A STUDY OF THE EFFECT OF USER PROGRAM OPTIMIZATION
IN A PAGING SYSTEM

Lesin W. Comeau
International Business Machines Corporation
Cambridge, Massachusetts

Summarx

Much attention has been directed to paging
algorithms and little to the role of the user in
this environment. This paper describes an
experiment which is an attempt to determine
the significance of efforts by the user to im-
prove the paging characteristics of his program.

The problem of threughput in a computing
system is primarily one of balancing the flow
of data and programs through a hierarchy of
storages. The problem is considered solved
when for every available processor cycle there
is a matching demand for that cycle in the
primary {execution) store. Since programs and
their data usually originate in a location other
than the execution store, there is a delay as-
sociated with the movement of data and programs
to the primary store. The delay has two com-
ponents, the operational speed (data transfer
time) and the positioning, or access time, of
the secondary storage device. Since the access
time usually exceeds the data transfer time by
an order of magnitude, the problem of trans-
ferring information to the primary store has
been named the "access gap' problem.

Previous software solutions to the access
gap problem divided the problem into two areas
of responsibility. First, the problem pro-
grammer was responsible for buffering and
blocking his data such that high CPU utilization
was realized. Subsequent studies showed that
this alone would not result in a significant over-
all increase in system throughput. As technology
improved and CPU's and execution store cycles
were speeded up, it became apparent that job
set-up and initialization was responsible for low
throughput performance. A second solution to
the "access gap' problem, multiprogramming,
was therefore implemented. In this approach,
the system programmer is given the responsi-
bility of buffering programs in much the same
way the user (problem programmer) buffers
data.

It is evident that the critical parameter in
this multiprogramming environment is that of
block size, since this will determine the number
of buffers which can be created from available
memory, which is the same as the level of
multiprogramming present (i. e. the number of
programs which can simultaneously reside in
primary storage). The usual blocking factor
in a multiprogramming environment is 'one';
that is, the program is treated as one block
and a core buffer space is reserved for this
amount. In much the same manner that the
problem programmer finds when he blocks data
this way, we find that programs which result in
large block size usually have low core utiliza-
tion with a resultant reduction in throughput.
The low core utilization comes about in two
ways. First, a portion of the program is
normally never executed, and hence its primary
store occupancy is not required. Second, sec-
tions of the program are linear in execution
with respect to time, and once they have been
used, they are not required again; but in systems
in which programs are blocked in one unit this
unnecessary code must remain in the primary
store.

A method of artificial blocking has been de-
vised in an attempt to solve this blocking factor
problem incurred with programs. This tech-
nique, paging, first used to extend the address
space of a small physical core”, is now used
to reduce the physical core requirements of
programs written in a very large address space.
The alternative to this approach is for the pro-
grammer to utilize only a small portion of the
address space available (with resultant increase
in the core available for multiprogramming) and
to substitute an overlay structure for paging.
This is distasteful for two reasons. First, it
requires a pre-planning of routines -- which to
overlay and which to leave resgident. Pre-
planning in large programming systems is
usually inadequate. Second, if only a small
part of the available address space is utilized
and there are no jobs to be multiprogrammed,
then the remaining physical core is not utilized
properly. Solution time for the problem is
thereby needlessly increased.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800001.811667&domain=pdf&date_stamp=1967-01-01

There is in a paging system, however, one
gross source of error. It is found in the very
Premise which makes paging in a large address
space attractive in the first place, namely, the
block size. Ideally, a multiprogrammed paging
system attempts to pick a page size which closely
emulates a natural grouping of instructions.
Since the natural grouping is usually found to be
quite small ©, a compromise page or block size
must be derived, as a solution; otherwise the
mapping hardware or the storage requirements
for mapping tables involve considerable expense.

Unfortunately, those who emphasize paging
as a solution to the multiprogramming problem
fail to define the responsibility of the user in
this environment.

It has been stated that the programmer can
do nothing easily to improve the situation.” It
is the contention of the author that this is not
so and that, in fact, it is the responsibility of
a programmer who executes in an algorithmically
managed storage to adjust his programs to the
page size if they are to be run frequently.

To prove this contenfion, the Cambridge
Monitor System {CMS) * which was written to
take no advantage of a paging environment, was
picked for experimentation because its authors
were resident and because it was the conversa-
tional monitor which would receive highest use
on our system. We first asked one of the
knowledgeable systems programmers to ar-
range the nucleus such that the resulting load
list would place routines dependent on each
other in the same 4k byte block, the page size
of the 'virtual maqshige‘ system of the Cambridge
Scientific Center ~° The result of this, the
aligned deck, is shown in Figure 1. Subse-
quently a data reduction program PSTA (Ap-
pendix A) was written which produces a map of
core (see Fig. 2) as paging demands are in-
curred in program execution. In order to pro-
duce these demands, the amount of physical
core available to the program was restricted to
64K (16 pages).

A second CMS programmer was given the
PSTA output and told to structure his load list
{(i.e., to rearrange the load sequence of sub-
routines) so as to reduce the total page require-
ment. In three passes of data reduction, (PSTA
output) a 50% reduction in the number of page
transfers was achieved in this JAS arrangement
from the aligned version (Fig. 1).

The experiment involved the assembly of a
single deck in all runs. COnly the nucleus which
consisted of 64 movable subroutines, was re-
sequenced. The assembler, which runs in con-
junction with the nucleus, was not changed.

The total machine time involved was ap-
proximately 20 minutes, and the number of man
hours totaled approximately 24, for the JAS deck,
The aligned deck required only . 5 man hours to
arrange.

Since there had been little work in structuring
programs to run in a paging environment, this
effort was considered worthy of further investi-
gation, namely, into the effect of applying no
effort to achieve optimization. Since there were
64! possible arrangements with CMS nucleus, it
is impossible to determine, if a deck was ar-
ranged in a random manner, the probability of
doing better than the JAS arrangement; the
following two experiments did show, however,
that it could be significantly worse. The deck
was sequenced in a random manner, and in an
alphabetic fashion (which is a common arrange-
ment that facilitates deck replacement while
debugging); the results, as compared to the
easily achieved improvement are rather signifi-
cant (Fig. 1).

To restate the conditions of the experiment
shown in Figure 1:
Alphabetic: the decks were arranged in the
alphabetic sequences of the names
punched in columns 73 -80.
Random: decks were given sequential num-
‘bers from the JAS arrangement,
then resequenced by a random
number table,

the programmer rearranged his
decks based on a knowledge of 4K
byte pages.

Aligned:

JAS: programmer, given a map of paging
actions generated while his job was
in execution, resequenced his load
list for an improved paging per-
formance.

The same experiment, using a Fortran job,
was run to measure the difference between al-
phabetic and JAS.

Although the difference of 3,1 in this case is
less significant, it must be noted that a level of
optimization which was achieved in one environ-
ment (i. e., the assembly) had a beneficial ef>
fect in the other. This is what one would ex-
pect since the section of code optimized con-
sisted of the interrupt and data management
routines used by both the assembler and For-
tran,

In view of such significant results, it must
be emphasized that no code has been rewritten;
only the relative order of the subroutines with-
in a deck has been changed,

It is, therefore, the author's opinion that the
user optimization is not only easily achieved,
but absolutely necessary for frequent operation
in a paging environment. Effort is now being
directed to constructing an algorithm and program
to perform the load list restructuring mechani-
cally.

The author is most grateful to the CMS people
who participated in this experiment, especially
to Mr. J. B, Harmon, the project manager,
who provided the able assistance of Mr. J. A.
Seymour, who structured the JAS deck.

References

1. T. Kilburn, D, B. G, Edwards, M. J.
Lenigan, and F. H. Sumner, '"One
Lievel Storage System'' - IRE Trans-
actions on Electronic Computers, Val,
EC-12, PP, 223-235, April, 1962.

2, OQ'Neill, R. W, - "Experience Using A
Timesharing Multiprogramming System
with Dynamic Address Relocation Hard-
ware'. AFIPS Conference Proceedings,
Vol. 30, PP. 611-621, April, 1957.

3. G. H. Fine, C. W, Jackson, and
P. V. Mclssac, "Dynamic Program
Behavior Under Paging', System De-
velopment Corporation SP-2397, June,

1966.

4, Cambridge Monitor Systermn - A user's
manual available from the Cambridge
Scientific Center.

5. A. B. Lindquist, R. R. Seeber, and
L. W, Comeau - "A Time-Sharing
System Using an Associative Memory",
Proceedings of the IEE, Special Issue
on Computers, Vol. 54, No., 12, PP.
1774-1779, December, 1966.

6. R. J. Adair, R. U. Bayles, L. W.
Comeau, and R. J. Creasy - "A Virtual
Machine System for the 360/40",
Cambridge Scientific Center Report
36.010, May, 1966.

FORTRAN

T — — — ——— T —— —— e —— A S — T — — —— — —— — — . —— — —— — . “—— — —— ————— — — —

ASSEMBLY

| | T 1 T [T T T T T T T T
o o o O Q o) O O o] (o] o o O O
O o O ®) o O O O o o @) (o] O O
o] 0 (o] 7] o 0 © 7y o 0 o 0 o 0
N~ (T3 [T+) "s} n < < m 1) o o - -

Ao 4 O u - r « Z2 0 4 wWw € v

e L- 4]

g jaT<au-—0

il

dJ—-0ZWw0

r<ZooE

g JaTI<Owk-—0Q

FIGURE I,

APPENDIX A
PAGING STATISTICS PROGRAM

- PSTA -

"This program takes the output tape created by CP/405 which is a
record of significant information present when a demand for a new
page is incurred in execution by the ''virtual machine.' The output
is printed one line per page dernand in the following manner:

INPAG the page requested by the virtual machine

OUTPAG the page picked by the algorithm to be over-
laid by the incoming page

INSTR the instruction counter of the "'wvirtual
machine' when the page demand occurs

Page Map This is a record of the actual pages in the
core storage when the demand occurred.
The swap is already indicated. Page numbers
proceed from left to right with each asterisk
representing a page (Page numbers 0-3F). A
plus indicates the used bit is one, a zero in-
dicates used bit equals zero, and a space (blank)
indicates that page is not now resident in core
storage.

z By

CORE RESIDENT PAGES (0-43) OF VIRTUAL MACHINE NUMBER 1

INPAG OUTPAG INSIR [Ra A LRl XTI L SR s R Ly Y ey YT I Tttt in
|
013000 00B0QO 002674 [+444e0b0e4 + 44D +
¢14000 001000 002678 I+ ++0++000 0 ++440 o]
015000 009000 002674 |+ ¢204+00 0 ++444p 0
016000 003000 002674 J+ 420440 O +++4440 0o
C1AG00 OOQE000 QObEMC 1+ ¢4 STy o] +
09B0CO 002000 013CUC |+ O++es O¢+4400 +0 n
002000 010000 002760 |+ Oteass tee+20 +e [
010000 0Q3r000 0005AC |4 ¢obese Qret 440 TS
01¢000 006000 013410 14+ 2440 & P44 4440 +ee
01D000 005000 013810 ¢ 24 o 444420 e
C1EQ00 011000 013410 |¢ +¢+ ¢ + 4420 +EeE s
OIFO000 007000 013410 1+ +9¢ + ++¢40 (22T}
020000 003000 013410 1 + ¢ + ++440 XYY
021000 Q4000 013410 1+ + ¢+ ++440 YT
022000 012000 013410 |+ + ++e0 2 Y]
023000 016000 013410 1+ ¢ + tes 44444440
024000 002000 0134710 b+ 0 +00 +000000004+0
025000 G1R000 013410 |+ 9 +00 +00 00000++40
026000 04000 013410 | ¢ O +0 4«00 QO000+++0
027000 0t1EQ00 013410 |+ 0 +0 +00 Q000++++0
028000 015000 013410 |+ Qo o+ +00 0QO00++4+++40
029000 0Q1Ccd00 013410 |+ o + +0 0O0C++++4+40
02A000 O1F000 013410 |1+ D+ *0 000+ ¢4 4440
012000 020000 013u5A |+ 0 O+ +0 OO+++++444
007000 021000 007B3IC |+ (o] 0 ¢+ +0 Cettttest
0050600 01BDOO 005178 |+ D + 0 ++ + Dttt sttt s
011000 022000 00549A K + + 00++ + [Ty
002000 010000 0020A8 I+ 0 + o s + tEEAEE S
003000 013000 002086 10 ¢0 O O [e]¢] 0 oconnoQon
010000 014000 0O005AC |+ +¢ 0 + 000 00000000
01R000 023000 002682 ¢ +¢ + + +40 o 0000000
013000 025000 013798 |+ +¢ %+ ¢ ++40 + 0 00000
006000 026000 006CHQ [+ 4+ 40+ et + 0 000+
004000 027000 003586 1+ +e0+++ 222 + 0 00+
Q0EODD 028000 OO0E688 |+ #4434 O ++44 + o) o+
00FQ0Q0 029000 GO0O752 1+ #4440 +0+E T + o +
0%4000 024000 002674 J+ teetes *+44 440 + +
015000 02A000 002674 |+ +#0+40 0++40+4+0 0
016000 012000 002674 |+ +30++0 O+++ +440 o
03F000 @O07000 0028674 I+ +¢0++ O++e +444 0 0
012000 002000 012F38 1+ 0+ Oerett st ar 4] +
Q18000 003000 015634 |+ O+ Ostrttess ++ *
007000 010000 007B3C | + O++4+ D+ +itete ++ +
002000 004000 0GD20A8B I+ O +e+ Gé 444444 ++ +
G03C00 QQEOOO0 002086 |+ 40 +++ T Yy Y +Ht +
G10000 018000 002682 I+ ¢+ 00+ 00000000 o} 0
024000 G13000 O0168F8 |+ +4 +0+ O+++ DD+ + 1) 0
013600 006000 O012FFE f+ +¢ ¢+ + O+ + 4000+ * + o
01B040 O0CF000 015634 I+ ¢+ + + I IY Y +0 + 0
028000 03F00D O168F8 |+ +4¢ + ¢+ +eEEetd s +0
004000 012000 0043a0 |+ +40+ 0 ++00000 0 +
01ADQG0 015000 O012CE6 [#4494 +*++00 0 Do e
015000 01BOOO 01573A |+ +44¢ + PEEEE0 + ++
01B0O0GO 004000 015634 1+ +4+ + YT YY +0 +0
004000 010000 0O043A0 |+ ++0+ 0O +00000 co +0
010000 013000 GO2F2C |+ +44% 4 0+0 000 ao +0
013000 014000 013B2C I+ 444+ # +++0 O+ +0 e
014000 02B000 OQOI14DA4 1+ 444+ + +ebr et e +0 +
02B000 002000 0168F8 |+ +0+ + et +e ++
002000 003000 0020A8 |+ ¢ O+ & PO " +e
003000 02A000 0020B6 1+ $40+ ¢ +rEted e ++ +
02A000 012000 O0024AA |+ #+40¢ + PrEEe e d + ++
014000 016000 012CE6 |+ +44¢ » +4+4000 00 e
016000 0©00000 (16874 | #+%% » +++000+ +0 (2]
600000 011000 005178 19 000+ + O +40C++ *e 0o
011000 012000 00549aA |+ 000+ + 0+ +04+ * 00
012000 002000 OQCT7AF4 |+ +0+ ¢ 040+0++ +4 00
002000 014000 0020A8 |+ 0+0+ + O++t ¢ +e 40
014000 004000 O14DAN |+ +¢ ¢+ » PHAE0¢+ ++ +0
0CG4000 02B000 0043A0 [+40+ + rErEEE 4 e *
DIC000 024000 016210 |+ ¢e4s ¢+ +4+00++ +40
01p000 013000 016210)|+ +e4% & ++é O+ ++4D
01E0Q0 01I1BODO 016210 |+ +44¢+ 4 44 O s + 4
01r000 003000 ©16210 1+ + ¢+ & +eé Ob e e
020000 010000 016210 1% + 4+

+
++ O+ + rries
021000 007000 016210 1+ & ¢4 ++ O+ + tEbeds

022000
023000
024000
425000
026000
027000
u2B8000
029000
024000
045000
007000
005000
011000
0u30400
018000
024000
023000
022000
021000
020090
01F000
018000
010000
01C000
018000
028000
027000
025000
024000
023000
022000
012000
007000
005000
000000
011000
002000
003000
00rooo
010880
024000
012000
015000
216000
013000
Q04000
028000
006000
URTT T

015000
005000
011000
014000
002000
01z000
01reog
020000
021000
004000
022000
01C000
023000
010000
024000
016000
012000
000000
207000
005000
011000
003000
¢1B000
027000
0428000
025000
¢24000
¢23000
022090
029000
Q24000
426000
215000
G1A000
¢28000
023000
027000
022000
025000
028000
01C000
01B000
021000
020000
01r000
01E000
010000
015000
n2Rnan

016210
016210
016210
016210
016210
016210
016210
016210
016210
015968
007ABO
005178
00549A
003308
015990
015A9E
015A9E
015A9E
01SA9E
015A9E
015A9E
015A9E
015A9E
015A9E
015A9E
015A9E
015A9E
015A98
01SA9E
015A9E
015A9E
012BC8
007748
005178
005178
00549A
002048
002086
0005AC
000C?2
002674
012CE6
115960
116362
J13AC8
004340
002hAA
006C40
aN2674

LR R B O S N
* e e
COOQCO++ 4+
-

*

LI IR R N
CO00O0CO+0
QOOO + ¢ ¢ 0O
QOO ®+++0

L B R B N B R B N B

o S e A A T —— . —— — —— — S —— - — A — —————— —— ——— ———n —— ——— ——
LR B B B N B R BRI B B 2

LI S AN A A R N N -]

4+ 0 ¢+
+4 0 ¢
+ 0
+ >
0 *
s] *
Q +
0 +*
0 *
0 0O¢
¢ e
+ *d
o¢ &
e 44
e 4
00 ¢
0 .
] *
0 +
0 +
*
+
*
*
’
*
*
»
*
+*
+
o ¢
+
*
*
[eX
e
e
D +¢
+0¢9
(2223
(YT}
+e4¢ O
+héd *0
*E D ¢
(22X Y]
d0000 M0
+34920 ¢
02001 0

[AR2XIZ T2

* 22000040

+ E020040

* s 4P0490D

+ 00000000040

+ 00 000Q00++0

+ Q0 00OCO+++0

+ 00 0000 +++4+0

+ 00 Q00++ 4440
+ 00 [TXXTT RS
+ 00 DO+t ée e
+ 0 DO+4444 2
+ 0 Dess e
+ [T XT TN
+0 [T T
e Desetde
+e [IXTXXT Y
e [IT2ITYT RS
+4 D+ sttt s
+e [T TETTRTRY

> Qéetsststtss
6 DEIEII L4444
+ 0++400000000000
+ 0++40000000 000
+0+¢+¢0000000 0O
+4444 400000 O O++
+44 4440000 O00+++
4439000 OFt+ et
$04¢440D Dttt ée
42444400 +4e44+0 &
PO L H00E LS
+44¢44 440000 00
+444 44440000 00
++44++44+0000 00
*++4+4 4440000 O
+29¢9244+0 00 O
+444444D 00
+44404¢ DO
s8ed04+ D
LI XTI X L)
0 ooo00

00000

0000

000

[s]0)

o}

D+ e+ reD
*Q

Derre ¢+

