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35Yo. Of course, such figures are 

extremely dependent on the job mix, 

and can change radically within a 

few minutes. 
This paper discusses the recent 

innovation of the use of large quantities 
of addressable (but not executable) fast 
random access memory in order to heighten 
the multiprogramming performance of a 
multicomputer system. The general design 
of the hardware arrangement and the soft- 
ware components and functions of such a 
system are based on Brookhaven's future 
configuration of dual CDC 6600's sharing 
one million words of Extended Core Stor- 
age. In the generalization of such a 
design, special emphasis is placed on 
estimating expected gains compared to the 
traditional configuration of separate and 
independent computers without ECS. An 
observation is made on the use of conven- 
tional slower speed random access storage 
devices in place of the faster memory. 

Introduction 

The paper grew out of a specific 
proposal at Brookhaven National Labora- 
tory (BNL) for the acquisition of Extended 
Core Storage (ECS) destined to upgrade 
dual CDC 6600's. The throughput of a 
stand-alone CDC 6600 is most frequently 
limited by available memory. Several 
jobs (up to 7) occupy Central Memory (CM) 
at one time. Whenever the job currently 
active stops, usually because it is 
awaiting the completion of an I/O request, 
the Central Processor (CP) is given to 
one of the other jobs in CM. However, it 
frequently happens that all jobs in CM 
are unable to proceed so that the CP is 
idle. This condition stems from a combi- 
nation of two causes: too few jobs occu- 
pying CM and too many of these jobs are 
I/O bound. The idle time thus generated 
is considerable. On machines with 65K of 
CM it is often of the order of 65% and on 
131K machines it may still be as high as 

Figure 1 illustrates the output 

flow on a typical CDC 6600. 

It is not clear under what conditions 
a stand-alone system with a larger CM 
will out-perform one with a smaller CM 
augmented by ECS. However, the price 
ratio between additional CM and ECS is 
about 12 to 1 and the fact that ECS may 
be shared by more than one computer makes 
it an attractive acquisition. 

The role that ECS is expected to 
play in the system is essentially twofold. 
First, it is expected to drastically 
increase the number of jobs available to 
the CP of each computer. This can only 
be achieved by swapping out a job which 
is held up for I/O, and swapping in one 
which is ready to run. As some manu- 
facturers have learned to their cost, 
attempting to do this with conventional 
disk or drum hardware poses certain pit- 
falls: either disk access is too slow, 
or the "sophisticated disk scheduler 
designed to minimize disk access" uses a 
sizable amount of processor time. The 
second objective is to improve overall 
I/O efficiency by accumulating output in 
ECS until enough data is available for 
optimizing transfer to I/O devices, and 
similarly buffering ahead on input. In 
sum, ECS is expected to smooth the load 
on CP and I/O equipment and to do this 
without generating a sizable overhead. 

This paper will discuss the hardware 
and especially software alternatives facing 
the designers of an ECS based operating 
system; give some estimates of relative 
sizes of ECS and the resulting expected 
performance and then generalize some of 
the results to other configurations in- 
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volving multiple computers and different 
equipment. 

I. General Desiqn Considerations 

A. Hardware The details of ECS hard- 
ware have been reported elsewhere. 1 The 
salient characteristics are that ECS is 
available in multiples of 131K 60-bit 
words to a maximum of 2 million words. 
Transmission is directly between CM and 
ECS with no channel or peripheral pro- 
cessor (PP) involved. The rate is 3.2~s 
for the first word, then 8-10 words/~s 
depending on the configuration. The CP 
stops while transmission takes place -- 
a small price to pay for a transfer rate 
more than i00 times faster than drum and 
40 to 80 times faster than Large Core 
Storage (LCS).3 In a sense, ECS is not 
an I/O device at all but an integral part 
of the computer, although instructions 
cannot be executed while residing in ECS. 

Up to four devices can be attached 
to ECS. All can be serviced simultane- 
ously, each getting 8 words in turn. 
However, when more than one device 
demands service, there is a delay of up 
to 3.2~s for each device for every 8 
words -- a sizable degradation. It is 
tempting to make use of the spare ECS 
ports. For example, a data channel could 
be attached to one so that PP's can also 
access ECS. Alternately a special con- 
troller could be attached which would 
allow direct transfer of data between 
ECS and disks or some data channel to an 
external device. However, the relatively 
slow rate of PP or disk transmission does 
not take full advantage of the ECS port 
which can transmit many times faster, and 
thus little can be gained. 

When dealing with a memory of this 
size, the probability of a failure is 
non-negligible. Consequently, there are 
provisions for detecting a failure, iso- 
lating the bad area through both hard- 
ware and software, and allowing the 
system to continue until scheduled 
maintenance. 

Hardware storage protection exists 
for ECS as for CM. The bounds are set 
for each CP program and an attempt to 
reference outside the allotted area is 
trapped. 

B. Use of ECS. A number of potential 
applications compete for the use of ECS. 
A careful study needs to be made to 
determine which ones deserve priority. 

i. Systems Tables. The following 
tables, accessible to all computers 
sharing the ECS must reside in ECS: 

a) Job Queue Table, containing 
information on each job within the system. 
Jobs can be available to any machine for 
either processing or post-processing 
(printing or punching the output). 

b) File Table, containing 
crucial information on every active or 
potentially active file available to the 
system. 

c) Table of available storage 
in ECS. This will be discussed in more 
detail under ECS allocation. 

d) Table of equipment available 
to all systems, such as tape drives, 
printers, etc. 

e) A communications area wherein 
the computers sharing ECS can communicate 
with each other. 

2. Frequently used proqrams such as 
the compiler, sections of the operating 
system, and some library routines. 

3. Jobs in setup or swapped out 
status. Normally a job will be set up 
in ECS before execution and returned to 
ECS whenever it is swapped out of CM. 

While it may be more convenient to 
return a job to the computer which started 
to process it, there is no conceptual 
difficulty in allowing execution to 
resume, after swap-in on another computer. 

4. I/O Buffers. Each active file 
has a buffer in ECS. The I/O flow is 
illustrated for output in Figure 2. 

The size of the user's CM buffer is 
small. The ECS ]Duffer is large - e.g. 
for files destined for the disk, multi- 
ples of a half-track's capacity (a half- 
track is the maximum which can be written 
per disk revolution) seems appropriate. 
When data must be transferred from ECS to 
an external device, it again goes through 
a CM buffer. One such buffer is associ- 
ated with every active channel. These 



buffers have a minimum length of a physi- 
cal record, while the ECS buffers are 
some convenient multiple of this size. 
The channel buffers require 14K of CM, 
distributed as follows: 

2 disk channels at 4K each 8K 
2 tape channels at ½K each 1K 
2 unit record channels at ½K each iK 
1 real time channel at 4K 4K 

5- User Area. For certain appli- 
cations it may be desirable to allow the 
user direct access to a portion of ECS, 
either via machine language code or 
through supplied subroutines, instead of 
via the system. However, an exchange 
jump causes an interruption in ECS trans- 
mission, which must then be restarted at 
a later time. (An exchange jump is 
executed by the monitor program to give 
control of the CP to a new job). If ECS 
usage were not channelled through the 
monitor, the essential unpredictability 
of users' programs would not allow ECS 
usage to be scheduled in a manner to 
avoid conflicts with other machines. For 
these reasons, permission to use ECS 
directly must not be given lightly. 
Normally, the user should write files, 
which may be randomly accessible in 
nature, and the operating system will 
decide on which medium these files will 
actually reside. 

C. Allocation of ECS. Several methods 
of allocating ECS for each of the above 
uses suggest themselves. 

string 

A straightforward method is to 
assign a fixed block of the required size 
for each use as the need arises. Such a 
method is easy to implement. However, it 
requires that, periodically, everything 
come to a halt while a storage move is 
made in ECS to consolidate the unused 
areas. A better method is to assign ECS 
in "pages". Whenever a block of ECS is 
required, a sufficient number of pages, 
not necessarily contiguous, are assigned. 
Each page has a control word associated 
with it containing the following infor- 
mation: 

pointer to next page in string 
pointer to previous page in 

number of words used in page, if 
not full. 

Optionally the following information 
could also be recorded: 

- pointer to a table giving full 
details on the file to which page belongs 

- page count, i.e. this is the nth 
page of the k th logical record of the 
file 

- a bit indicating that when this 
page is released, it is not to be re- 
assigned. This allows the ECS allocation 
program to eventually free a certain 
amount of contiguous ECS space for a 
special purpose such as direct user 
access. 

Unused pages could also be treated 
as a string. Thus to release a file, it 
is sufficient to attach it to the string 
of available pages. However, such a 
scheme makes it difficult to obtain a 
block of contiguous pages. 

Needless to say, that portion of 
ECS reserved for fixed length tables, 
system pointers and subroutines will not 
be assigned by pages but by fixed blocks. 

The concept of paging raises the 
question of an optimum page size. If the 
page is too small, the number of ECS 
accesses goes up as does the bookkeeping 
overhead. Make the pages too big, and 
storage is wasted in ECS because for each 
file opened the last page of a logical 
record is not filled. 

It seems clear that certain uses 
require larger pages than others. For 
example, I/O requires small pages while 
swap-out larger ones. Thus it could be 
advantageous to divide ECS into three 
areas: a fixed one for tables, etc., one 
assigned by small pages and one assigned 
by large pages, preferably some multiple 
of the small ones. The basic page is 
referred to as an atom and the larger one 
as a molecule. A floating boundary 
between the atom and molecule area is 
desirable. This implies that allocation 
of pages be done in such a way as to 
maximize the chance of obtaining consecu- 
tive free atoms which can then be com- 
bined into a molecule. 

The choice for the basic page size 
depends on both CM and ECS size. For 
machines with a small CM, an atom of 256 
or 512 words seems best, for larger CM's 
as much as 1024. 



The location of the control word is 
another area of decision. Should it be 
placed within the page or in a separate 
table? It turns out that if control 
words are grouped into a table, the system 
is vulnerable to a failure within that 
table area, whereas if the control word 
is within the atom, an ECS error will 
cause minimal damage. 

D. Multi-Computer Communications. It is 
expected that two or more computers, 
sharing ECS will have a better throughput 
than machines which do not have the abil- 
ity to distribute their workload. 

A possible configuration is shown 

in Figure 3. 

With shared ECS, all computers have 

access to a common job queue, a common 

print queue, and a pool of I/O re- 

sources. 

It is not necessary for one machine 

to be the master and the other slaves; 
however it is necessary for consul- 

tation of tables in ECS to proceed in 

an orderly fashion. Thus when 

computer A modifies a table, it must 

be free from interference from 

computer B. 

Access to tables is not the only 
problem facing a multiple computer com- 
plex. ECS transfer is severely degraded 
when more than one computer reads or 
writes simultaneously. It is feasible 
for the software in one computer to check 
when the other one is reading or writing, 
but this seems a good case for a hardware 

flag, set when ECS is in use and testable 
by any computer. 

II. Generalization 

In this section we permit a certain 
amount of idealization and simplification. 
We consider N essentially identical large 
scale computers ~ich share ECS and we 
assume the following: 

a) Access to ECS is not necessarily 
limited to 4 ports and its size is greater 
than the sum of N CM's. 

b) The maximum transmission rate 
from ECS to CM is at minor cycle* speed 
and we neglect the initial access time 
of 3.2~s. 

c) Some or all of the I/O channels 
may be pooled so that post-execution 
processing is treated as if optimized 
whether or not some computers are down. 

d) I/O equipment is modular and can 
be expanded to cover the system's capac- 
ity; also it is assumed that an I/O 
scheduler exists which optimizes I/O 
equipment usage. 

e) Each of the N machines is multi- 
programmed (monoprogrammed machines are 
then just a particular case). 

f) If j is the number of computers 
reading or writing ECS simultaneously 
there exists a degradation rate R(j) > 1 
for j a 2. 

g) When a CP gives a read or write 
ECS command, the next instruction cannot 
be executed until transmission is over. 

h) I/O may take place independently 
of CP activity and the small CP degrada- 
tion caused by tlhe PP's stealing memory 
cycles is counted as system overhead. 

i) The time it takes the monitor to 
start a new job via an exchange jump or 
to initiate a swap of jobs between CM 
and ECS is negligible. 

* On the CDC 6600, a minor cycle is 
i00 nanoseconds. 



The central questions considered 
are: 

i) What is the advantage, if any, 
of an ECS configuration over one having 
N separate stand-alone computers? 

2) How may we estimate this advan- 
tage or calculate an expected throughput 
based on statistics from the stand-alone 
system? 

The following notation is used: 

For the ECS system the total running 
time T is divided into the following 
fractions: 

s = system overhead, i.e. the fraction 
of the time used by the monitor functions 
in the CP 

t = ECS read/write time 

u = useful user's CP execution time 

p = idle time 

The CP is hardly ever stopped so 
s+t+u+p = i. 

For the stand alone (SA) system the 
corresponding variables are: 

= equivalent system overhead 

v = useful user's CP time 

= idle time 

and ~+u+~ = i. 

By the use of the word "time" we mean the 
dimensionless "fraction of the time" 
unless otherwise indicated. 

The definition of s is vague in the 
SA system since most monitor functions 
are carried on in a PP. 

Throughput is defined as u in the 
ECS system and ~ in the SA system, and 
the merits of the two systems are to be 
judged by comparing u and v. However, if 
s-s+t is small, then comparison of the 
idle times p and ~ also gives an estimate 
of the merits of each system. An ECS 
would only be considered if ~ is high 
(say greater than 25%) or if analysis 
shows that u >> v or p << ~. Although 
throughput has been defined based on CP 
performance, the existence of an I/O 
scheduler should assure a corresponding 

I/O performance. In actual practice, the 
economics of ECS cost versus CM cost must 
be weighed against any gain or loss in 
expected throughput. 

Let 8 be the ratio of the time a job 
spends in I/O to the sum of its I/O time 
plus its time spent in or awaiting CP 
execution. Based upon the simplifying 
assumption that two or more jobs may do 
I/O simultaneously, then @ may be taken 
as the average independent probability 
that a job is doing I/O. We assume that 
for an individual job, CP and I/O activ- 
ity are sequential; it is the multipro- 
gramming which overlaps the CP execution 
of one job with the I/O activity of 
others. (In the CDC 6600, I/O is accom- 
plished by PP's with no CP overhead.) 
Taking the cause of idle time to be that 
all jobs are doing I/O, then ~ = %k, 
where k is the number of jobs residing 
simultaneously in CM. In the ECS system, 
for a single machine p = 8 K, where K is 
the number of jobs in CM and ECS. If N 
computers share the job queue, and select 
from among n > N jobs, the total idle 
percentage P1 (also called the scheme of 
selection P1 ) will be given by: 

P1 = 100[NSn+(N-i)(~ )8n-I(I-8) + "'" 

n @n-N+l ( 1 ] 
+ (N_l) i-@) N- 

and the average per machine will be 

* P1 
P1 =-- 

N 

If assignment of jobs to machines 
is fixed, i.e. a job cannot be swapped 
out of one machine and resume execution 
in another, and there are a certain 
number of jobs available to each machine, 
let P2 be the selection scheme when each 
machine has approximately an equal 
number of jobs available to it, ~; and 
let P3 be the case when the number of 
jobs are allocated unequally. Accord- 
ingly the corresponding total and average 
percentages are: 

n 
* P2 

P2 = 100(N ) , P2 =-- 
N 

8n1+8 n2 nN) * P3 
P3 = I00( +...+8 ' P3 = -- 

N 
N 

where i=~ini = n, and n.l jobs are allotted 

to machine i. 



The following is then intuitively 
apparent and can be proven as a theorem: 

P1 ~ P2 ~ P3" 

Proof: We need to demonstrate that 

N-i _n ~ ~ n N ni 
(N-j) (~)sn-~(1-@) ~ ~ N8 N ~ ~ @ 

j=0 3 i=l 

n 
where N, n, n i, ~ are positive integers 

and 0 ~ @ ~ i. The right hand inequality 
is a form of the well known relation 4 

nai qi ~ Eaiq i where ai, qi k 0, Zqi = 1 

= 1 ai = @n i with the substitutions: qi N' 

for i = i, .... N. For the left hand 
n 

inequality, let ~ = K and divide both 

sides by N8 K. We must show then that 

N-i 
(~) (n) 8n-j-K j ]n-K 

j (i-@) ~ i=[8+(i-@) 
j=0 

By putting 

N-j --~_ 9C_it ! (~) 
N - (N-j+1) ~N-j+2 )''" 

for j = 1 ..... N-i and 

[8+(I-8) ]n-K = n-K n-K n-K @n- j 8 + Z ( ) J-K(l-@) 
J j=l 

The above inequality reduces to: 

N-iE (N_~)N-J (N-~)'''N-j+l (~) (@)sn-j-K(l_~)n n 

j=l 
n-K 
E .n-K) 8n- j j=l t J J-K(1- 8) 

Since n-K = K(N-i) k N-l, a term by term 
ratio of the first N-i terms of the left 
side to corresponding terms on the right 
side of the above gives 

__!__ 1 1 
(i N_j+i)(i - N_j+2 )...(1 - ~) " 

1 1 1 
(i + )(i + n . 1 )'''(I + n l_(J-l. ) 

K 

for j = 1 ..... N-i. Regrouping this 
product and noting that ~ = N we have 

J 1 1 
(i - N_i+l ) (i + . ) 

i=l N- i- (~) 

j (i-l) (~-l) 
= ~(i+ 

i=l (N-i+l) (N-i- (~)) 

1 for j = 1 ..... N-i 

which proves that P1 ~ P2" 

Thus P1 is the recommended scheme 
in the ECS system. If P1 is not possible 
then P2 is better than P3" 

For example consider N = 2, @ = .85 
(the actual BNL estimate) and let n = 16, 

n I = 3, n 2 = 13. The inequality 
P1 ~ P2 ~ P3 becomes 2816+ 16.815(1-8) 

288 ~ 83+ @ 13 which at 8 = .85 reads 

.36 ~ .54 ~ .74, :i.e., 18~, 27~, 37% 
idle time per machine for the schemes 

Pi' P2 and P3 respectively. 

Determination of 8 and 
Estimation of ECS size 

If @ is known, then a desired upper 
bound on the idle time determines n. If 
the average job size is known we know 
how much ECS is needed for job swapping. 
Then the total amount of ECS needed is 
the sum of swap space, I/O buffers and 
system space. 

At BNL, 8 was calculated by two 
methods based on statistics gathered on 
the SA system. If we let Pi be the 
independent probability that the ith job 
is doing I/O, then the probability of the 
CP being idle is given by 

k 

= ~ Pi 
i=l 

where k is the number of jobs residing 
in CM. We write ~ = 8 k or @ = ~I/k. We 
found ~ to lie between .60 and .65 and k 
was 2 or 3, on the average. Solving 
.60 ~ 82 ~ .65 and .60 ~ 83 ~ .65 gives 
us a range for 8: .78 ~'8 ~ .86. 

A second method is to obtain samples 
of Pi by comparing PP to PP+CP time for 
each job. The following table was 
obtained: 



PP/CP r i = proportion 
ratio of jobs Pi 

0.5- 1.5 .12 0.50 
1.5- 2.5 .09 0.60 
2.5- 3.5 .07 0.70 
3.5- 4.5 .08 0.75 
4.5- 5.5 .08 0.80 
5.5- 8.5 .21 0.85 
8.5- 14 .19 0.90 

> 14 .16 0.95 

The arithmetic mean is ZriP i = 0.78 
r. 

and the geometric mean is npil = .76. 
Either figure is in good agreement with 
those obtained by the first method. 
Since optimization of compiled code tends 
to increase 8, we took 8 = 0.85 as a 
working estimate. 

Figure 4 depicts the average idle 

time per computer under selection 

scheme P~ as a function of 8 and n. 
m 

If OUr target for P~ is i0%, we 

find n = 20 for @ = 0.85 and N = 2. 

The corresponding number of jobs for 

P~ is n = 28. 

The average job length is about 15K 
so we can estimate the amount of ECS 
required for job swapping. 

To estimate I/O buffer requirements 
we proceed as follows: a job has associ- 
ated with it four files on the average; 
three assigned to the disk, one to a 
magnetic tape. Allowing 4K words for a 
disk file buffer and iK for a tape file, 
each job requires 13K words of ECS for 
its I/O buffers. 

Thus we can estimate ECS require- 
ments as follows: 

Job setup and swapping 20 x 15 300K 

Buffers 20 x 13 260K 

System tables and programs 150K 

Emergency core space for each 131K 
machine: 2 x 65 

Total 841K 

Estimate of t 

So far we have given answers to 
questions i) and 2) of this section by 
means of the rough comparison of p and 
~. A more accurate comparison requires 
an estimate for t. 

The fraction of the time spent in 
ECS transmission, t, is a function of 
the multiple access degradation rate 
R(j), the degree to which jobs are I/O 
bound, and the frequency of job swapping. 
The latter is to some degree dependent 
on the first two, but it also depends on 
the choice of ECS buffer size and the 
size of CM. The greater the buffer size, 
the longer, in general, a job may remain 
in continuous CP execution. The bigger 
the CM, the more jobs may be multi- 
programmed in the CP and the less fre- 
quent the swapping. 

Consider t to be the sum t = t~+t b 
+t s where t~ is the time needed for job 

swapping, t b is the time for I/O buffer 
transmission, and t s is the time for 
systems usage of ECS. 

A sensible condition for swapping is 
that idle time is about to be created. 
If CM can hold k jobs, the probability of 
imminent idle time is 8 k while each 
mutually disjoint event of a job being in 
CP execution ( or possibly that its share 
of t or s is occurring) has probability 
(l-sk)/k. Suppose ~ is the average 
uninterrupted CP execution period for 
one job and k.A~ the average uninterrup- 
ted CP period for k jobs. If At is the 
time necessary for a full CM exchange to 
ECS, then the ratio of swap time to CP 
execution time is At Since CP exe- 

kA~ 

cution time is less than the total time 
T, this quanity may be taken as an upper 

bound: t~ ~ At . 

kA~ 

Given k, and At, a substitution of 
a desired percentage for t~ enables one 
to solve for A~. For example, suppose 
k = 2, At = 12 ms. and we want t~ ~ 2%. 
Then A~ = 300 ms. 



The simplest way to find a lower 
bound on ECS I/O buffer size is to find 
the average execution period in the SA 

system, A~SA, and multiply by the buffer 
sizes in SA by A~/A~sA. It was found at 
BNL that there were approximately 3 
exchange jumps per second. Each second 
accounts for about 350 ms. of non-idle 

time which gives A~S.~ 120 ms. Compar- 
• 
zson with A~ as obtalned above, shows 
that ECS buffers should be about three 
times as large as in SA. 

It should be noted that conditions 
other than imminent idle time in a CP can 
cause a swap. The most common of these 
might be a real-time job which must have 
CP time with minimum of delay. Any 
scheduling scheme based on priorities 
will probably have such a "real-time" 
category. Hence an over-estimate of 
ECS I/O buffer sizes will tend to offset 
the additional swap time caused by real- 
time interrupts. However, a system which 
deals almost entirely with real-time 
interruptions, especially where access 

and response time are small compared to a 
desired A~, may find it impossible to 
satisfy a desired AZ. Such a system will 
have to accept a larger percentage for 
t~. Systems which specialize in conver- 
sational mode (such as line by line or 
character by character on-line debugging) 
or which use execution page less than the 
entire job size will have this problem. 
The overhead is less severe with an ECS- 
CM swap than it would be with a slower 
swap device such as drum or disk (see 

below for such a comparison). 

It should be noted that a swap may 
be selective, that is, not all of CM need 
be swapped. Also it may be that e is so 
small and k so large that it pays to wait 

some period of time less than At until a 
job already residing in CM can resume 
execution rather than initiate a swap 
immediately. In this case the average 
idle-causing I/O time period correspond- 
ing to kA~ is ( @k )kAY. Hence if 

z-ek 

( 8 k )kA~ < At , 

i- e k 

it is advantageous not to swap. 

The best method to obtain t b is to 
measure the total number of I/O buffers 
used by the average job in SA. If 

statistics on the number of buffers 
filled or emptied in SA is not available, 
the following estimation provides an 

upper bound for t b. Calculate an upper 
bound on buffer I/O rates by assuming 
peak activity on several channels. That 
is, assume that tapes, disks, card 
readers are going at maximum rates. Then 
from this, estimate the total buffer 
space required. If the actual channel 
activity is known, a more accurate esti- 
mate is possible. For example at BNL we 
assume that two tapes and two disks per 
machine transmitting at their maximum 
rates would give an over-estimate of I/O 
activity. This generates a 60 bit word 
every 8~s. and necessitates 2 ECS trans- 
fers of 0.2Us. or about 2.5%. This is 
certainly an over-estimate but takes into 
account an eventual real time channel 
whose maximum rate is 1 word every 5~s. 

An estimate for t s can only be made 
in a hand waving fashion. It seems that 
systems functions such as table refer- 
ences or other procedures requiring the 
use of ECS should[ take considerably less 

time than t~ or t~. 

If t s is half as large as either t~ 

or t b then t ~ 5/4(t~+tb), that is t 
should be less than 25% larger than the 
time required for both I/O buffering and 

swap time. 

So far the estimation of t has 

neglected the ECS multiaccess problem: 
R(j) can increase t appreciably when 
j > i. Let t o be the portion of total 
running time T that a single computer 
would use ECS (with no degradation). The 
total expected ECS fraction of the time, 
ECS t, needed to service all N machines 
is thus the weighted sum: 

ECS t = 

N 
Nt0[R(N ) to+...+R(1) (NNi) t0 (l-t0)N-1 

N 
l -  ( 1 - t  o) 

For example, suppose we consider a 
system with many real time demands and 
t o = .20. Let us use the actual N = 4 
and R(1) = i, R(2) = 2, R(3) = 2.7, 
R(4) = 4. Then ECS t = 1.07 which is more 
than I00~ of the original time T. Thus 
the following design objective is rec- 
ommended: either the ECS be constructed 



so that R(j) ~ 1 for all j, or there 
must be a lockout option to prevent more 
than one CP from referencing ECS simul- 
taneously. Software flags in ECS may be 
used, but a neater solution is to have a 
hardware flag set to allow automatic 
lockout of one CP while another is trans- 
mitting. Under such a provision in the 
above example, ECS would be busy 80% of 
the time. The lockout provision is 
especially important where an ECS type 
memory is not limited to four ports or 
to two million words so that N may be 
large. 

Since ECS is shared, it should be 
noted that t may not exceed i00 percent 

N 

in each machine when the lockout pro- 
vision holds. We use the convention then 
that ECS is busy Nt percent of the time. 
If as in the above example a given 
quantity of CP execution is expected to 
generate a certain percentage for t and 
it turns out that Nt > 100%, we then 
normalize in such a way that Nt = i00 
and the additional time is added to the 
idle time (as would be the case for any 
request for a busy I/O device. As an 
extreme illustration consider N = i00 
and each machine's estimate is that for 
80 minutes of CP execution there is i0 
minutes overhead and i0 minutes ECS 
time. To say u = 80%, t = 10%, s = 10%, 
p = 0 is incorrect. In this example 
i000 minutes must pass before 80 minutes 
of CP time can be used. The "normalized" 
percentages would be u = 8%, t = 1%, 
s = 1%, p = 90%. 

Comparison to other systems 

The simple substitution of a slower 
random access memory device such as 
drum, disk or LCS for ECS produces 
dramatic changes in the behavior of the 
system. Consider the illustration of 
the BNL estimates: s = 10%, t = 7%, 
p = 8%, u = 75%. Now for ECS substitute 
a device i00 times as slow (10Us./60 bit 
word), the relative times are then s=10, 
t = 700, p = 8, u = 75 or s = 1%, t=8~, 
p = 1%, u = 10%. If the memory device 
is shared between two computers, the 
normalized percentages are s = 0.7%, 
t = 50%, p = 44%, u = 5.3%. 

If a system designed to service 
many conversational mode users the swap 
rate will be high and the execution 

slice ~, will be small, with t probably 
higher than 20%. When this figure is 
multiplied by I00 and even if CP activity 
does not cease during swapping or I/O 
buffering and even if CP idle time is 
nil, then u is still limited to about 
5% which implies that 95% of the time is 
spent passing data between CM and the 
slower random memory. This is precisely 
what is largely responsible for the 
failures of some of the larger time 
shared systems. It is the hope that the 
speed of ECS will allow such systems to 
operate successfully. 
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