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Summarx

Much attention has been directed to paging
algorithms and little to the role of the user in
this environment. This paper describes an
experiment which is an attempt to determine
the significance of efforts by the user to im-
prove the paging characteristics of his program.

The problem of threughput in a computing
system is primarily one of balancing the flow
of data and programs through a hierarchy of
storages. The problem is considered solved
when for every available processor cycle there
is a matching demand for that cycle in the
primary {execution) store. Since programs and
their data usually originate in a location other
than the execution store, there is a delay as-
sociated with the movement of data and programs
to the primary store. The delay has two com-
ponents, the operational speed (data transfer
time) and the positioning, or access time, of
the secondary storage device. Since the access
time usually exceeds the data transfer time by
an order of magnitude, the problem of trans-
ferring information to the primary store has
been named the "access gap' problem.

Previous software solutions to the access
gap problem divided the problem into two areas
of responsibility. First, the problem pro-
grammer was responsible for buffering and
blocking his data such that high CPU utilization
was realized. Subsequent studies showed that
this alone would not result in a significant over-
all increase in system throughput. As technology
improved and CPU's and execution store cycles
were speeded up, it became apparent that job
set-up and initialization was responsible for low
throughput performance. A second solution to
the "access gap' problem, multiprogramming,
was therefore implemented. In this approach,
the system programmer is given the responsi-
bility of buffering programs in much the same
way the user (problem programmer) buffers
data.

It is evident that the critical parameter in
this multiprogramming environment is that of
block size, since this will determine the number
of buffers which can be created from available
memory, which is the same as the level of
multiprogramming present (i. e. the number of
programs which can simultaneously reside in
primary storage). The usual blocking factor
in a multiprogramming environment is 'one';
that is, the program is treated as one block
and a core buffer space is reserved for this
amount. In much the same manner that the
problem programmer finds when he blocks data
this way, we find that programs which result in
large block size usually have low core utiliza-
tion with a resultant reduction in throughput.
The low core utilization comes about in two
ways. First, a portion of the program is
normally never executed, and hence its primary
store occupancy is not required. Second, sec-
tions of the program are linear in execution
with respect to time, and once they have been
used, they are not required again; but in systems
in which programs are blocked in one unit this
unnecessary code must remain in the primary
store.

A method of artificial blocking has been de-
vised in an attempt to solve this blocking factor
problem incurred with programs. This tech-
nique, paging, first used to extend the address
space of a small physical core”, is now used
to reduce the physical core requirements of
programs written in a very large address space.
The alternative to this approach is for the pro-
grammer to utilize only a small portion of the
address space available (with resultant increase
in the core available for multiprogramming) and
to substitute an overlay structure for paging.
This is distasteful for two reasons. First, it
requires a pre-planning of routines -- which to
overlay and which to leave resgident. Pre-
planning in large programming systems is
usually inadequate. Second, if only a small
part of the available address space is utilized
and there are no jobs to be multiprogrammed,
then the remaining physical core is not utilized
properly. Solution time for the problem is
thereby needlessly increased.
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There is in a paging system, however, one
gross source of error. It is found in the very
Premise which makes paging in a large address
space attractive in the first place, namely, the
block size. Ideally, a multiprogrammed paging
system attempts to pick a page size which closely
emulates a natural grouping of instructions.
Since the natural grouping is usually found to be
quite small ©, a compromise page or block size
must be derived, as a solution; otherwise the
mapping hardware or the storage requirements
for mapping tables involve considerable expense.

Unfortunately, those who emphasize paging
as a solution to the multiprogramming problem
fail to define the responsibility of the user in
this environment.

It has been stated that the programmer can
do nothing easily to improve the situation.” It
is the contention of the author that this is not
so and that, in fact, it is the responsibility of
a programmer who executes in an algorithmically
managed storage to adjust his programs to the
page size if they are to be run frequently.

To prove this contenfion, the Cambridge
Monitor System {CMS) * which was written to
take no advantage of a paging environment, was
picked for experimentation because its authors
were resident and because it was the conversa-
tional monitor which would receive highest use
on our system. We first asked one of the
knowledgeable systems programmers to ar-
range the nucleus such that the resulting load
list would place routines dependent on each
other in the same 4k byte block, the page size
of the 'virtual maqshige‘ system of the Cambridge
Scientific Center ~° The result of this, the
aligned deck, is shown in Figure 1. Subse-
quently a data reduction program PSTA (Ap-
pendix A) was written which produces a map of
core (see Fig. 2) as paging demands are in-
curred in program execution. In order to pro-
duce these demands, the amount of physical
core available to the program was restricted to
64K (16 pages).

A second CMS programmer was given the
PSTA output and told to structure his load list
{(i.e., to rearrange the load sequence of sub-
routines) so as to reduce the total page require-
ment. In three passes of data reduction, (PSTA
output) a 50% reduction in the number of page
transfers was achieved in this JAS arrangement
from the aligned version (Fig. 1).

The experiment involved the assembly of a
single deck in all runs. COnly the nucleus which
consisted of 64 movable subroutines, was re-
sequenced. The assembler, which runs in con-
junction with the nucleus, was not changed.

The total machine time involved was ap-
proximately 20 minutes, and the number of man
hours totaled approximately 24, for the JAS deck,
The aligned deck required only . 5 man hours to
arrange.

Since there had been little work in structuring
programs to run in a paging environment, this
effort was considered worthy of further investi-
gation, namely, into the effect of applying no
effort to achieve optimization. Since there were
64! possible arrangements with CMS nucleus, it
is impossible to determine, if a deck was ar-
ranged in a random manner, the probability of
doing better than the JAS arrangement; the
following two experiments did show, however,
that it could be significantly worse. The deck
was sequenced in a random manner, and in an
alphabetic fashion (which is a common arrange-
ment that facilitates deck replacement while
debugging); the results, as compared to the
easily achieved improvement are rather signifi-
cant (Fig. 1).

To restate the conditions of the experiment
shown in Figure 1:
Alphabetic: the decks were arranged in the
alphabetic sequences of the names
punched in columns 73 -80.
Random: decks were given sequential num-
‘bers from the JAS arrangement,
then resequenced by a random
number table,

the programmer rearranged his
decks based on a knowledge of 4K
byte pages.

Aligned:

JAS: programmer, given a map of paging
actions generated while his job was
in execution, resequenced his load
list for an improved paging per-
formance.

The same experiment, using a Fortran job,
was run to measure the difference between al-
phabetic and JAS.

Although the difference of 3,1 in this case is
less significant, it must be noted that a level of
optimization which was achieved in one environ-
ment (i. e., the assembly) had a beneficial ef>
fect in the other. This is what one would ex-
pect since the section of code optimized con-
sisted of the interrupt and data management
routines used by both the assembler and For-
tran,

In view of such significant results, it must
be emphasized that no code has been rewritten;
only the relative order of the subroutines with-
in a deck has been changed,



It is, therefore, the author's opinion that the
user optimization is not only easily achieved,
but absolutely necessary for frequent operation
in a paging environment. Effort is now being
directed to constructing an algorithm and program
to perform the load list restructuring mechani-
cally.

The author is most grateful to the CMS people
who participated in this experiment, especially
to Mr. J. B, Harmon, the project manager,
who provided the able assistance of Mr. J. A.
Seymour, who structured the JAS deck.
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APPENDIX A
PAGING STATISTICS PROGRAM

- PSTA -

"This program takes the output tape created by CP/405 which is a
record of significant information present when a demand for a new
page is incurred in execution by the ''virtual machine.' The output
is printed one line per page dernand in the following manner:

INPAG the page requested by the virtual machine

OUTPAG the page picked by the algorithm to be over-
laid by the incoming page

INSTR the instruction counter of the "'wvirtual
machine' when the page demand occurs

Page Map This is a record of the actual pages in the
core storage when the demand occurred.
The swap is already indicated. Page numbers
proceed from left to right with each asterisk
representing a page (Page numbers 0-3F). A
plus indicates the used bit is one, a zero in-
dicates used bit equals zero, and a space (blank)
indicates that page is not now resident in core
storage.
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