
CONSIDERATION IN THE DESIGN OF A
MULTIPLE COMPUTER SYSTEM WITH EXTENDED CORE STORAGE*

Summary

Kurt Fuchel and Sidney Heller
Applied Mathematics Department
Brookhaven National Laboratory
Upton, Long Island, New York

35Yo. Of course, such figures are

extremely dependent on the job mix,

and can change radically within a

few minutes.
This paper discusses the recent

innovation of the use of large quantities
of addressable (but not executable) fast
random access memory in order to heighten
the multiprogramming performance of a
multicomputer system. The general design
of the hardware arrangement and the soft-
ware components and functions of such a
system are based on Brookhaven's future
configuration of dual CDC 6600's sharing
one million words of Extended Core Stor-
age. In the generalization of such a
design, special emphasis is placed on
estimating expected gains compared to the
traditional configuration of separate and
independent computers without ECS. An
observation is made on the use of conven-
tional slower speed random access storage
devices in place of the faster memory.

Introduction

The paper grew out of a specific
proposal at Brookhaven National Labora-
tory (BNL) for the acquisition of Extended
Core Storage (ECS) destined to upgrade
dual CDC 6600's. The throughput of a
stand-alone CDC 6600 is most frequently
limited by available memory. Several
jobs (up to 7) occupy Central Memory (CM)
at one time. Whenever the job currently
active stops, usually because it is
awaiting the completion of an I/O request,
the Central Processor (CP) is given to
one of the other jobs in CM. However, it
frequently happens that all jobs in CM
are unable to proceed so that the CP is
idle. This condition stems from a combi-
nation of two causes: too few jobs occu-
pying CM and too many of these jobs are
I/O bound. The idle time thus generated
is considerable. On machines with 65K of
CM it is often of the order of 65% and on
131K machines it may still be as high as

Figure 1 illustrates the output

flow on a typical CDC 6600.

It is not clear under what conditions
a stand-alone system with a larger CM
will out-perform one with a smaller CM
augmented by ECS. However, the price
ratio between additional CM and ECS is
about 12 to 1 and the fact that ECS may
be shared by more than one computer makes
it an attractive acquisition.

The role that ECS is expected to
play in the system is essentially twofold.
First, it is expected to drastically
increase the number of jobs available to
the CP of each computer. This can only
be achieved by swapping out a job which
is held up for I/O, and swapping in one
which is ready to run. As some manu-
facturers have learned to their cost,
attempting to do this with conventional
disk or drum hardware poses certain pit-
falls: either disk access is too slow,
or the "sophisticated disk scheduler
designed to minimize disk access" uses a
sizable amount of processor time. The
second objective is to improve overall
I/O efficiency by accumulating output in
ECS until enough data is available for
optimizing transfer to I/O devices, and
similarly buffering ahead on input. In
sum, ECS is expected to smooth the load
on CP and I/O equipment and to do this
without generating a sizable overhead.

This paper will discuss the hardware
and especially software alternatives facing
the designers of an ECS based operating
system; give some estimates of relative
sizes of ECS and the resulting expected
performance and then generalize some of
the results to other configurations in-

* This work was performed under the auspices of the U. S. Atomic Energy Commission.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800001.811673&domain=pdf&date_stamp=1967-01-01

volving multiple computers and different
equipment.

I. General Desiqn Considerations

A. Hardware The details of ECS hard-
ware have been reported elsewhere. 1 The
salient characteristics are that ECS is
available in multiples of 131K 60-bit
words to a maximum of 2 million words.
Transmission is directly between CM and
ECS with no channel or peripheral pro-
cessor (PP) involved. The rate is 3.2~s
for the first word, then 8-10 words/~s
depending on the configuration. The CP
stops while transmission takes place --
a small price to pay for a transfer rate
more than i00 times faster than drum and
40 to 80 times faster than Large Core
Storage (LCS).3 In a sense, ECS is not
an I/O device at all but an integral part
of the computer, although instructions
cannot be executed while residing in ECS.

Up to four devices can be attached
to ECS. All can be serviced simultane-
ously, each getting 8 words in turn.
However, when more than one device
demands service, there is a delay of up
to 3.2~s for each device for every 8
words -- a sizable degradation. It is
tempting to make use of the spare ECS
ports. For example, a data channel could
be attached to one so that PP's can also
access ECS. Alternately a special con-
troller could be attached which would
allow direct transfer of data between
ECS and disks or some data channel to an
external device. However, the relatively
slow rate of PP or disk transmission does
not take full advantage of the ECS port
which can transmit many times faster, and
thus little can be gained.

When dealing with a memory of this
size, the probability of a failure is
non-negligible. Consequently, there are
provisions for detecting a failure, iso-
lating the bad area through both hard-
ware and software, and allowing the
system to continue until scheduled
maintenance.

Hardware storage protection exists
for ECS as for CM. The bounds are set
for each CP program and an attempt to
reference outside the allotted area is
trapped.

B. Use of ECS. A number of potential
applications compete for the use of ECS.
A careful study needs to be made to
determine which ones deserve priority.

i. Systems Tables. The following
tables, accessible to all computers
sharing the ECS must reside in ECS:

a) Job Queue Table, containing
information on each job within the system.
Jobs can be available to any machine for
either processing or post-processing
(printing or punching the output).

b) File Table, containing
crucial information on every active or
potentially active file available to the
system.

c) Table of available storage
in ECS. This will be discussed in more
detail under ECS allocation.

d) Table of equipment available
to all systems, such as tape drives,
printers, etc.

e) A communications area wherein
the computers sharing ECS can communicate
with each other.

2. Frequently used proqrams such as
the compiler, sections of the operating
system, and some library routines.

3. Jobs in setup or swapped out
status. Normally a job will be set up
in ECS before execution and returned to
ECS whenever it is swapped out of CM.

While it may be more convenient to
return a job to the computer which started
to process it, there is no conceptual
difficulty in allowing execution to
resume, after swap-in on another computer.

4. I/O Buffers. Each active file
has a buffer in ECS. The I/O flow is
illustrated for output in Figure 2.

The size of the user's CM buffer is
small. The ECS]Duffer is large - e.g.
for files destined for the disk, multi-
ples of a half-track's capacity (a half-
track is the maximum which can be written
per disk revolution) seems appropriate.
When data must be transferred from ECS to
an external device, it again goes through
a CM buffer. One such buffer is associ-
ated with every active channel. These

buffers have a minimum length of a physi-
cal record, while the ECS buffers are
some convenient multiple of this size.
The channel buffers require 14K of CM,
distributed as follows:

2 disk channels at 4K each 8K
2 tape channels at ½K each 1K
2 unit record channels at ½K each iK
1 real time channel at 4K 4K

5- User Area. For certain appli-
cations it may be desirable to allow the
user direct access to a portion of ECS,
either via machine language code or
through supplied subroutines, instead of
via the system. However, an exchange
jump causes an interruption in ECS trans-
mission, which must then be restarted at
a later time. (An exchange jump is
executed by the monitor program to give
control of the CP to a new job). If ECS
usage were not channelled through the
monitor, the essential unpredictability
of users' programs would not allow ECS
usage to be scheduled in a manner to
avoid conflicts with other machines. For
these reasons, permission to use ECS
directly must not be given lightly.
Normally, the user should write files,
which may be randomly accessible in
nature, and the operating system will
decide on which medium these files will
actually reside.

C. Allocation of ECS. Several methods
of allocating ECS for each of the above
uses suggest themselves.

string

A straightforward method is to
assign a fixed block of the required size
for each use as the need arises. Such a
method is easy to implement. However, it
requires that, periodically, everything
come to a halt while a storage move is
made in ECS to consolidate the unused
areas. A better method is to assign ECS
in "pages". Whenever a block of ECS is
required, a sufficient number of pages,
not necessarily contiguous, are assigned.
Each page has a control word associated
with it containing the following infor-
mation:

pointer to next page in string
pointer to previous page in

number of words used in page, if
not full.

Optionally the following information
could also be recorded:

- pointer to a table giving full
details on the file to which page belongs

- page count, i.e. this is the nth
page of the k th logical record of the
file

- a bit indicating that when this
page is released, it is not to be re-
assigned. This allows the ECS allocation
program to eventually free a certain
amount of contiguous ECS space for a
special purpose such as direct user
access.

Unused pages could also be treated
as a string. Thus to release a file, it
is sufficient to attach it to the string
of available pages. However, such a
scheme makes it difficult to obtain a
block of contiguous pages.

Needless to say, that portion of
ECS reserved for fixed length tables,
system pointers and subroutines will not
be assigned by pages but by fixed blocks.

The concept of paging raises the
question of an optimum page size. If the
page is too small, the number of ECS
accesses goes up as does the bookkeeping
overhead. Make the pages too big, and
storage is wasted in ECS because for each
file opened the last page of a logical
record is not filled.

It seems clear that certain uses
require larger pages than others. For
example, I/O requires small pages while
swap-out larger ones. Thus it could be
advantageous to divide ECS into three
areas: a fixed one for tables, etc., one
assigned by small pages and one assigned
by large pages, preferably some multiple
of the small ones. The basic page is
referred to as an atom and the larger one
as a molecule. A floating boundary
between the atom and molecule area is
desirable. This implies that allocation
of pages be done in such a way as to
maximize the chance of obtaining consecu-
tive free atoms which can then be com-
bined into a molecule.

The choice for the basic page size
depends on both CM and ECS size. For
machines with a small CM, an atom of 256
or 512 words seems best, for larger CM's
as much as 1024.

The location of the control word is
another area of decision. Should it be
placed within the page or in a separate
table? It turns out that if control
words are grouped into a table, the system
is vulnerable to a failure within that
table area, whereas if the control word
is within the atom, an ECS error will
cause minimal damage.

D. Multi-Computer Communications. It is
expected that two or more computers,
sharing ECS will have a better throughput
than machines which do not have the abil-
ity to distribute their workload.

A possible configuration is shown

in Figure 3.

With shared ECS, all computers have

access to a common job queue, a common

print queue, and a pool of I/O re-

sources.

It is not necessary for one machine

to be the master and the other slaves;
however it is necessary for consul-

tation of tables in ECS to proceed in

an orderly fashion. Thus when

computer A modifies a table, it must

be free from interference from

computer B.

Access to tables is not the only
problem facing a multiple computer com-
plex. ECS transfer is severely degraded
when more than one computer reads or
writes simultaneously. It is feasible
for the software in one computer to check
when the other one is reading or writing,
but this seems a good case for a hardware

flag, set when ECS is in use and testable
by any computer.

II. Generalization

In this section we permit a certain
amount of idealization and simplification.
We consider N essentially identical large
scale computers ~ich share ECS and we
assume the following:

a) Access to ECS is not necessarily
limited to 4 ports and its size is greater
than the sum of N CM's.

b) The maximum transmission rate
from ECS to CM is at minor cycle* speed
and we neglect the initial access time
of 3.2~s.

c) Some or all of the I/O channels
may be pooled so that post-execution
processing is treated as if optimized
whether or not some computers are down.

d) I/O equipment is modular and can
be expanded to cover the system's capac-
ity; also it is assumed that an I/O
scheduler exists which optimizes I/O
equipment usage.

e) Each of the N machines is multi-
programmed (monoprogrammed machines are
then just a particular case).

f) If j is the number of computers
reading or writing ECS simultaneously
there exists a degradation rate R(j) > 1
for j a 2.

g) When a CP gives a read or write
ECS command, the next instruction cannot
be executed until transmission is over.

h) I/O may take place independently
of CP activity and the small CP degrada-
tion caused by tlhe PP's stealing memory
cycles is counted as system overhead.

i) The time it takes the monitor to
start a new job via an exchange jump or
to initiate a swap of jobs between CM
and ECS is negligible.

* On the CDC 6600, a minor cycle is
i00 nanoseconds.

The central questions considered
are:

i) What is the advantage, if any,
of an ECS configuration over one having
N separate stand-alone computers?

2) How may we estimate this advan-
tage or calculate an expected throughput
based on statistics from the stand-alone
system?

The following notation is used:

For the ECS system the total running
time T is divided into the following
fractions:

s = system overhead, i.e. the fraction
of the time used by the monitor functions
in the CP

t = ECS read/write time

u = useful user's CP execution time

p = idle time

The CP is hardly ever stopped so
s+t+u+p = i.

For the stand alone (SA) system the
corresponding variables are:

= equivalent system overhead

v = useful user's CP time

= idle time

and ~+u+~ = i.

By the use of the word "time" we mean the
dimensionless "fraction of the time"
unless otherwise indicated.

The definition of s is vague in the
SA system since most monitor functions
are carried on in a PP.

Throughput is defined as u in the
ECS system and ~ in the SA system, and
the merits of the two systems are to be
judged by comparing u and v. However, if
s-s+t is small, then comparison of the
idle times p and ~ also gives an estimate
of the merits of each system. An ECS
would only be considered if ~ is high
(say greater than 25%) or if analysis
shows that u >> v or p << ~. Although
throughput has been defined based on CP
performance, the existence of an I/O
scheduler should assure a corresponding

I/O performance. In actual practice, the
economics of ECS cost versus CM cost must
be weighed against any gain or loss in
expected throughput.

Let 8 be the ratio of the time a job
spends in I/O to the sum of its I/O time
plus its time spent in or awaiting CP
execution. Based upon the simplifying
assumption that two or more jobs may do
I/O simultaneously, then @ may be taken
as the average independent probability
that a job is doing I/O. We assume that
for an individual job, CP and I/O activ-
ity are sequential; it is the multipro-
gramming which overlaps the CP execution
of one job with the I/O activity of
others. (In the CDC 6600, I/O is accom-
plished by PP's with no CP overhead.)
Taking the cause of idle time to be that
all jobs are doing I/O, then ~ = %k,
where k is the number of jobs residing
simultaneously in CM. In the ECS system,
for a single machine p = 8 K, where K is
the number of jobs in CM and ECS. If N
computers share the job queue, and select
from among n > N jobs, the total idle
percentage P1 (also called the scheme of
selection P1) will be given by:

P1 = 100[NSn+(N-i)(~)8n-I(I-8) + "'"

n @n-N+l (1]
+ (N_l) i-@) N-

and the average per machine will be

* P1
P1 =--

N

If assignment of jobs to machines
is fixed, i.e. a job cannot be swapped
out of one machine and resume execution
in another, and there are a certain
number of jobs available to each machine,
let P2 be the selection scheme when each
machine has approximately an equal
number of jobs available to it, ~; and
let P3 be the case when the number of
jobs are allocated unequally. Accord-
ingly the corresponding total and average
percentages are:

n
* P2

P2 = 100(N) , P2 =--
N

8n1+8 n2 nN) * P3
P3 = I00(+...+8 ' P3 = --

N
N

where i=~ini = n, and n.l jobs are allotted

to machine i.

The following is then intuitively
apparent and can be proven as a theorem:

P1 ~ P2 ~ P3"

Proof: We need to demonstrate that

N-i _n ~ ~ n N ni
(N-j) (~)sn-~(1-@) ~ ~ N8 N ~ ~ @

j=0 3 i=l

n
where N, n, n i, ~ are positive integers

and 0 ~ @ ~ i. The right hand inequality
is a form of the well known relation 4

nai qi ~ Eaiq i where ai, qi k 0, Zqi = 1

= 1 ai = @n i with the substitutions: qi N'

for i = i, N. For the left hand
n

inequality, let ~ = K and divide both

sides by N8 K. We must show then that

N-i
(~) (n) 8n-j-K j]n-K

j (i-@) ~ i=[8+(i-@)
j=0

By putting

N-j --~_ 9C_it ! (~)
N - (N-j+1) ~N-j+2)''"

for j = 1 N-i and

[8+(I-8)]n-K = n-K n-K n-K @n- j 8 + Z () J-K(l-@)
J j=l

The above inequality reduces to:

N-iE (N_~)N-J (N-~)'''N-j+l (~) (@)sn-j-K(l_~)n n

j=l
n-K
E .n-K) 8n- j j=l t J J-K(1- 8)

Since n-K = K(N-i) k N-l, a term by term
ratio of the first N-i terms of the left
side to corresponding terms on the right
side of the above gives

__!__ 1 1
(i N_j+i)(i - N_j+2)...(1 - ~) "

1 1 1
(i +)(i + n . 1)'''(I + n l_(J-l.)

K

for j = 1 N-i. Regrouping this
product and noting that ~ = N we have

J 1 1
(i - N_i+l) (i + .)

i=l N- i- (~)

j (i-l) (~-l)
= ~(i+

i=l (N-i+l) (N-i- (~))

1 for j = 1 N-i

which proves that P1 ~ P2"

Thus P1 is the recommended scheme
in the ECS system. If P1 is not possible
then P2 is better than P3"

For example consider N = 2, @ = .85
(the actual BNL estimate) and let n = 16,

n I = 3, n 2 = 13. The inequality
P1 ~ P2 ~ P3 becomes 2816+ 16.815(1-8)

288 ~ 83+ @ 13 which at 8 = .85 reads

.36 ~ .54 ~ .74, :i.e., 18~, 27~, 37%
idle time per machine for the schemes

Pi' P2 and P3 respectively.

Determination of 8 and
Estimation of ECS size

If @ is known, then a desired upper
bound on the idle time determines n. If
the average job size is known we know
how much ECS is needed for job swapping.
Then the total amount of ECS needed is
the sum of swap space, I/O buffers and
system space.

At BNL, 8 was calculated by two
methods based on statistics gathered on
the SA system. If we let Pi be the
independent probability that the ith job
is doing I/O, then the probability of the
CP being idle is given by

k

= ~ Pi
i=l

where k is the number of jobs residing
in CM. We write ~ = 8 k or @ = ~I/k. We
found ~ to lie between .60 and .65 and k
was 2 or 3, on the average. Solving
.60 ~ 82 ~ .65 and .60 ~ 83 ~ .65 gives
us a range for 8: .78 ~'8 ~ .86.

A second method is to obtain samples
of Pi by comparing PP to PP+CP time for
each job. The following table was
obtained:

PP/CP r i = proportion
ratio of jobs Pi

0.5- 1.5 .12 0.50
1.5- 2.5 .09 0.60
2.5- 3.5 .07 0.70
3.5- 4.5 .08 0.75
4.5- 5.5 .08 0.80
5.5- 8.5 .21 0.85
8.5- 14 .19 0.90

> 14 .16 0.95

The arithmetic mean is ZriP i = 0.78
r.

and the geometric mean is npil = .76.
Either figure is in good agreement with
those obtained by the first method.
Since optimization of compiled code tends
to increase 8, we took 8 = 0.85 as a
working estimate.

Figure 4 depicts the average idle

time per computer under selection

scheme P~ as a function of 8 and n.
m

If OUr target for P~ is i0%, we

find n = 20 for @ = 0.85 and N = 2.

The corresponding number of jobs for

P~ is n = 28.

The average job length is about 15K
so we can estimate the amount of ECS
required for job swapping.

To estimate I/O buffer requirements
we proceed as follows: a job has associ-
ated with it four files on the average;
three assigned to the disk, one to a
magnetic tape. Allowing 4K words for a
disk file buffer and iK for a tape file,
each job requires 13K words of ECS for
its I/O buffers.

Thus we can estimate ECS require-
ments as follows:

Job setup and swapping 20 x 15 300K

Buffers 20 x 13 260K

System tables and programs 150K

Emergency core space for each 131K
machine: 2 x 65

Total 841K

Estimate of t

So far we have given answers to
questions i) and 2) of this section by
means of the rough comparison of p and
~. A more accurate comparison requires
an estimate for t.

The fraction of the time spent in
ECS transmission, t, is a function of
the multiple access degradation rate
R(j), the degree to which jobs are I/O
bound, and the frequency of job swapping.
The latter is to some degree dependent
on the first two, but it also depends on
the choice of ECS buffer size and the
size of CM. The greater the buffer size,
the longer, in general, a job may remain
in continuous CP execution. The bigger
the CM, the more jobs may be multi-
programmed in the CP and the less fre-
quent the swapping.

Consider t to be the sum t = t~+t b
+t s where t~ is the time needed for job

swapping, t b is the time for I/O buffer
transmission, and t s is the time for
systems usage of ECS.

A sensible condition for swapping is
that idle time is about to be created.
If CM can hold k jobs, the probability of
imminent idle time is 8 k while each
mutually disjoint event of a job being in
CP execution (or possibly that its share
of t or s is occurring) has probability
(l-sk)/k. Suppose ~ is the average
uninterrupted CP execution period for
one job and k.A~ the average uninterrup-
ted CP period for k jobs. If At is the
time necessary for a full CM exchange to
ECS, then the ratio of swap time to CP
execution time is At Since CP exe-

kA~

cution time is less than the total time
T, this quanity may be taken as an upper

bound: t~ ~ At .

kA~

Given k, and At, a substitution of
a desired percentage for t~ enables one
to solve for A~. For example, suppose
k = 2, At = 12 ms. and we want t~ ~ 2%.
Then A~ = 300 ms.

The simplest way to find a lower
bound on ECS I/O buffer size is to find
the average execution period in the SA

system, A~SA, and multiply by the buffer
sizes in SA by A~/A~sA. It was found at
BNL that there were approximately 3
exchange jumps per second. Each second
accounts for about 350 ms. of non-idle

time which gives A~S.~ 120 ms. Compar-
•
zson with A~ as obtalned above, shows
that ECS buffers should be about three
times as large as in SA.

It should be noted that conditions
other than imminent idle time in a CP can
cause a swap. The most common of these
might be a real-time job which must have
CP time with minimum of delay. Any
scheduling scheme based on priorities
will probably have such a "real-time"
category. Hence an over-estimate of
ECS I/O buffer sizes will tend to offset
the additional swap time caused by real-
time interrupts. However, a system which
deals almost entirely with real-time
interruptions, especially where access

and response time are small compared to a
desired A~, may find it impossible to
satisfy a desired AZ. Such a system will
have to accept a larger percentage for
t~. Systems which specialize in conver-
sational mode (such as line by line or
character by character on-line debugging)
or which use execution page less than the
entire job size will have this problem.
The overhead is less severe with an ECS-
CM swap than it would be with a slower
swap device such as drum or disk (see

below for such a comparison).

It should be noted that a swap may
be selective, that is, not all of CM need
be swapped. Also it may be that e is so
small and k so large that it pays to wait

some period of time less than At until a
job already residing in CM can resume
execution rather than initiate a swap
immediately. In this case the average
idle-causing I/O time period correspond-
ing to kA~ is (@k)kAY. Hence if

z-ek

(8 k)kA~ < At ,

i- e k

it is advantageous not to swap.

The best method to obtain t b is to
measure the total number of I/O buffers
used by the average job in SA. If

statistics on the number of buffers
filled or emptied in SA is not available,
the following estimation provides an

upper bound for t b. Calculate an upper
bound on buffer I/O rates by assuming
peak activity on several channels. That
is, assume that tapes, disks, card
readers are going at maximum rates. Then
from this, estimate the total buffer
space required. If the actual channel
activity is known, a more accurate esti-
mate is possible. For example at BNL we
assume that two tapes and two disks per
machine transmitting at their maximum
rates would give an over-estimate of I/O
activity. This generates a 60 bit word
every 8~s. and necessitates 2 ECS trans-
fers of 0.2Us. or about 2.5%. This is
certainly an over-estimate but takes into
account an eventual real time channel
whose maximum rate is 1 word every 5~s.

An estimate for t s can only be made
in a hand waving fashion. It seems that
systems functions such as table refer-
ences or other procedures requiring the
use of ECS should[take considerably less

time than t~ or t~.

If t s is half as large as either t~

or t b then t ~ 5/4(t~+tb), that is t
should be less than 25% larger than the
time required for both I/O buffering and

swap time.

So far the estimation of t has

neglected the ECS multiaccess problem:
R(j) can increase t appreciably when
j > i. Let t o be the portion of total
running time T that a single computer
would use ECS (with no degradation). The
total expected ECS fraction of the time,
ECS t, needed to service all N machines
is thus the weighted sum:

ECS t =

N
Nt0[R(N) to+...+R(1) (NNi) t0 (l-t0)N-1

N
l - (1 - t o)

For example, suppose we consider a
system with many real time demands and
t o = .20. Let us use the actual N = 4
and R(1) = i, R(2) = 2, R(3) = 2.7,
R(4) = 4. Then ECS t = 1.07 which is more
than I00~ of the original time T. Thus
the following design objective is rec-
ommended: either the ECS be constructed

so that R(j) ~ 1 for all j, or there
must be a lockout option to prevent more
than one CP from referencing ECS simul-
taneously. Software flags in ECS may be
used, but a neater solution is to have a
hardware flag set to allow automatic
lockout of one CP while another is trans-
mitting. Under such a provision in the
above example, ECS would be busy 80% of
the time. The lockout provision is
especially important where an ECS type
memory is not limited to four ports or
to two million words so that N may be
large.

Since ECS is shared, it should be
noted that t may not exceed i00 percent

N

in each machine when the lockout pro-
vision holds. We use the convention then
that ECS is busy Nt percent of the time.
If as in the above example a given
quantity of CP execution is expected to
generate a certain percentage for t and
it turns out that Nt > 100%, we then
normalize in such a way that Nt = i00
and the additional time is added to the
idle time (as would be the case for any
request for a busy I/O device. As an
extreme illustration consider N = i00
and each machine's estimate is that for
80 minutes of CP execution there is i0
minutes overhead and i0 minutes ECS
time. To say u = 80%, t = 10%, s = 10%,
p = 0 is incorrect. In this example
i000 minutes must pass before 80 minutes
of CP time can be used. The "normalized"
percentages would be u = 8%, t = 1%,
s = 1%, p = 90%.

Comparison to other systems

The simple substitution of a slower
random access memory device such as
drum, disk or LCS for ECS produces
dramatic changes in the behavior of the
system. Consider the illustration of
the BNL estimates: s = 10%, t = 7%,
p = 8%, u = 75%. Now for ECS substitute
a device i00 times as slow (10Us./60 bit
word), the relative times are then s=10,
t = 700, p = 8, u = 75 or s = 1%, t=8~,
p = 1%, u = 10%. If the memory device
is shared between two computers, the
normalized percentages are s = 0.7%,
t = 50%, p = 44%, u = 5.3%.

If a system designed to service
many conversational mode users the swap
rate will be high and the execution

slice ~, will be small, with t probably
higher than 20%. When this figure is
multiplied by I00 and even if CP activity
does not cease during swapping or I/O
buffering and even if CP idle time is
nil, then u is still limited to about
5% which implies that 95% of the time is
spent passing data between CM and the
slower random memory. This is precisely
what is largely responsible for the
failures of some of the larger time
shared systems. It is the hope that the
speed of ECS will allow such systems to
operate successfully.

Acknowledqements

This paper owes much to discussions
with our colleagues at BNL, in particu-
lar, G. H. Campbell, J. E. Denes, D. A.
Ravenhall, and Y. Shimamoto, and talks
with certain Control Data Corporation
personnel, in particular, L. Sleizer.

References

i. Jallen, Gale A., "Extended Core
Storage for the Control Data 64-
6600 Systems" in AFIPS Conference
Proceedings, Vol. 30, 1967.
(Spring Joint Computer Conference)
p. 729.

. MacDougall, M. H., "Simulation of an
ECS-based operating system", ibi____d.
p. 735.

. Humphrey, T. A., Large Core Storage
Utilization in Theory and in
Practice. ibid. p. 719.

4. Hardy, G. S., Littlewood, J. E., and
Polya, G., "Inequalities",
Cambridge, 1934.

CP

CM
RESIDENT

JOB 1
1177

JOB 2

JOB 3

JOB 4

JOB 5
JOB 6

JOB 7

PPo I
(MTR)

PP9
(DSD)

ChO

Ch I
DISKS

Ch3

Ch 5

TAPES

I i ~RiNTER S

t CARD
I READERS

PUNCH

_1 DISPLAY icl o - , CONSOLE

c,,2 (~ CLOCK
FIG. I

TYPICAL CDC 6600 CONFIGURATION ILLUSTRATING
OUTPUT FLOW

-1"I
m

r0

0

"11
I--
0

"rl
.0
;0

0
C

"0
C
-4

r~

m ~
o

/
I

I

i

~g

Q
b.I bJ
a w ~
Z

~ 0 ~
t - (-) i _

m -

N

-(D

I I - , - i ~ l

IJJI-- N ~ J

!

\

a
iJJ
a
z C~ w

. I - -
r X

IJ.I

<

Z

uJ~ ~
~b®w_o
~ u c r ~ Z

~ (hi--. z
a o ~ o ~ o

.~ 0..i,t. (.) o
z

, , - (D

(/) b J

O0
. . 0 0

U °
0

_J

C ~
a _____=__J

w

--(D

m

k-

k-
Z
UJ
¢.)

MJ
a.

:i t
80H

70

I MACHINE

60

,50

40

30

20

I0

,oo

70

W

~. 60

W
- I
0
- 50
I - z
w u
~ 4o

50

I I I I I

AVERAGE PERCENT IDLE TIME
UNDER SELECTION SCHEME P~
AS A FUNCTION OF THE NUMBER
OF JOBS AND #,THE AVERAGE Z/O

BOUNDEDNESS

70

t

I0 20 30 40 50
NUMBER OF JOBS

1 I I 1 I /

AVERAGE PERCENT IDLE TIME
UNDER SELECTION SCHEME P~
AS A FUNCTION OF THENUMBER
OF JOBS AND 9, THE AVERAGE 1/O

BOUNDEDNESS

,oo

50

_~ so
k-

C3
p 50
z ~J
u

~ 4o

20

I0

,oo

70

60

50

40

50

I I I I I

AVERAGE PERCENT IDLE TIME
UNDER SELECTION SCHEME Pi*
AS A FUNCTION OF THE NUMBER
OF JOBS AND B,THE AVERAGEI/O

80UNDEDNESS

I 0 20 30 40 50
NUMBER OF JOBS

I I I I I

AVERAGE PERCENT IDLE TIME
UNDER SELECTION SCHEME Pi ~
AS A FUNCTION OFTHE NUMBER
OF JOBS AND Q,THE AVERAGE I /0

BOUNDEDNESS

J

20 20

I0 I0

I0 20 50 40 50

NUMBER OF JOBS
FIG.4

I0 20 30 40 50
NUMBER OF JOBS

