DYNAMIC SUPERVISORS — THEIR DESIGN AND CONSTRUCTION

E. D.H.R.Huxtable. h;‘! M.T-Waiwick-

The paper demonstrates the technology
necessary to bring the facilities of Supervisor
consiruction and modification to the level at
which a user cem, without a great deal of research
end snalysie modify his installation's Operating
System. The Supervipor is seen to be a set of
processes linked by a formalised control mechaniem.

1. Bagic¢ Structure of g Supervisor

Basically a Supervisor provides processes
whioh are executed in response to reguests by
users. In the simplest possible situation, where
the machine is 'uniprogrammed' and the processes
requested are completed before returning to the
users program, dll that is required is a standard
entry process from a uger job to Supervisor; con-
sigting of parsmeter setiing and a branch and link
t0 a standard loecation. This is shown in Fig.1.

If however the Supervisor process involves
walting for an independent autonomous activity
(e«ge 1/0 transfer) to finish, this simple approach
is evidently wasteful. The solution is to provide
two processes, one to initiate the transfer and cone
1o complete any actions necessary on its termina-
tion, provided a signal ig available to indicate
that the activity has finished, so that the term-
ination process can be entered (an 1nterrupt).
Schemetically the procedure may be represented as
shown in Fig.2.

This introduces the concepi of interrupt,
and the machine can be regarded as having two
processor states, one user state, and one entered
on machine interrupt. Even in this simple situa~
tion it is seen that the cepability of having more
than one autonomous activity results in the Super~
visor acting as a mechanism for enalysing interrupls
and entering the appropriate processes. The
eddition of multiprogremming merely adds to ihe
number of processes which may be executed and
intreduces the concept of priority which must
exist in a Supervisor. The concept of priority
implies thet processes mey not necesserily be ‘run
to completion', that they may heve to be interrupt
ed to allow higher pricrliy processes to be
executed. This may be represented as follows
when acliivity 2 has a higher priority then activity
1. It assumes that Supervisor ectivities are
themaelves interruptable. This is shown in Fig.3.

Equally, lower priority processes may have to
be queued to wait the completion of a higher
priority activity. ‘Whilat this concept of
priority oen be applied to nearly ell Supervisor
functions there is a small reeidue of processes
which by their nature must mot be interrupted,
¢.g¢ those which control the sequencing of
processes, or those which are time dependant (c.g.
pocket select on MICR devices). The claas also
includes processes to copy the contents of machine
condition registers into data areas before further

English Electric Computers Iitd.,

Kidsgrove, England.

machine interruption can be allowed, (e.g. Secon -
dary I/0 Status bytes).

A considerable simplification of logie
occurs if the interrupt anelysis and process
selection of functions of Supervisor are separated
from the processes themselves. The machine
action diagrams now are represented as 3 levels
with the highest level controlling the priority
selection of the activities. (Figure 4 shows
the operation of a user program requiring two
agtivities where activity 2 is of higher priority
then activity 1. The action on the reversing of
the order of call is also illustrated). Separa-
tion of the funcitions allows the processes to be
written as independant procedures sequenced and
multiprogremmed together with the user programs by
the analysis and selection "Kermel" or core. The
distinotion between user programs and Supervisor
processes becomes a matter of process priority
and privilege.

Summary and Definitions end an example

A Supervisor has two logically distinct
functionss:

ga; Anslysis and Selection.

b) Activities executed as a result of the
enalysis and aelection.

The Kernel of the Supervisor has four distinet

actions:

1. The analysis of interrupts.

2. Identification of the procesgs associa-
ted with the interrupt.

3. Marking the process as requiring
execution.

4. Selection of the highest priority
process requiring execution and passing
contrel to it.

The activities are divided into two classes

(a) Time Dependant or Immediate Servige
Processes L{I15Pg)

This class of processes includes those

which are
i) Time dependant
ii} Cannot be interrupted
iii) Cannot call another process end walt
for its completion.

(v) Interrupteble or Tasking Processes (TH)
These may be

(i) Interrupted for the execution of higher
priority processes

i) Wait on the completion of a called
process

{44) No restriction cem be applied to the
depth of nested TP calls in an activity

(iv) The ori.ginal calling process (e.g. user)
must be identifiable at emy tiwe in the
TP chain.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800001.811675&domain=pdf&date_stamp=1967-01-01

Any process terminates with a eell for = new

process or a return to the process which called it.

The relationship between the Supervisor
functions, and machine states is deseribed in
Section 8.

Figure 5 shows an example of supervisor
activity worked out in details, The example shown
is of a User Job calling a Supervisor activity
which uses I/0. The activities at the time
intervels ere as follows (for definitions of TP
and ISP see next section).

t1= User Job 1 is entered having been selected
by the Time Slice Scheduler (TSS) in prefer-
ence to User Job 2.

taz User dob 1 calls the service of Ioader.
Icader is a TP and thus User Jeb 1 is
'Waited' for Loaders completion. The TSS
is entered.

t3= TSS selects the Loader to enter.

t4—t6 Toader issues an 1/0 request., Three ISPs

axe entered to fire the I/0.

t7= TS5 is entered to seleet the TP to enter.
Loader is selected.

tsx Ioader is reentered.

t,t Loader issues WAIT for the completion of the

3 170,

t10= TSS is entered. Both Loader and User Job 1
are 'Waited'. It thus selects User Job 2.
t11= User Job is entered.
t12-t13 I1/0 termination interrupt is received.
Process '"Unwaits' Toader and fires off
further I/0 if sny further emtries have
been queued.
t14= TSS gelects Toader.
t15: Loader continues operation.
t 4t Loader ends and calls End of Process (xoP).
EQP deactivates Ioader and 'Unwaits' User
Job 1.
$,,: TS3S is entered and User Job 1 is selected.

t User Job 1 continues.

2. Supervisor Comstruction

In order to achieve the distinction made
between the Supervisor Kernel and Supervisor
Processea, the processes must be described and
related to machine conditioms in a formal tabular

manner.

Supervisor Tables

(a) Machine Condition/Process Table (MCPT)
every condition which can arise must
be associated with a proceas. In
practice there will be a homomorphic -
mapping of many machine conditions on
to a single process bul if generality
is to be preserved there must ultimate
1y be one process per condition, (some
procesgses will thus be dummies or
failurea).

This table 1s used by the Kermel to

select the process required to

gervice the interrupt conditions.
(b) Process Address Table (PAT)
Eagh process required a control block
(see PCB below). PAT gives the
addreas of the PCB for each process.
{e¢) Process Control Block Table (PCBT)
Each entry in the table is a Process
Control Block (PCB). The PCB holds
the linkage and status information aml
algo points to the general process
information blogk (PIB). The PCB
can be shown as follows:

A Proecess Contrcl Block

a Active marker
Process Status | b Conditional Wait
¢ {(alled for process
d Calling process
Process Infor- | e Priority in PBT
mation
FIG.6.
Slot & @ records whether the process is in

use or not. (Zero if not in uges
address of next instruction when
interrupted or waiting).

Slot b @ recorde the cause of the conditional
walt whenever two or more parallel
processes require interlocking.

Slot ¢ @ identifies the process which was

called and upon which the present
process is waited.

Slots a,b and ¢ record the
activity status of the process and
from these three slots it can be
found whether the proceas is in use
and whether the proeess currently
requiree processor time or whether
it is in a held position.

Slot 4

Slot e

Slot £

(a)

(e)

is linkage information to enable a
wait condition %o be releamsed in the
calling process when the end proeess
conditlon arises in the called
procegs,

defines the process priority for
mul tiprogramming in the Priority
Bit Table (PBT - see below), this
rriority is unique. It is used
when changes to the PBT is made
following alteration to slots a,b,c.

This slot points to the Process
Information Block (PIB) which ineludes:

Physical location of process

Process control details
privilege status
protection atatua
type marker (ISP or TP)
alternative process marker
testing marker

Register dump area

Second or Subsequent calls on the
process.

Pricrity Bit Table (PBT)

This table is a priority ordered set
of markers indicating whether or not
the process of a given priority is
available for execution. Look up

of this table is defined as producing
the priority level number. It is
necessary to have an efficient method
of selecting the next process to use
the processorsas this mechenism is
used with a very high frequency. Ko
TP can be entered without this scan
being performed and the Supervisor
efficiency depends on this table and
the operations on it. The name ofthe
table suggests its construction i.e.
as a bit list,. The mechanism for
scanning of such a list should not
involve an instruction loop. (See
Section B).

Priority/Process Table (PPT)

This table enables the priority level
number obteined from a scen of the
PBT to be converted to a reference

t¢ a PCB and thus define the process
which is to be executed. This two
stage conversion technigue enables
the relative priorities of the
processes tc be changed by redefini-
tion of the PPT,

5« Supervigor Kernel and
Asgoglated ISP's

The above five tables hold the information
necessary to control the action, operation, ard
linksge of the processes. The metion of calling
a process and entering it are seen,in relation to
the tables, to be:

1. Machine Condition (perhaps caused by a
SVC) defines a process from the MCPT,

2, PCE is found for this process from the
PAT,

3. Linkagesand activation are establiashed
in the POBT,

4, Summary of revised status conditions
inserted in PBT.

5. Multiprogremming action finds next
priority to be entered from FBT.

6. Priority level is converted to process
using PPT.

Fig. 7 illustrates the action of the Kermel
and its relationship to processes (Line 1 ig the
divigion between the processes and the Kermel
itself), The machine interrupt is received and
is enalysed (Block 1). This is mot in general
a one level activity and the further analysis
of the cause of an interrupt may be required.

From the anelysis = process is determined
using the MCPT (Block 2). The process iype is
found from the PCB (Block 3). This may be an
ISP or TP, if the latter then the information
about the TP is passed to a special ISP (TP set
up, see below)e Thus the Kermel only causes
directly the entry to ISPs. Following the
operation of an ISP there can be 4 conditions:

(a} A further ISP is requested and a
further determination of the process
is required before the Kernel loop
is reentered {Block 4).

(b) An interrupt has arisen since the ISP

wes entered and the interrupt analysis

(Block 1) is reentered.

(c) No ISP has been named as successor

end a TP hag heen selected for

execution.

(d) ©No ISP has been nemed as successor

and no TP has yet been selected.

(e) A TP has been entered.

Conditions 'a' 'e¢' & 'd' are identical since the
implicit successor ISP in conditions 'e' & '4’
are the TSS and Exit proocesses respectively.

The Supervisor therefore requires a basiec

set of ISPs for its working, four are detailed as
follows:

(a)

(b)

(e)

(a)

IF Set Up. An ISP is required to set
up the entry conditions for a TP,

This process, working on the PCBT and
PBT, activates the process by the
insertion of the entry address (pcB
Slot 1) into Slot 'a'. If the TP is
in use then amn addition is made to

the list of cutstanding calls.

Time Slice Scheduler {(TSS). When no
further ISP is required this ISP is
entered to select the next TP for
execution.

Exit Process. Following the selection

of a TP an inspection is made of the
interrupt register and if no interrupt
condition exists the procedure for
entering the process is undertaken.
This consists of reestablishing, if
necessary, the TP registers and
setting the conditions for its execu-~
tion (machine state, interruptable
status, interstore protection).

End of Process. This ISP is entered

ag termination of any TP, and reseis
the 'Wait®' condition in the PCB of
the calling process.

4. Kernel/Process Relationships

It is perhaps relevant to comment on some
aspects of the relationship of the processes and
the Kernel and between processes themselves.

(a)

(v)

l.5.F. Considerations

(a) The overhead of entering a TP
demands that ISPs are linked
directly to the Kernel, and
executed 'inline' with it.
This overhead is discussed
further in section 4(b) & Te

(b) ISPs cannot be interrupted and
thus cannot use the interrupt
faeilities of the machine to csmll
BUCCESSOTr ProCcesses.

(¢) The entry and exit linkages are
formalised simply by convention-
al use of register or store
locations, thus preserving the
independance to the Kernmel from
any process.

Timing Overhead. When a TP calls an

ISP the eritical Supervisor path is
only executed once. However when it
calls a TP the path is executed twice.
The first execution is on the call for
the TP the second at the conclusion of
its exegution when the called procesa
ends by issuing an SVC. It followa

(e)

{a)

(e)

then that & choice of a proceas as a
TP instead of an ISP entails an extra
overhead of ome oritical path time.

Register dumping. As an ISP is

uninterruptable and must leave itself
in such a condition that after its
operation, it can be reused there im
never any requirement tc dump or re-
load any registers on its account.
However the regisiers of a TP muat be
preserved on any interrupt. This
dump and reload time is part of the
critical path function of process
entry and is an important factor im
the efficiency of Supervisor, It is
shown in the section of hardware that
a multistate processor helpe solve
this problem.

TF a3 a normal progrem, Every TP is
fully interruptable end hence can use

every facility of the Supervisor.
Supervisor TPs can call other Super-
vigor TPs to any nested depth, but
excluding recursion. Supervisor
processes and user job proecesses only
differ in respect of their priority
and the privilege they are given to
utilise machine facilities amd
resources from which the normal user
ig banned (in order to preserve the
installation integrity). The
protection or privilege is established
by the ISP which exits from the Kermel.

Process Independance. Processes
interact either via data tables or
the Kernel., ©Proviging these tables
are indirectly addreseed each process
can be addressed independent of the
Kernel snd of every other procesa.
The base address of the list of table
addresses can be kept either in a
fixed store location or a register.
Each process in this way becomes a
separate program segment which reguires
no address linkage outside itself.
Thus a process need not be composed
with the remainder of Supervisor, but
exist as part of a user program.

This enables a user progrem tc con-
tain within itself a Supervisor
process which it requires, and the
mechenism (a process called by a SVC)
for entering a new process in the
Supervisor tables allows it to be
used as a normal Supervisor process.

5. Congtruction and Development
of Supervisor

Initial Testing

The implementation and initial testing of
a Supervisor is a relatively simple task within
the formal structure desoribed above, Initially
8 sufficient set of processes must be defined in
order %o deal with the minimum set of conditions
necegsary to run the machine i.e. the Kernel,
the ISPs to select and enter TPs a set of simple
TPs and ISPs to provide 1/0 and Loading functiona,
and a get of dummy or failure processes for the
undefined aectivities, Once this framework has
been eatablished, the alteration of information
in the tables and the provision of new proceases
is & simple procedure and one which can be
automated, Thus the Supervisor can be built
using bootstrap techniques.

Examination of the tables and the atructure
ghow that the following information is required:

(a) Association of process number with a
machine condition (MCPT table)

(b) Definition of Priority (PPT)

(¢) TDefinition of the information to be
inserted into the PCB by an ISP, and
the PAT entry made. (See Section on
Supervisor tables for details).

Under the artificial conditions which hold
during Supervisor implementation the ability to
edd (by redefinition of a dummy) a new process
together with Post-Mortem TPs (and other similar
processes) gives a sufficient mechanisation for
this phase of development. This process can be
used to interchange tested processes after the
system has been commissioned, For example it may
be necegsary t¢ replacs the Job Step Sequencing
procesas to reflect changes iw the User environ-
ment on a time of day basls and in this c¢ase the
insertion ISP would be c¢alled from the process
whieh deals with clook interrupts. This ISP mwst
be given the lowest priority of Supervisor process
o8 &nd if a 'Wait' condition exists in the PCB
table, it must exit and recall itself.

6+ Omn-line Provision of Alternative
Procesgges

Tasking Processes

The above gtructure is defined around a one
30 one correspondence between interrupt condition
and process with subsequent analysis within &

process if required (e.g. I/0 end of tramsfer
enalysis) and a calling of further processes
consequent to this analysis.

The facility of dynamically providing
gpecialist processes for use of privileged users
is a simple use of this structure. Such a
dynamic process must not inveolve changes to any of

the processes which call the one which is being
supplemented by an elternative. A decigion
process is therefore used to select the required
process according to the conditions.

In order to do this the following operations
must be performed:

(a) ™he existing process (if any) must be
renumbered

(b) The decision process be inperted in
place of the existing process

(e) The alternatives inserted and allocated
to spare process numbers

The condition under which various alterna-
tive processes are selected are numerocus, some
eXamples are: user classifioation, special
peripheral conditilons, time of day, operator
supplied datas Thus most of the decision
processes may have to be specially written by
the user.

15 Processes

The mechanism of replacement and renaming
can be extended to ISPs. In general it will be
& requirement that the decision process itsgelf
an ISP and that it does not cause an unacceptable
overhead.

If the ISP is exceptionally time critical
this method may therefore be unacceptable, in
which case the ISF must be written to include gll
the alternatives,

This apparent lack of flexibility is un~
likely to be ilmportant since most of the ISPs
are not concerned with processes directly
involved with e User, but with system oriented
functions (e.g. I/0, Time Slice Scheduling ete).

T« On-Line Testing of New Tasking
Processes

The method desoribed above for handling
elternative processes is obviously well suited
for allowing an slternative process tc be under
test.

Establish of a TP for test

The procedure for inserting aliernative
processes described above provides the basic
mechanism, There are however some lmportant
differences.

(a) Both the alternative and the original
mey have to be executed.

(b) The process under test must operate
entirely within a copy of the Super-
visors data apace.

(c) Al]l processes called by the process
under test must alsc be executed on
the data copy.

(a4) Only processes which do not change the
state of other parts of the system
(e.gs issue I/0 instructions to a system
device) cen be sllowed to operate on
the data copy.

Thus the decision process described above becomes
as Test Management Process, which carried out
the above functions of change and test.

The conditions of each test must therefore
be established so that the correct sequence of
operations can be carried out. As with alterna-
tive processes a TP must be provided, with the
following parameterst

1. Identification of process being
'replaced’,

2+ New name for the existing process.

3. Address of the space for data copy
(for input to an internally called
'Data Copy' ISP).

4, Marker o indicate if existing process
is to be executed, and possibly the
address of ite parameters (they may be
different from the new version!).

5« Specification of processes to be
executed on the copy data before
execution of the test process (e.g.
substituting simulated devices for
system devlices involves changing the
system device table) bogether with

address of their parameters. These processes
may be existing Supervisor processes (in which

case the specification would be in the form of

an SVC) or be supplied by the programmer.

6o Information identifying the process
under test (see section 2 Supervisor
Construction}.

T« Processes which may be automatically
called and which are permitted to be
executed on copy data.

Execution of process under test conditions

It is evident that a process under test is
entered with a different data address and that any
normal processes that are called must also
operate on the data copy. Further = check must
be made that the process is valid for operation
on copied data.

The PCB of a test processor must therefore
contain a Test Marker, which is transferred as a
Temporary Marker ito any called process. The
existance of either Test Marker causes the
femporary Marker tc be set. The Temporary Marker,
unlike the Permanent Test Marker, is cancelled
when a procesg is terminated. A marker denoting
ability to operate on a data copy must also be
provided. For safety all processes are assumed
to be in this category unless otherwise specified
by the programmer.

Any errors caused by a test process (e.g.
invalid operator) must be regerded as a normal
user error, including the case when the process
is only temporerily under test.

Entry to Test Processes

SVC Process. The Test Process is entered
by the norma) SVC mechanism. If the original
process is required for execution then two sets
of parameters must be created, and the two
processes will act on separate data copies in am
interleaved fashion. ’

Other Interrupt Processes. Sometimes how-
ever the process which is being tested is not

entered directly, but either via a higher level
process or as a result of a non-program generated
interrupt. The first of these is merely a
slight logical extension of the direct entry
process described above gince all processes are
on the same control level regardless of the
'logical level' within a series of processes.

The entry from non-program interrupt does
require a apecial faecilltiy. This facility must
simulate a supervisor interrupt and cause the
test process 10 be entered as though from the
Kernel, The simulation consists in establishing
within the copy data space the conditions whioh
would have been set had that process been
entered normally i.e. it acte as a subetitute for

the ISP which always precedes a TP which is
dependant on machine hardwere registers (e.g.
Secondary Bytes of I/0 channels).

Testing IS Processes

Sinee any ISP can be replaced by a TP this
problem cen, in most circumstances, be reduced to
en example of TP testinges However such a
replacement may cause the conditions which necessi-
tate the use of an ISP to be invalidated, e.g. the
time conditions. When such conditioms ocecur it
is impossible to provide a general facility of the
kind described for TP testing. The ability to
replace processes can be used however 1o replece
the criginal by one which whilst allowing the
timing conditions to be met does ellow alternsative
process to be selected.

With modern machine design, and autonomous
peripheral and communicatioma systems the need for
time-dependant ISPs is very much reduced. The
limitation in festing a new ISP is not therefore
likely to prove a serious problem, and in no way
diminishes the value of the system described.

8. Hardware and Efficiency Consid-
erations

The succesa of the design of the Supervisor
depends on three main hardware considerations
which all influence the timing of the eritical
path.

a. Multiple Processor States and Registers

It has been illusirated in previous
gections that the calling of processes
is a nested procedure. Ideally every
level of the neat of calls requires its
own processor state and registers.

This enables the nesting of process
calls to operate with no dumping or re-
loading of state registers. The
illustrations demonstrate the require-
ment for at least three levels, a user
level, a Supervisor TP level, and a
Supervigor ISP level.

b. Interrupt Analvysis

The interrupt system must give the
maximum agsistance to isolate the con~
dition of the interrupt in hardware.
At least the first level anelysis
should be a hardware function.,

¢. Time Slice Scheduler and Exit process

These processes should not contain an
instruction loop. This imposes a
requirement for some type of search
ingtruction and alsc a single instrue-
tion to load registers. The Supervisor
design relies on the multiprogramming of
nearly all processes including user Jjobs.
Since there are likely o be of the
order of a hundred such levels, a fast

search mechanism is vital.

System 4

The above three requirements are met on the
System 4 range of English Electric Computers.
This range is compatible with the R.C.A. SPECTRA
70 which uses the IBM 360 order code, but differs
from the IBM 360 in having & different set of
privileged instructions and also four (instead of
two) processor states.

The use of the four states of thia System is
summarised in Fig.8.

A. Multiple Processor States and Registers

A summary table of the proportion and usage
of a multi-state processor is shown in Flg.8.
This shows that either of the following can
oceur without register manipulation.

(i) The operation of a user job o be sus-
pended while a hardware originated
interrupt is serviced by a Super-
vigor TP or ISP.

{ii) A user job to reguest the service of
a Supervisor TP which itself requires
the service of & Supervisor ISP.

In the illustration of the linkage require-
ments of processea (fig.5) the only register
dumping and reloading occurs at times t11
and t,_. when processor state P1 changes
its opération from user job 1 to user job 2
and then reverts to user Jjob 1.

b. Interrupt Analysis

The interrupt system causes on
interrupt the setting of a flag in a 32 bit
regiaster. The herdware also sets a value
in a P3 register which allows an immediate
determination of the process. If the
interrupt is an SVC the call number is
alseo immedietely available in a further
register,

C. Time Slice Scheduler

In the System 4 instruction code it
is possible to scan a bit list for the first
zero (or non zero) entry by use of the
Translate and Test Instruetion. Following
the operation of this single instruction
acting with a specially constructed
trenslation table the position of the zero
bit is indicated by the contents of two
registers. This technique is ueed to scan
the FEBT,

Supervisor Efficiency.

In the deseription of the Kernel it was
established that g Supervisor TP ia subjeet to the
overhead of the critical path time. The
efficiency of the Supervisor can therefore be
ad justed by making very high freguency processes

into ISPs, In figure 5 various I/0 processes are
shown as ISPs not because they require to run un-
interrupted but because of this fact. Very few
processes fall inio this category in practice
apart from I/C operations. Placing such
processes into the IS category allows 1/0 opera-
tions to be used by Supervisor TP without register
dumping. Clearly the fewer processes made
uninterruptable the better control can be placed
on the priorities of processes and the easier it
is succegsfully to service time dependant devices.

Microprogramming

Supervisor efficiency will be further
enhanced if the inveriant processes of the Super-
visor are built into the hardware. The paper hasg
demonstrated the possibility of the invariance of
the Supervisor Kernel, it can thus be micro-
programmed. With the development of slow write/
fast read memories it will be poasible to place
the ISPs into hardware to be used as 'extracodes!'
(as on the ICT ATLAS Computer) without sacrificing
the flexibility of the system,

9, Documentgiion of Process and
Table Usage

Each Supervisor process having been isolated
and formalised is potentially replasceable and
documentation is required to establish the inter-
relationship of each procesa with other processes
and tables, Figure 9 represents a tabulation of
the interrelationship of P This shows the con-
dition upon which P is eailed, its table ussge,
and the chain of process calls arising from the
execution of P.. If is possible to represent the
total set of interrelations of the Supervisor on a
single table, Esch process dependency is easily
seen anl an instellation requiring to replace =
Supervisor faciliiy can replace just the required
process chain without requiring kmowledge of the
Kernel or other processes.

Such formal decumentation can obviously be
built in to the Supervisor and used as part of the
Test Menagement Process for guiding programmers.

10, Summary

The Supervisor is only entered by machime
interrupt, each of which is seen as a request for
the activitation of a Supervisor process. This
may itself make a further analysis and request a
further aciivity. The interruption can be hard-
ware originated such as a termination of an input/
output operation, or program initiated when a
progran requesta the operation of a Supervisor
serviee. Some Supervisor activities are of
high frequency, some are iime dependent, some of
high priority. Other aectivities can be multi-
programmed. Internal processes of Supervisor
require to use other internal processes.

With these considerations in mind the
Supervisor is seen as a set of 'processes' con-
trolled by a Kernel within a formal data end
linkage structure. Each procesa performs a
distinet Supervisor activity. The processes are
of two types: those whiek are interruptable and
those which can be multiprogrammed, The first
type satisfy the considerations of high or
immediate priority, emd high frequency use. The
second type satisfies the requirements of the
parallel activities.

The User Job is seen by the Superviaor as
an addition to these processes, that is, no
distinction is made between the tasks produced by
Supervisor processes and those by User Jobs. It
is shown that all processes can be entered by the
same formalised procedure, and that the formalised
linkage mechanism ensures the independence of all
processes to the extent that they do not require
10 be compiled or composed with the Kermel, but
can be embedded in a User progrem.

Pormal decision tables and machine interrupt
conditions direct the execution of the Supervisor
Kernel. The Kernel is seen as being independent
of every process, thus enabling the Kernel to
become a direct extension of the machine herdware.
The Kernel is shown to be ideally suited tc the
use of microprogramming techniques with no loss of
flexibility or generality. With the advent of
fast read/slow write memories it is seen to be
posgible to retain the flexibillity, whilst micro-
programming frequent used routines and thus
improving Supervisor efficiency.

With the modularity and formalisation of
Supervisor it is posslble fto document in tabular
form every interrelationship of the Supervisor
agtivities to the extent that such a tabulation
cen define the total effect of any alteration to
the Supervisor.

11. Conclugion

The problem of providing a single operating
sysiem for many diverse user requirements within
a single environment is seen as principally a
requirement to provide a ecompletely flexible
Supervisor, in which every process is replaceable,
and which allows simple insertion, deleticn and
replacement of its parts.

The paper has described the design of such a
Supervisor and has shown that the followlng
objeatives can be met:

(a) Effieient operation
(b) Easy implementation
(e) Formalised and modular structure

(a) A basic structure which allows, by
microprogramming, substitution of
hardware for software facilities,
without losing any flexibility

(e) Alterable by regeneration;

by dynamic addition or
replacement of protested
processes;

for dynamic testing of
processes;

for selected classes of
users.

12. Ackmowledgement

This paper is presented by permisasion of
English Eleotric Computers Ltd. The authors
wish to acknowledge many hours of discussion with
their colleasgues and particularly Mr. A.Williaems
and Mr. R.C.Hutton., who are respcnsible for the
implementation of a Diec Operating System Super-~
visor for System 4-50/4~T0 based on the principles
degeribed.,

Bupervisor ﬁllll!;ummﬂw.+l||||4

Uper Job

FIG.1

Uniprogram, serial activit

1dnIxalul

qor Jesq

— e a—— ey
— e i b

[
L

JosTAIadN
UOTRUTILIa) TOT3B8TITUT TAIechs

0/1 0/1

«I0STAIOANG A3 FIOTIg O1dmTS

01id
pdnzrajus
sdnaxagur
_ T | _|_] Qop Xesq
_ [_ | ['
_ | | _ _ |
| l _ [_ _
' } 4 [e—J ZostAIadng

| £qratioe 2 £37AT498 | £9TATAO® 2 £9TATYOR® I £97AT%0%
UOTYBUTMIa] 83BUTMISY OJBUTIIS] 838T3TUI 33873 TUL

anuTIUOD

*POL10IUO0 A3 WOTIT 'J08TAIadNg ‘ oId T} ThR
v°9Id
rdnarsqur .
sdnrxagur UOTABTTLISE L*19y JI0% €10V X0F
UOTABUTTLIST Lw.pu< OAS - DAS
| | o | EEEE———
rod AoV rog f] [yelc]
18 0AS | | %2 0aS | | ¥° oas “
_ | J
| v | | _
*PauO) UOT4BUTWLIOY _ SSTTETITUL 88TTRTTUL
2207 2*90v | [L*g0Y | I z 1oy i
J_ B |m | _ 1 ” | _ ! "
| | _ | | I
_ | l . | . _ P
I _ | _ | | b _
i ! _ ! L _
_ _.m.dﬂ_ p_qh.lnm_qu rﬂﬂL qCp I5s() PG
1099TeQ 102Ta8 1987138 109198 108388 LLER LT 1.08Tag
1°10y HISW
rdnxrejurs
WOTJeUTIIO],
| £3TATIOV 2£1TATYOR J03 L £1TATI08 JOF
UL 9B TUOTLIBUTIISL % OAS 0AS
OAS efaraTioy [| pue 3e] vuegs q..lllal..
! | o8 \ | o "
aoT4ReUTIISY b4 _ _ & _ _ ;—. |
| £1TATQOy UOTJWUIMIa] UOTIeUTWIa} | asTTYT}TUI | 8STTBTITUI _
anuUTAUOD Z £1TATIOY 1 A4 TATHOV I l Z L TATIOY | | L &1 TATYOY
N Y _ | Lo | __]
I..ﬂ« J.J.ﬂ.. rﬂ.ﬂ« n_o.h. Ies) _m.p.om qop 98 %0V
400 198 10a18g 109798 109198 1097198 1.0a8Tag 9.98T8g

qop
Jd88[)

f1TATIOV
JoSTAISBdNgG

Toxquop
JoBTALBdNG

qop Jasp

£3 TATROY
Jostazadng

To13uo)
JosTAzedng

w—ahpvmrp

Epﬁpm; at

“yEonbax

Ffp oeu 6

X068 [AXedng
14

mp L, 9. 9 ¥ €y © l

1 23 73 e T “1 1

aup

_—

-

IR B

-
1o

U R

L

]
A

———

-
-

I"I

-

STXY SWEy,

2 qop esq
| qop X380

Amav JZapBOT

(ds1) (s83)
I9NPIYDS FOTTS 2WEL

(as1)
qop P

(281)
1Tes O/T

(d81)
ajsuUTLIay O/I

(as1)
jsenbax (/T aITd

Ameu
1sanbax /I anand

(dsT)
8I919WeI3g 0/T 38A

Processor Status Use Entry
State
P1 Fully interruptable User Job Processes Programmed
change of
processor state
P2 Fully interruptable Supervisor TP Programmed
change of
processor state
P3 Uninterruptable Supervisor Kernel Normal machine
except for machine and ISPs interrupt
failure
P4 Uninterruptable Machine failure Machine failure
conditions interrupt
FIG,8,

Use of Supervisor States

Line 1

Bleck 1
- Machine Interrupt
Anal ysis

Block 2

Procesg Determination
(from MCPT)

Block 3
Process Type?

(from PCB)

ISP

ISF or TP

Block 4
Determine next
Process

Iine
Condition a,c,d
% Execute ISP Pr—
Condition 'b'
Condition
Iel
Execute TP
FIG.7

Supervisor EKermel, flow diasgram.

Process Directly Indirectly Called by |Uses Tables
calls P1 PG P7
LA MCPT entry 4| T, (R/W)
uses T4(W) ’I'3 (r/W) T, (r)
FI1G.9

Description of Pi

