step at the start. In our code we use QUIT(0, 1) = QUIT(0, 2) = 100. 

Next, we integrate one step at a time. Assume that an approximate solution 
ynel has been computed at the step point x,-~. 

(1) Compute the first two function evaluations in VRKF. 
(2) From these evaluations obtain an error estimate ERR(n, 1) in the order 1 

solution using Fehlberg imbedding with the order 1 and 2 solutions. 
(3) Compute E(n, 1) as in (8). 
(4) Check the error estimate. 

IF E(n, 1) > TWIDDLE@ - 1, 1) x QUIT(n - 1, l), 
THEN abandon the step. 

a. Put ESTTOL = E(n, l)/QUIT(n - 1, 1). 
b. Choose the next step has 

h= max(i, ,,::,,) X h. (17) 

c. Go to step 1. 
ENDIF 

(5) Compute the third and fourth function evaluations in VRKF. 
(6) Compute the order 3 solution. 
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(7) Compute ERR(n, 2) = 11 yip’ - y:’ /11’3 and hence E(n, 2) from (8). 
(8) Check the error estimate. 

IF E(n, 2) > TWIDDLE(n - 1,2) x QUIT(n - 1,2), 
THEN try a lower order solution. 

IF E(n, 1) < 1, 
THEN check the error of the second order solution. 

IF II EAW5) II < 6, 
THEN accept the second order solution computed from (15). 

a. Cut the step from h to h/5. 
b. Replace n by n + 1. 
c. Go to step 1. 

ELSE abandon the step. 
a. Cut the step from h to h/5. 
b. Go to step 1. 

ENDIF 
ELSE abandon the step. 

a. Set ESTTOL = E(n, 2)/QUIT(n - 1, 2). 

b. Choose the step has in (17). 
c. Go to step 1. 

ENDIF 
ENDIF 

(9) Compute the final two function evaluations in VRKF. 
(10) Use all six function evaluations to compute the order 4 and 5 solutions. 
(11) Compute ERR(n, 4) = II y:’ - yA4’ II ‘I5 and hence E(n, 4) from (8). 
(12) Check the error estimate. 

IF E(n, 4) > 1, 
THEN readjust the twiddle factors. 

IF E(n, i)/QUIT(n - 1, i) < TWIDDLE(n - 1, i), iEl,2 
THEN TWIDDLE(n, ;) = MAX(l.l, E(n, i)/QUIT(n - 1, i)). 
ELSE TWIDDLE(rz, i) = TWIDDLE(n - 1, i). 

ENDIF 
IF E(n, 2) c 1, 

THEN check the accuracy of the third order solution. 
IF II EZ(3/5) II < t, 

THEN accept the order 3 solution computed from (16). 
a. Cut the step from h to 3h/5. 
b. Replace n by n + 1. 
c. Go to step 1. 

ENDIF 
ELSE try a lower order solution. 

IF E(n, 1) c 1, 
THEN check the accuracy of the second order solution. 

IF II E!t(1/5) II < 6, 
THEN accept the order 2 solution computed from (15). 

a. Cut the step from h to h/5. 
b. Replace n by n + 1. 
c. Go to step 1. 
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ELSE abandon the step. 
a. Cut the step from h to h/5. 
b. Go to step 1. 

ENDIF 
ELSE abandon the current step. 

a. Set the step has in (17) where ESTTOL = E(n, 4). 
b. Go to step 1. 

ENDIF 
ENDIF 

ELSE accept the order 5 solution for X, = x,-~ + h. 
Choose the new step k as 

h= min(5.0,&) X h. 

Update the quit factors. (We will give our strategy here and explain 
it later.) Define Q1 = E(n, l)/E(n, 4) and Qz = E(n, 2)/E(n, 4). 
Then forj E (1, 2), 

IF Qj > QUIT(n - 1, i), 
THEN Qj = min(Qj, 10 X QUIT(n - 1, j)). 
ELSE Qj = max(Qj, f X QUIT(n - 1,j)). 

ENDIF 
QUIT(n, j) = max(l.O, min(lOOOO, Qj)). 

Set TWIDDLE(n, i) = TWIDDLE(n - 1, j). 
ENDIF 

The quit factors are not allowed to vary by arbitrary amounts at each step, 
since we do not want an isolated, very good solution or an isolated, very poor 
solution to have a big effect on the quit factors. We prefer to have the quit factors 
change slowly from step to step. A second reason for limiting the change in the 
quit factors comes from examining the error test 

IF E(n, j) > TWIDDLE(n - 1, j) X QUIT(n - 1, j), THEN quit. 

We see from this test that, if our quit factors are too small, then we are forced 
to quit early unnecessarily. Such a situation may occur when we move from a 
smooth region, where the quit factors will normally be large, into a rough region, 
where the quit factors would become very small if allowed to become so. If we 
then move back into a smooth region (which would typically happen after passing 
through a discontinuity), we may not be able to increase the step very quickly, 
due to the extremely small quit factors. 

A final factor is that it is generally better to complete the step by computing 
all six function evaluations, and then to reject the solution, than to quit early 
when a full step would have been accepted. When a full step has been completed, 
we have a complete set of information on which to base our step-choosing 
strategy; when we quit early, we have much less information available for 
choosing h. 

For all these reasons, it is much more desirable for the quit factors to be too 
large than too small. (However, for smooth problems the quit factors normally 
do an extremely good job of judging when to quit early.) In view of these 
observations, we limit the change in quit factors from step to step, but allow 
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Table II. Distance Forward per Function Evaluation 

Function Distance forward 
Order evaluations (F) (D) D/F 

2 2 h/5 
3 4 3h/5 

5 6 h 

h/10 
3h/20 

h/6 

them to increase much more rapidly than they are allowed to decrease. In our 
program we limit the decrease to a factor of $ while allowing an increase of up 
to a factor of 10 per step. 

Finally, in this section we wish to explain why we do not necessarily accept a 
lower order solution early and abandon the rest of the step if it passes the error 
test. A strategy of accepting early could well be used in a variable order code 
designed for smooth solutions, but we are particularly interested in problems 
where there is a distinct lack of smoothness. If we were to accept early and adopt 
the step-choosing strategy described earlier in this section, the distance travelled 
forward per function evaluation is as shown in Table II. We see that, on a step 
where solutions of all orders pass the error test, it is the order 5 solution that 
goes the farthest forward per function evaluation. 

There is an obvious way to increase the distance travelled for the low-order 
solutions if we believe the solution to be smooth. Suppose the order 1 solution 
passes the error test. We accept this solution and compute 

Yn+l = Yn + w h, Yn). (18) 

Accepting the solution yn+l can be regarded as a bit suspect because we have only 
used information in the range [x,, X, + h/5], and we have not sampled f at all in 
the range (x, + h/5, x,+i]. However, we go on to the next step and compute 
f bn+l, Yn+l ). Using this extra function evaluation allows us to compute a second 
estimate of the error in y,,+, as 

E = y(xn+d - ~ntl 

Order 2 solution 

- in - hfbn, in) 
Order 1 solution 

= ; VkL, YJ - fbn+l, Yn+dl. 

This new error estimate uses information at x, and x,+~. If this estimate is less 
than the prescribed tolerance, then we continue with the next step (the cost of 
computing the additional error estimate will be negligible). Otherwise, we accept 

Yn+1 = Yn + ; f(%, Yn). 

The cost of having to reject the solution defined by (18) will be one function 
evaluation. We have not examined this approach because we are interested 
mainly in nonsmooth solutions. 
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4. NUMERICAL RESULTS 

In this section we give some numerical results that were obtained by applying a 
code based on Eq. (5) and the ideas explained in Section 3 to some test problems. 
We consider first the performance of our code on some smooth problems. Then 
we look at how our code does with some rough problems. 

The smooth problems chosen are the well-known DETEST test set which 
contains five classes of smooth problems. Table III compares the results of three 
codes, RKF45, RKFNC, and VRKF. RKFNC is identical to RKF45, except that 
it uses the coefficients from Eq. (5); VRKF uses the coefficients from Eq. (5) and 
the variable order scheme described in Section 3. 

While RKF45 is no longer the “state of the art” 5(4) Runge-Kutta formula, it 
is very widely used (it appears in several subroutine libraries), and we feel it is a 
suitable code to compare to ours. 

Although we have been very careful to derive our code with quality in mind, 
as explained in Section 2, we were very surprised at how well RKFNC performed 
on the DETEST test set compared to RKF45. As can be seen from Table III, 
there is a gain in efficiency of about 25% in terms of time and function 
evaluations. This leads us to believe that, for the DETEST test set at least, 
the code based on RKFNC is a considerable improvement over RKF45. We see 
no reason why this conclusion should not extend in general to problems with 
smooth solutions. 

We also see that VRKF is somewhat better than RKF45 in terms of both 
function evaluations and time. However, VRKF is only superior to RKFNC in 
terms of function evaluations at low accuracy. The time required to check the 
errors at the intermediate steps makes VRKF less efficient than RKFNC, even 
at low orders, if function evaluations are fast. We believe this conclusion will 
hold for other problems, making RKFNC the method of choice for smooth 
problems. 

We now consider the performance of our code on some problems with non- 
smooth solutions. Our primary interest is in problems having solutions with 
sharp fronts but which are not discontinuous. However, in our numerical exper- 
iments, we consider problems with discontinuities that are triggered by a condi- 
tion on x. Problems with discontinuities triggered by y, or one of its derivatives, 
are rather more specialized. We consider them to be beyond the scope of this 
paper. Such problems are of considerable interest, and we hope to extend our 
algorithm to deal with these problems at a future time. 

The class of discontinuous problems we are interested in are those where the 
discontinuities appear without warning. An example is where the right-hand side 
is supplied by some black box code that hides the switching from the user. Such 
problems are much harder than those for which we know the x-value where f 
changes, or we are given a switching function which, on reaching a certain known 
value, triggers the discontinuity. It is important to use information regarding the 
switching function, if it is known, and several authors have proposed algorithms 
for dealing with this problem [2, 6, 9, 11, 121. 

The case of interest to us, where the switching function is not known, has been 
considered by Gear and Osterby [8] and by Enright et al. [7]. The approach 
adopted by Gear and Osterby attempts to identify the nature of the singularity. 
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Table III. Summary of Results on the 25 (unscaled) DETEST Test Set 

Fraction 
Function Number of Maximum Fraction bad 

log,,TOL Time calls steps local error deceived deceived 

Results for RKF45 
-2.00 0.498 
-3.00 0.565 
-4.00 0.745 
-5.00 1.014 
-6.00 1.453 
-7.00 2.117 
-8.00 3.136 
-9.00 4.849 

Overall 14.377 
Results for RKFNC 

-2.00 0.408 
-3.00 0.478 
-4.00 0.626 
-5.00 0.828 
-6.00 1.145 
-7.00 1.628 
-8.00 2.370 
-9.00 3.601 

Overall 11.083 
Results for VRKF 

-2.00 0.495 
-3.00 0.591 
-4.00 0.760 
-5.00 1.029 
-6.00 1.407 
-7.00 2.033 
-8.00 2.953 
-9.00 4.457 

Overall 13.726 

4123 
4587 
6344 
8935 

12948 
18741 
27552 
42648 

125878 

3272 
3965 
5432 
7508 

10710 
15349 
22419 
34086 

102741 

3171 
3919 
5327 
7488 

10688 
15645 
22940 
34524 

103702 

548 50.869 
637 9.300 
884 3.442 

1270 1.439 
1893 6.938 
2886 2.144 
4477 1.491 
7023 1.270 

19618 50.869 

437 7.762 
555 10.875 
752 6.355 

1068 5.285 
1555 3.471 
2349 1.485 
3609 1.480 
5636 1.560 

15961 10.875 

465 6.495 
580 10.875 
782 3.283 

1115 2.196 
1604 2.760 
2392 1.783 
3674 1.628 
5697 1.209 

16309 10.875 

0.224 0.038 
0.148 0.006 
0.070 0.000 
0.012 0.000 
0.005 0.001 

0.002 0.000 
0.001 0.000 
0.000 0.000 

0.017 

0.156 
0.138 
0.092 
0.050 
0.027 
0.013 
0.004 
0.001 

0.024 

0.099 
0.064 
0.051 
0.025 
0.017 
0.008 
0.004 
0.000 

0.014 

0.001 

0.005 
0.004 
0.001 
0.001 
0.000 
0.000 
0.000 
0.000 

0.000 

0.009 
0.003 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

0.000 

It is not clear how their approach will perform when the function is rapidly 
varying but does not actually contain a discontinuity (see [8, p. 411). 

All of the algorithms that we have mentioned for discontinuities and rapidly 
varying functions are at a rather preliminary stage of development. Few numerical 
results have appeared in the literature. For this reason we will not attempt to 
compare different methods for dealing with discontinuities. Instead we compare 
the performance of our code with that of a standard 5(4) Runge-Kutta code used 
with Fehlberg imbedding and local extrapolation. Our aim is to demonstrate the 
superior performance of a modified 5(4) code compared to that of a conventional 
code of the same type. 

In what follows we consider four test problems. The first two have sharp fronts 
but no discontinuities, while the second two have discontinuities triggered on x. 
As explained earlier, we assume that the analytic form off is unknown to us, so 
that we are not able to use information concerning the exact location of any 
discontinuous points off or its derivatives in deriving our algorithm. 
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Problem 1. 

y’ = 2, y(0) = 10 
0 5 x 5 50. 

z I- - 22 - 3 

(A + Y') ' 
z(0) = 0 

This problem’ does not have a known, analytic solution. However, it was found 
to be a very good model for testing ODE solvers for the oil-reservoir problems 
one of us was studying. The solution is smooth almost everywhere except near 
x = 35, where it develops a sharp front. We believe it to be a very interesting and 
illuminating test problem for codes designed to deal with nonsmooth solutions. 
The values of the parameter A, which we considered for this problem, are lo-‘, 
10e2, 10e3, 10e4, 10e5. Errors are computed at the end of the range only (x = 50), 
where the solution was found using the code with a very small E. Thus, the 
“exact” solution, used to compute the errors, itself has an error of about lo-‘. 

Problem 2. 

y’=z, y(-1) = -1, 

z,=-(l+~2A)cos~~-~xsin~x-xxz+y -15x51. 

A 3 2(-l) = 0.0017, 

The true solution to this problem from Hemker [lo, p. 1381 is 

y(x) = cos xx + x 

+ 
x&? exp(-x2/(2A))exp(l/(2A)) + exp(l/(BA))& erf(r/&) 

& + exp(l/(2A))& erf(l/&) 

This problem has a smooth solution x + cos XX coupled to rapidly varying 
solutions at x = +l. For a description of the behavior of the complementary 
functions, the reader is referred to [lo, p. 161. In Table V we give results for this 
problem with A = 0.1. 

Problem 3. 

1 

0 xc0 
y' = -1 5 x 5 1, y(-1) = 0. 

XA xro 

This linear problem from [15, p. 151 has a discontinuity in the (A + 1)th derivative 
at the point x = 0. In Table VI we give the results obtained for this problem in 
the cases A = 0, 1, 2, 3. 

Problem 4. 

55 - 1.5y if [x] even 
y' = 0 5 x 5 20, y(0) = 110. 

55 - 0.5y if [x] odd 

’ This problem was taken from the literature, but the reference can no longer be found. We apologize 
to the author. 
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Table IV. Results for Problem 1 

A 10-i 1o-2 10+ 1o-4 1o-5 

TOL Evals Error Evals Error Evals Error Evals Error Evals Error 

Results for RKF45 
1o-3 276 0.243-2 

lo-* 390 O.l2E-3 
lo+ 578 0.71E-5 
1O-6 783 0.483-6 
1o-7 991 0.20E-8 
1o-8 1546 0.853-8 
1o-9 2398 0.763-g 

Results for RKFNC 
lo+ 213 0.21E-3 
lo-’ 293 0.30E-4 
lo+ 411 O.llE-5 
1o-6 586 0.283-7 
1o-7 801 0.243-7 
1o-8 1185 0.563-8 
1o-9 1771 O.llE-8 

Results for VRKF 
lo+ 211 0.263-3 
lo-* 281 0.21E-4 
1o-5 430 0.20E-6 
lo-+ 599 0.50E-7 
lo-’ 800 0.343-7 
lo-@ 1196 0.553-8 
lo+ 1788 O.lOE-8 

344 O.l7E-2 417 O.l8E-2 486 0.223-2 566 0.233-2 
481 O.l3E-3 567 O.l5E-3 686 O.l5E-3 795 O.l8E-3 
698 0.14E-4 846 O.lOE-4 1016 O.llE-4 1177 O.l2E-4 
981 0.733-7 1198 O.l2E-6 1442 0.233-7 1704 O.l7E-6 

1257 0.343-7 1547 0.333-7 1841 0.273-7 2144 0.353-7 

1887 O.lOE-7 2259 0.91E-8 2661 O.lOE-7 3111 O.lOE-7 
2910 O.lOE-8 3508 0.823-g 4145 0.823-g 4887 0.893-g 

283 0.923-4 346 O.l5E-3 420 O.l9E-3 480 O.l7E-3 
358 0.21E-4 454 O.l9E-4 519 0.393-5 632 O.l4E-4 

538 0.293-6 663 0.593-7 799 0.223-6 920 0.253-6 
734 O.l3E-6 920 O.l5E-6 1118 O.l6E-6 1317 0.233-6 

1027 0.443-7 1272 0.563-7 1576 0.753-7 1867 0.70E-7 
1446 0.90E-8 1715 O.llE-7 2011 O.l2E-7 2364 O.l2E-7 
2110 O.l6E-8 2549 0.973-g 3053 O.l7E-8 3598 O.l2E-8 

243 0.293-3 297 0.273-3 346 0.263-3 396 0.253-3 
342 O.l5E-4 405 O.l6E-4 474 0.243-4 549 O.l8E-4 
504 0.733-6 596 0.543-6 707 0.543-6 823 O.lOE-5 
724 O.l6E-6 857 O.l5E-6 1049 0.21E-6 1255 0.31E-6 

1042 0.463-7 1303 0.50E-7 1605 0.543-7 1902 0.60E-7 
1478 0.883-8 1748 O.llE-7 2043 O.l2E-7 2391 O.l2E-7 
2124 O.l5E-8 2573 O.l6E-8 3087 O.l5E-8 3623 O.l6E-8 

Euak; The number of function evaluations. 
Error: The computed error at the endpoint. 

Table V. Results for Problem 2 

TOL 

Number of function evaluations Modulus of error at endpoint 

RKF45 RKFNC VRKF RKF45 RKFNC VRKF 

1o-3 94 87 89 0.26E-0 0.48E-1 0.48E-1 
1o-4 131 107 109 0.31E-1 0.283-2 0.283-2 
10-S 203 156 163 0.373-2 0.20E-3 0.20E-3 

1o-6 316 251 252 O.l2E-3 O.l4E-4 O.l4E-4 
lo+ 484 384 391 0.843-5 0.983-6 0.253-6 
1o-8 770 610 617 O.llE-5 0.50E-7 0.633-7 
1o-9 1191 952 964 O.lOE-6 O.l6E-8 O.l5E-8 

This problem is F2 of the DETEST test set. For this problem, the function f 
has a discontinuity wherever x is an integer. The results obtained are given in 
Table VII. 

Before discussing our numerical results in detail, we briefly discuss the 
sort of numerical results we might expect to obtain. We first note that 
Runge-Kutta methods are one-step in nature. We therefore expect them to 
have less trouble with singularities than would multistep methods such as Adams 
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Table VI. Results for Problem 3 

. 219 

A 
0 1 2 3 

TOL Evals Error Evals Error Evals Error Evals Error 

Results for RKF45 
1O-3 67 
10-d 121 
1o-5 155 
1o-6 190 
10-T 246 
lo-* 278 
1o-9 327 

Results for RKFNC 
1o-3 67 
10+ 90 
lo+ 161 
10-G 174 
lo+ 240 
lo+ 254 
lo+ 330 

Results for VRKF 
1O-3 47 
1o-4 67 
lo+ 98 
1o-6 116 
10-T 126 
1O-8 148 
10+ 159 

0.723-2 23 
O.llE-3 40 
0.243-3 62 
0.333-4 79 
0.20E-5 128 
0.69E-7 155 
0.453-8 225 

0.223-2 
0.923-3 
0.20E-3 
O.llE-4 
0.41E-7 
O.l9E-6 
0.493-8 

0.773-2 
O.l5E-2 
0.91E-4 
0.243-4 
0.553-6 
0.40E-6 
O.l3E-7 

0.333-2 18 
O.l6E-3 18 
0.883-4 46 
0.343-5 46 
0.79E-6 64 
O.l8E-6 107 
O.l9E-7 112 

29 O.llE-2 
51 O.l7E-3 
56 O.l2E-3 
96 0.283-6 

107 0.20%6 
130 O.l3E-7 
153 0.373-8 

19 0.31E-2 
37 0.51E-3 
54 O.l6E-3 
67 0.853-7 
66 0.693-7 
68 O.l2E-6 
98 0.61E-9 

0.843-2 18 
O.l2E-4 24 
O.lSE-4 30 
0.693-6 52 
0.293-5 58 
0.823-7 81 
0.94E-8 85 

23 0.363-3 
24 O.l2E-3 
41 0.383-4 
52 O.llE-5 
79 O.l9E-6 
97 O.l2E-7 

107 0.973-7 

18 0.683-3 
24 0.673-4 
24 O.llE-7 
46 0.433-6 
58 0.993-7 
52 O.l3E-9 
69 O.l4E-9 

19 0.353-3 19 
25 0.21E-3 25 
lc, 0.723-5 19 
49 O.l9E-5 55 
64 0.763-7 40 
63 O.llE-8 61 
73 0.223-g 64 

0.353-2 
O.l2E-3 
O.l7E-4 
0.363-5 
0.283-7 
0.343-S 
O.lOE-9 

O.l7E-3 
O.l5E-3 
0.883-4 
0.423-5 
0.753-6 
0.893-g 
O.l9E-10 

Euals: The number of function evaluations. 
Error: The computed error at the endpoint. 

Table VII. Results for Problem 4 

TOL 

Number of function evaluations 

RKF45 RKFNC VRKF 

Modulus of the error at the 
endpoint 

RKF45 RKFNC VRKF 

1o-3 1013 1046 936 O.l4E-1 0.50E-2 O.l3E-1 
lo-’ 1704 1606 1213 O.l6E-2 0.333-3 0.60E-3 
1o-5 2087 1983 1530 O.llE-3 O.lOE-3 O.l5E-3 
lo+ 2601 2443 1918 0.583-4 0.70E-5 0.873-5 
1o-7 3027 3011 2198 0.21E-5 0.61E-6 O.l5E-5 
1o-8 4176 3822 2853 O.l2E-6 0.653-S 0.863-8 
lo+ 5125 4640 3425 0.51E-7 O.l6E-8 O.l7E-7 

predictor-corrector formulas, for example. Indeed, if the “natural” step sequence 
chosen by the Runge-Kutta code nearly hits the singularity, then the unmodified 
code may experience very little difficulty in passing through the singular point. 
In view of this fact, we expect the variable order code to generally perform 
better than RKF45. Of course, there may be cases when solving discontinuous 
problems where RKF45 performs particularly well, due to a fortunate choice 
of step-size sequence. 
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The situation is quite different for problems where f is rapidly varying but not 
discontinuous. In such cases the rough behavior in the solution will occur over a 
range of x rather than at a particular point. The unmodified code will not be able 
to step through the rough part of the solution trajectory without noticing it. For 
such problems, we would expect the modified code based on VRKF to be superior 
to the unmodified RKF45, especially for relaxed tolerances when the codes 
normally try to use a large step-length. 

We first consider the results obtained for Problem 1. This problem has a sharp 
front near x = 35, which steepens as A decreases. It is very noticeable from the 
results that, as the front gets steeper, the steplength of integration has to be cut 
back more and more, resulting in many rejected steps. This is an example of a 
problem where there is not just one point where bad (singular) behavior occurs. 
Instead, the difficult region extends over a range of x. 

As mentioned earlier, for such problems we expect the variable order code 
VRKF to perform better than either RKF45 or RKFNC. This is borne out by 
the results given in Table IV, which show that VRKF is generally 25%-35% 
more efficient than RKF45. A large part of this gain is due to the use of the new 
coefficients, as can be seen from the results of RKFNC. At a modest tolerance, 
VRKF needs about 10% fewer function evaluations than RKFNC. When TOL 
is less than 10p6, RKFNC is more efficient than VRKF. This effect occurs 
because, at such small tolerances, the step-size is small compared to the width of 
the front. In other words, the function appears smooth at the resolution of the 
step-size. However, the difference is small, and VRKF can be used without great 
loss of efficiency, especially if the function evaluations are expensive. 

Results for Problem 2 are rather harder to predict, since the problem has 
boundary layers at both ends of the range of integration. In fact, this equation 
was used as an experiment to see how the codes would perform on such a problem. 
As can be seen from Table V, RKFNC is about 20% more efficient in terms of 
function evaluations than RKF45 and achieves much better accuracy. Indeed, if 
we compare function evaluations against accuracy, we see that RKFNC needs 
about half the function evaluations of RKF45. 

For this problem, VRKF and RKFNC need almost the same number of function 
evaluations. As before, this phenomenon is due to the rough part being confined 
to a relatively small section of the domain. Clearly, RKF45 and RKFNC do not 
have any trouble handling the roughness near the endpoints. This problem shows 
that RKFNC should be used for such problems, but that not much is lost by 
using VRKF. 

Problem 3 is an example of a discontinuous initial value problem where we 
have just a single trouble spot, i.e., at x = 0. We expect that the fixed order 
methods would experience the greatest trouble in the case A = 0 when f is 
discontinuous. As A increases, the singularity becomes less severe, and we expect 
RKF45 and RKFNC to perform more efficiently. This expectation is borne out 
by the results of Table VI. We see that in the case A = 0, VRKF is considerably 
superior to RKFNC; in some cases, needing half as many function evaluations. 
As A increases the difference becomes less apparent. 

Differences in implementation can have a major effect on the performance of 
a code on this problem, as discussed in some detail in [15]. An important point 
brought out by this problem is that a code must have some restriction on its 
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allowable step-size change if it is to perform efficiently. Different step-size 
restrictions can lead to dramatically different performance. However, since the 
three codes we are comparing have exactly the same limits imposed on their step- 
size change, we feel that our comparison is a fair one. 

Finally, we consider Problem 4. Here we expect a large difference in the 
performance of the fixed-order and variable order codes, since there are twenty 
singularities in the range of integration instead of just one. The chances of a 
fixed-order code picking a natural step sequence, suitable for passing through all 
these singular points, is very small, so we do not expect RKF45 or RKFNC to 
have abnormally good behavior. We see from Table VII that these expectations 
are borne out in practice. VRKF is considerably more efficient than either 
RKFNC or RKF45, with the gain in efficiency generally being about 20% over 
RKFNC and 30% over RKF45. 

5. CONCLUSIONS 

In this paper we have developed a modified Runge-Kutta code that contains 
imbedded formulas of all orders. This code is suitable for dealing with initial 
value problems where the function f is changing rapidly in some part of the 
region of integration. We were careful to derive a “high quality” formula that 
would perform well on problems with smooth solutions. The results given in 
Table III for the DETEST test set indicate that this goal has been achieved. At 
least for these smooth problems, our code is superior to RKF45. 

Problems with rough solutions are handled by noting that our Runge-Kutta 
code computes f at several, reasonably uniformly spaced points in [x,, x~+~], and 
trouble spots can be recognized early by looking for nonsmooth behavior in f. 
This strategy allows us to quit early when a high-order solution may not be 
acceptable or to accept a low-order solution when it is appropriate to do so. 

Our belief is that this approach for dealing with nonsmooth solutions is a very 
powerful and general one. We are at present seeking to extend this idea to the 
case where the switching function is driven by a condition on y rather than on x. 
However, we feel that, in common with other approaches for dealing with 
discontinuous problems, our approach is in an embryonic stage. More understand- 
ing, both computational and theoretical, of this problem class is needed. Despite 
this, we believe that the results we have presented are sufficiently good to show 
that this approach shows great promise and deserves further attention. 
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