
DYNAMIC SUPE~ISO~S- THEIR DES!GN AND CONSTRUCTION

Mr. D.H.R.Huxtable. Mr. M.T.Warwick. ~lish Electric Computers Ltd.! Kidsgrove, Rngland.

The paper demonstrates the technology
necessary to bring the facilities of Supervisor
construction and modification to the level at
which a user can, without a great deal of research
and analysis modify his installation's Operating
System• The Supervisor is seen to be a set of
processes linked by a formalised control mech~em.

I. Basic Structure of a Supervisor

Basically a Supervisor provides processes
which are executed in response to requests by
users. In the simplest possible situation, where
the machine is 'uniprogram~ed' and the processes
requested are completed before returning to the
users program, all that is required is a standard
entry process from a user job to Supervisor; con-
sisting of parameter setting and a branch and link
to a standard location. This is shown in Pig. 1.

If however the Supervisor process involves
waiting for an independent autonomous activity
(e.g. I/O trsnsfer) to finish, this simple approach
is evidently wasteful. The solution is to provide
two processes, one to initiate the transfer and one
to complete any actions necessary on its termina-
tion, provided a signal is available to indicate
that the activity has finished, so that the term-
ination process can be entered (an interrupt).
Schematically the procedure may be represented as
shown in Fig.2.

This introduces the concept of interrupt,
and the machine can be regarded as having two
processor states, one user state, and one entered
on machine interrupt. Even in this simple situa-
tion it is seen that the capability of having more
than one autonomous activity results in the Super-
visor acting as a mechanism for analysing interrup~
and entering the appropriate processes. The
addition of multiprogr~,ming merely adds to the
number of processes which may be executed and
introduces the concept of priority which must
exist in a Supervisor. The concept of priority
implies that processes may not necessarily be 'run
to completion', that they may have to be interrupt
ed to allow higher priority processes to be
executed. This may be represented as follows
when activity 2 has a higher priority than activity
I. It assumes that Supervisor activities are
themselves interruptable. This is shown in Pig.3.

Equally, lower priority processes may have to
be queued to wait the completion of a higher
priority activity. Whilst this concept of
priority can be applied to nearly all Supervisor
functions there is a small residue of processes

•e.g Ch by their nature must not be interrupted, • those which control the sequencing of
processes, or those which are time dependant (e.g.
pocket select on MICR devices)• The class also
includes processes to copy the contents of machine
condition registers into data areas before further

machine interruption can be allowed, (e.g. Secon -
dary I/O Status bytes).

A considerable simplification of logic
occurs if the interrupt analysis and process
selection of functions of Supervisor are separated
from the processes themselves. The machine
action diagrams now are represented as 3 levels
with the highest level controlling the priority
selection of the activities. (Figure 4 shows
the operation of a user progrsm requiring two
activities where activity 2 is of higher priority
than activity 1. The action on the reversing of
the order of call is also illustrated). Separa-
tion of the functions allows the processes to be
written as independant procedures sequenced and
multiprogrammed together with the user programs by
the analysis and selection "Kernel" or core• The
distinction between user programs and Supervisor
processes becomes a matter of process priority
and privilege.

S,,mmary and Definitions and an exsmple
A Supervisor has two logically distinct

functions:

The Kernel
actions:

I.
2.

5.

4.

Analysis and Selection•
Activities executed as a result of the
analysis and selection.
of the Supervisor has four distinct

The analysis of interrupts.
Identification of the process associa-
ted with the interrupt.
Marking the process as requring
execution.
Selection of the highest priority
process requiring execution and passing
control to it.

The activities are divided into two classes

(a) Time Dependant or Immediate Service
Processes ~ISPs)

This class of processes includes those
which are

li i) Time dependant
ii) Cannot be interrupted
ii) Cannot call another process and wait

for its completion.

(b) Interruptable or Tasking Processes (TPs)

These may be

(i) Interrupted for the execution of higher
priority processes

~i) Wait on the completion of a called
process

~i~ No restriction can be applied to the
depth of nested TP calls in an activity

~v) The original calling process (e.g. user)
must be identifiable at say time in the
TP ch~ n.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800001.811675&domain=pdf&date_stamp=1967-01-01

Any process terminates with a call for a new
process or a return to the process which called it.

The relationship between the Supervisor
functions, and machine states is described in
Section 8.

Figure 5 shows an example of supervisor
activity worked out in detail. The example shown
is of a User Job calling a Supervisor activity
which uses I/O. The activities at the time
intervals are as follows (for definitions of TP
and ISP see next section).

tl: User Job I is entered having been selected
by the Time Slice Scheduler (TSS) in prefer-
ence to User Job 2.

t2: User Job I calls the service of Loader.
Loader is a TP and thus User Job I is
tWaited' for Loaders completion. The TSS
is entered.

t3:

t4-t 6

TSS selects the Loader to enter.

Loader issues an I/O request. Three ISPs
are entered to fire the I/O.

t7: TSS is entered to select the TP to enter.
Loader is selected.

t8: Loader is reentered.

tg: Loader issues WAlT for the completion of the
I/O.

t10: TSS is entered. Both Loader and User Job I
are 'Waited'. It thus selects User Job 2.

t11: User Job is entered.

t12-t13 I/O termination interrupt is received.
Process 'Unwaits' Loader and fires off
further I/O if any further entries have
been queued.

t14:

t15:

t16:

TSS selects Loader.

Loader c o n t i n u e s o p e r a t i o n .

Loader ends and calls End of Process (EOP).
EOP deactivates Loader and 'Unwaits' User
Job 1.

t17: TSS is entered and User Job I is selected.

t18: User Job I continues.

2. Supervisor Construction

In o r d e r to a c h i e v e the d i s t i n c t i o n made
between the S u p e r v i s o r Kerne l and S u p e r v i s o r
Processes, the processes must be described and
related to mach4ne conditions in a formal tabular
mamner.

Supervisor Tables

(a) Machine Cond i t i om/P roces s Table (M C P T) Q
e v e r y c o n d i t i o n which can a r i s e must
be associated with a process. In
practice there will be a homomorphic
mapping of many machine conditions on
to a single process but if generality
is to be preserved there must ultimate
ly be one process per condition, (some
processes will thus be d,,mm4es or
failure s) •

(b)

(c)

This table is used by the Kernel to
select the process required to
service the interrupt conditions.

Process Address Table (PAT)
Each process required a control b l o c k
(see PCB below). PAT gives the
address of the PCB for each process.

Process Control Block Table (PCBT)
Each entry in the table is a Process
Control Block (PCB). The PCB holds
the linkage and status information and
also points to the general process
information block (PIB). The PCB
can be shown as follows:

A Process Control Block

P r o c e s s Status

Process Infor-
mation

a Active marker

b Conditional Wait

c Called for process

d Calling process

e Priority in PBT

Slot a :

Slot b :

Slot c :

FIG.6.

records whether the process is in
use or not. (Zero if not in use!
address of next instruction when
interrupted or waiting).

records the cause of the conditional
wait whenever two or more parallel
processes require interloc~ng.

identifies the process which was
called and upon which the present
process is waited.

Slots a,b and c record the
activity status of the process and
from these three slots it can be
found whether the process is in use
and whether the process currently
requires processor time or whether
it is in a held position.

Slot____.d ,

Slot e :

Slo t_____~ :

(d)

(e)

is linkage information to enable a
wait condition to be released in the
calling process when the end process
condition arises in the called
process.

deflnes the process priority for
multiprogr~mmlug in the Priority
Bit Table (PBT - see below), this
priority is ~mique. It is used
when changes to the PBT is made
following alteration to slots a,b,c.

This slot points to the Process
Information Block (PIB) w h i c h includm:

Physical location of process

Process control details

privilege status

protection status

type marker (ISP or TP)

alternative process marker

testing marker

Register dump area

Second or Subsequent calls on the
process.

Priority Bit Table (PBT)

This table is a priority ordered set
of markers indicating whether or not
the process of a given priority is
available for execution. Look up
of this table is defined as producing
the priority level number. It is
necessary to have am efficient method
of selecting the next process to use
the processorsas this mechanism is
used with a very high frequency. No
TP can be entered without this scan
being performed and the Supervisor
efficiency depends on this table and
the operations on it. The name ofthe
table suggests its construction i.e.
as a bit list. The mechanism for
scanning of such a list should not
involve an instruction loop. (See
Section 8).

Priority/Process Table (PPT)

This table enables the priority level
number obtsined from a scan of the
PBT to be converted to a reference
to a PCB and thus define the process
which is to be executed. This two
stage conversion technique enables
the relative priorities of the
processes to be eh=~ged by redefini-
tion of the PPT.

3. Supervisor Kernel and
Asso@iated ISP's

The above five tables hold the information
necessary to control the action, operation, aud
linkage of the processes. The action of calling
a process and entering it are seen,in relation to
the tables, to be:

I. Machine Condition (perhaps caused by a
SVC) defines a process from the MCPT.

2. PCB is found for this process from the
PAT.

. Linkagesand activation are established
in the PCBT.

. Summary of revised status conditions
inserted in PBT.

. Multiprogrammlmg action finds next
priority to be entered from PBT.

. Priority Level is converted to process
using PPT.

Fig. 7 illustrates the action of the Kernel
and its relationship to processes (Line I is the
division between the processes and the Kernel
itself). The machine interrupt is received and
is analysed (Block I). This is not in general
a one level activity and the further analysis
of the cause of an interrupt may be required.

From the analysis a process is determined
using the MCPT (Block 2). The process type is
found from the PCB (Block 3). This may be an
ISP or TP, if the latter then the information
about the TP is passed to a special ISP (TP set
up, see below). Thus the Kernel only causes
directly the entry to ISPs. Following the
operation of an ISP there can be 4 conditions:

(a) A further ISP is requested and a
further determination of the process
is required before the Kernel loop
is reentered (Block 4).

(b)

(c)

An interrupt has arisen since the ISP
was entered and the interrupt analysis
(Block I) is reentered.

No ISP has been named as successor
and a TP has beau selected for
execution.

(d) No ISP has been nsmed as successor
and no TP has yet been selected.

(e) A TP has beau entered.

Conditions 'a' 'c' & 'd' are identical since the
implicit successor ISP in conditions 'c' & 'd'
are the TSS and Exit processes respectively.

The Supervisor therefore requires a basic

set of ISPs for its working, four are detailed as
follows:

(a) TP Set Up. An ISP is required to set
up the entry conditions for a TP.
This process, ~rking on the PCBT and
PBT, activates the process by the
~n~ertion of the entry address (PCB
Slot I) into Slot 'a'. If the TP is
in use then an addition is made to
the list of outstanding calls.

(b) Time Slice Scheduler (TSS). When no
further ISP is required this ISP is
entered to select the next TP for
execution.

(c)

(d}

Exit Process. Following the selection
of a TP an inspection is made of the
interrupt register and if no interrupt
condition exists the procedure for
entering the process is undertaken.
This consists of reestablishing, if
necessary, the TP registers and
setting the conditions for its execu-
tion (machine state, interruptable
status, interstore protection).

End of Process. This ISP is entered
as termination of any TP, and resets
the 'Wait' condition in the POB of
the calling process.

4. Kernel/Process Relationships

It is perhaps relevant to comment on some
aspects of the relationship of the processes and
the Kernel and between processes themselves.

I.S.P. Considerations

(a)

(b)

(a}

(b)

(c)

The overhead of entering a TP
demands that ISPs are linked
directly to the Kernel, and
executed 'inline' with it.
This overhead is discussed
further in section 4(b) & 7.

ISPs c~not be interrupted and
thus c~not use the interrupt
facilities of the machine to call
successor processes.

The entry and exit 14n~ages are
formalised simply by convention-
al use of register or store
locations~ thus preserving the
independanee to the Kernel from
any process.

Timi~ Overhead. When a TP calls an
ISP the critical Supervisor path is
only executed once. However when it
calls a TP the path is executed twice.
The first execution is on the call for
the TP the second at the conclusion of
its execution when the called process
ends by issuing an SVC. It follows

(c)

(d)

(e)

them that a choice of a process as a
TP instead of an ISP entails am extra
overhead of one critical path time.

Register dumping. As an ISP is
uninterrnptable and must leave itself
in such a condition that after its
operation, it can be reused there is
never any requirement to dump or re-
load any registers on its account.
However the registers of a TP must be
preserved on amy interrupt. This
dump and reload time is part of the
critical path function of process
entry and is an important factor in
the efficiency of Supervisor. It is
shown in the section of hardware that
a multistate processor helps solve
this problem.

TP as a normal program. Every TP is
fully interruptable and hence can use
every facility of the Supervisor.
Supervisor TPs can call other Super-
visor TPs to say nested depth, but
excluding recursion. Supervisor
processes and user job processes only
differ in respect of their priority
and the privilege they are given to
utilise machine facilities and
resources from which the normal user
is banned (in order to preserve the
installation integrity). The
protection or privilege is established
by the ISP which exits from the Kernel.

Process Independauce. Processes
interact either via data tables or
the Kernel. Providing these tables
are indirectly addressed each process
cam be addressed independent of the
Kernel and of every other process.
The base address of the list of table
addresses can be kept either in a
fixed store location or a register.
Each process in this way becomes a
separate program segment which requires
no address linkage outside itself.
Thus a process need not be composed
with the remainder of Supervisor, but
exist as part of a user program.
This enables a user program to con-
tain within itself a Supervisor
process which it requires, and the
mechanism (a process called by a SVC)
for entering a new process in the
Supervisor tables allows it to be
used as a normal Supervisor process.

5. 0onstruction and Development
of Supervisor

Initial TestimK

The implementation and initial testing of
a Supervisor is a relatively simple task within
the formal structure described above. Initially
a sufficient set of processes must be defined in
order to deal with the n~n~mum set of conditions
necessary to run the machine i.e. the Kernel,
the ISPs to select and enter TPs a set of simple
TPs and ISPs to provide I/0 and Loading functions,
and a set of dun7 or failure processes for the
undefined activities. Once this framework has
been established, the alteration of Information
in the tables and the provision of new processes
is a simple procedure and one which can be
automated. Thus the Supervisor can be built
using bootstrap techniques.

Examination of the tables and the structure
show that the following information is required:

(a) Association of process number with a
machine condition (MCPT table)

(b) Definit ion of Priority (PPT)

(c) Definition of the information to be
inserted into the PCBbyan ISP, and
the PAT entry made. (See Section on
Supervisor tables for details).

Under the artificial conditions which hold
during Supervisor implementation the ability to
add (by redefinition of a dum~y) a new process
together with Post-Mortem TPs (and other s~m~lar
processes) gives a sufficient mech~isation for
this phase of development. This process can be
used to interchange tested processes after the
system has been comm4ssioned. For example it may
be necessary to replace the Job Step Sequencing
process to reflect changes in the User environ-
ment on a time of day basis and in this case the
i n s e r t i o n I S P w o u l d be c a l l e d f~'em t h e p r o c e s s
~nieh deals with clock interrupts. This ISPmust
be Eivsn the lowest priority of Supervisor process
es ~ if a 'Wait' condition exists in the POB
~abls, it must exit and recall itself.

process if required (e.g. I/0 end of transfer
analysis) and a calling of further processes
consequent to this analysis.

The facility of dynamically providing
specialist processes for use of privileged users
is a simple use of this structure. Such a
dynamic process must not involve changes to sAY of
the processes which call the one which is being

supplemented by an alternative. A decision
process is therefore used to select the required
process according to the conditions.

In order to do this the followimg operations
must be performed:

(a) The existing p r o c e s s (if any) must be
renumbered

(b) The decision process be inserted in
place of the existing process

(c) The alternatives inserted and allocated
to spare process numbers

The condition under ~hich various alterna-
tive processes are selected are numerous, some
examples are: user classification, special
peripheral conditions, time of day, operator
supplied data. Thus most of the decision
processes may have to be specially written by
the user.

IS Processes

The mechanism of replacement end ren-mlng
can be extended to ISPs. In general it will be
a requirement that the decision process itself
an ISP and that it does not cause an unacceptable
overhead.

If the ISP is exceptionally time critical
this method may therefore be unacceptable, in
which ease the ISP must be written to include all
the alternatives.

This apparent lack of flexibility is un-
likely to be important since most of the ISPs
are not concerned with processes directly
involved with a User, but with system oriented
functions (e.g. I/0, Time Slice Scheduling ere).

6. On-T.4ne Provision of Alternative
Processes

Task ing P r o c e s s e s

The above s t r u c t u r e i s d e f i n e d around a o n e

t o one c o r r e s p o n d e n c e be tween i n t e r r u p t c o n d i t i o n
and p r o c e s s w i t h s u b s e q u e n t a n a l y s i s w i t h i n a

address of their parameters. These processes
may be existing Supervisor processes (in which
case the specification would be in the form of
an SVC) or be supplied by the programmer.

7. On-Line Testing of New Tasklm~
Processes

The method described above for handling
alternative processes is obviously well suited
for allowing an alternative process to be under
test.

Establish of a TP for test

The procedure for inserting alternative
processes described above provides the basic
mechanism. There are however some important
differences.

(a) Both the alternative and the original
may have to be executed.

(b) The process ~tnder test must operate
entirely within a copy of the Super-
visors data space.

(c) All processes called by the process
under test must also be executed on
the data copy.

(d) Only processes which do not change the
state of other parts of the system
(e.g. issue I/0 instructions to a system
device) can be allowed to operate on
the data copy.

Thus the decision process described above becomes
as Test Management Process, which carried out
the above functions of change and test.

The conditions of each test must therefore
be established so that the correct sequence of
operations can be carried out. As with alterna-
tive processes a TP must be provided, with the
following parameters:

6.

.

Information identifying the process
under test (see section 2 Supervisor
Construction).

Processes which may be automatically
called and which are permitted to be
executed on copy data.

Execution of process under test condition s

It is evident that a process under test is
entered with a different data address and that any
normal processes that are called must also
operate on the data copy. Further a check must
be made that the process is valid for operation
on copied data.

The PCB of a test processor must therefore
contain a Test Marker, which is transferred as a
Temporary Marker to any called process. The
existance of either Test Marker causes the
Temporary Marker to be set. The Temporary Marker,
unlike the Permanent Test Marker, is cancelled
when a process is terminated. A marker denoting
ability to operate on a data copy must also be
provided. For safety all processes are assumed
to be in this category unless otherwise specified
by the progr~,mer.

Any errors caused by a test process (e.g.
invalid operator) must be regarded as a normal
user error, including the case when the process
is only temporarily under test.

Entr 2 to Test Processes

SVC Process. The Test Process is entered
by the normal SVC mechanism. If the original
process is required for execution then two sets
of parameters must be created, and the two
processes will act on separate data copies in an
interleaved fashion.

I. Identification of process being
'replaced'.

2. New name for the exlsting process.

3. Address of the space for data copy
(for input to an internally called
tData Copy' ISP).

4. Narker to indicate if existing process
is to be executed, and possibly the
address of its parameters (they may be
different from the new version!).

5. Specification of processes to be
executed on the copy data before
execution of the test process (e.g.
substituting simulated devices for
system devices involves chauglug the
system device table) together with

Other Interrupt Processes. Sometimes how-
ever the process which is be~ tested is not
entered directly, but either via a higher level
process or as a result of a non-program generated
interrupt. The first of these is merely a
slight logical extension of the direct entry
process described above since all processes are
on the same control level regardless of the
'logical level' within a series of processes.

The entry from non-program interrupt does
require a special facility. This facility must
simulate a supervisor interrupt and cause the
test process to be entered as though from the
Kernel. The simulation consists in establishing
within the copy data space the conditions which
would have been set had that process been
entered nor,~lly i.e. it acts as a substitute for

the ISP which always precedes a TP which is
dependant on machine hardware registers (e.g.
Secondary Bytes of I/O ch~-nels).

search mechanism is vital.

S2stem 4

Testiu~ IS Processes

Since any ISP can be replaced by a TP this
problem can, in most circ,~tances, be reduced to
an example of TP testing. However such a
replacement may cause the conditions which necessi-
tate the use of an ISP to be invalidated, e.g. the
time conditions. When such conditions occur it
is impossible to provide a general facility of the
~rlnd described for TP testing. The ability to
replace processes can be used however to replace
the original by one which whilst allowing the
timing conditions to be met does allow alternative
process to be selected.

With modern machine design, and autonomous
peripheral and communications systems the need for
time-dependant ISPs is very much reduced. The
limitation in testing a new ISP is not therefore
likely to prove a serious problem, and in no way
diminishes the value of the system described.

8. Hardware and Efficienc2 Consid-
erations

The above three requirements are met on the
System 4 r~n~ge of English Electric Computers.
This range is compatible with the R.C.A. SPEOTRA
70 which uses the IBM 360 order code, but differs
from the IBM 360 in having a different set of
privileged instructions and also four (instead of
two) processor states.

The use of the four states of this System is
s,,-~n~rised in Pig.8.

a. Multiple Processor States and Registers

A s~mmary table of the proportion and usage
of a multi-state processor is shown in Fig.8.
This shows that either of the following can
occur without register msnipulation.

(i) The operation of a user job to be sus-
pended while a hardware originated
interrupt is serviced by a Super-
visor TP or ISP.

(ii) A user job to request the service of
a Supervisor TP which itself requires
the service of a Supervisor ISP.

The success of the design of the Supervisor
depends on three main hardware considerations
which all influence the timing of the critical
path.

a. Multiple Processor States and Registers

It has been illustrated in previous
sections that the calling of processes
is a nested procedure. Ideally every
level of the nest of calls requires its
own processor state and registers.
This enables the nesting of process
calls to operate with no dumping or re-
loading of state registers. The
illustrations demonstrate the require-
ment for at least three levels, a user
level, a Supervisor TP level, and a
Supervisor ISP level.

b. Interrupt Analysis

The interrupt system must give the
maximum assistance to isolate the con-
dition of the interrupt in hardware.
At least the first level analysis
should be a hardware function.

c. Time Slice Scheduler and Exit process

These processes should not contain an
instruction loop. This imposes a
requirement for some type of search
instruction and also a single instruc-
tion to load registers. The Supervisor
design relies on the multiprogrs~ming of
nearly all processes including user jobs.
Since there are likely to be of the
order of a hundred such levels, a fast

In the illustration of the linkage require-
ments of processes (fig.5) the only register
dumping and reloading occurs at times t11
and tIR when processor state PI changes
its operation from user job I to user job 2
and then reverts to user job 1.

b. Interrupt Analysis

The interrupt system causes on
interrupt the setting of a flag in a 32 bit
register. The hardware also sets a value
in a P3 register which allows an immediate
determination of the process. If the
interrupt is an SVC the call number is
also ~mmediately available in a further
register.

c° Time Slice Scheduler

In the System 4 instruction code it
is possible to scan a bit list for the first
zero (or non zero) entry by use of the
Translate and Test instruction. Following
the operation of this single instruction
acting with a specially constructed
translation table the position of the zero
bit is indicated by the contents of two
registers. This technique is used to scan
the PBT.

Supervisor Efficiency.

In the description of the Kernel it was
established that a Supervisor TP is subject to the
overhead of the critical path time. The
efficiency of the Supervisor can therefore be
adjusted by m~img very high frequency processes

into ISPs. In figure 5 various I/0 processes are
shown as ISPs not because they require to run un-
interrupted but because of this fact. Very few
processes fall into this category in practice
apart from I/O operations. Placing such
processes into the IS category allows I/O opera-
tions to be used by Supervisor TP without register
dump4ng. Clearly the fewer processes made
uninterruptable the better control can be placed
on the priorities of processes and the easier it
is successfully to service time dependant devices.

MicroprogrAmm4 nF.

Supervisor efficiency will be further
enhanced if the invariant processes of the Super-
visor are built into the hardware. The paper has
demonstrated the possibility of the invariance of
the Supervisor Kernel, it can thus be micro-
programmed. With the development of slow write/
fast read memories it will be possible to place
the ISPs into hardware to be used as 'extracodes'
(as on the ICT ATLAS Computer) without sacrificing
the flexibility of the system.

9. Documentation of Process and
Table Usage

Each Supervisor process hav4~ been isolated
and formalised is potentially replaceable and
documentation is required to establish the inter-
relationship of each process with other processes
and tables. Figure 9 represents a tabulation of
the interrelationship of P 4. This shows the con-
dition upon which Pi is called, its table usage,
and the chain of process calls arising from the
execution of Pi" It is possible to represent the
total set of interrelations of the Supervisor on a
single table. Each process dependency is easily
seen and an installation requir4~g to replace a
Supervisor facility can replace Just the required
process chain without requiring knowledge of the
Kernel or other processes.

Such formal documentation can obviously be
built in to the Supervisor and used as part of the
Test Management Process for guiding progr~m, ers.

10. Sln.m,~'.~"

The Supervisor is only entered by mac h i me
intexTupt, each of which is seen as a request for
the activitation of a Supervisor process. This
may itself make a further analysis and request a
further activity. The interruption can be hard-
ware originated such as a termination of an input/
output operation, or program initiated when a
program requests the operation of a Supervisor
serviee. Some Supervisor activities are of
high frequency, some are time dependent, some of
high priority. Other activities can be multi-
progrA-- .ed. I n t e r n a l p r o c e s s e s o f S u p e r v i s o r
r e q u i r e to use o t h e r i n t e r n a l p r o c e s s e s .

With these considerations in mind the
Supervisor is seen as a set of 'processes' con-
trolled by a Kernel within a formal data and
linkage structure. Each process performs a
distinct Supervisor activity. The processes are
of two types: those which are interruptable and
those which can be multiprogr-mmed. The first
type satisfy the considerations of high or
4mmediate priority, and high frequency use. The
second type satisfies the requirements of the
parallel activities.

The User Job is seen by the Supervisor as
an addition to these processes, that is, no
distinction is made between the tasks produced by
Supervisor processes and those by User Jobs. It
is shown that all processes can be entered by the
same formalised procedure, end that the formalised
linkage mechanism ensures the independence of all
processes to the extent that they do not require
to be compiled or composed with the Kernel, but
can be embedded in a User program.

FormAl decision tables and machine interrupt
conditions direct the execution of the Supervisor
Kernel. The Kernel is seen as being independent
of every process, thus enabl4n 5 the Kernel to
become a direct extension of the machine hardware.
The Kernel is shown to be ideally suited to the
use of microprogr~mm4ng techniques with no loss of
flexibility or generality. With the advent of
fast read/slowwrite memories it is seen to be
possible to retain the flexibility, whilst micro-
progr~.m4ng frequent used routines and thus
Improvimg Supervisor efficiency.

With the modularity and formalisation of
Supervisor it is possible to document in tabular
form every interrelationship of the Supervisor
activities to the extent that such a tabulation
can define the total effect of any alteration to
the Supervisor.

11. Conc lus ion

The problem o f p r o v i d i n g a s i n g l e o p e r a t i n g
sys tem f o r m~ny d i v e r s e u s e r r e q u i r e m e n t s w i t h i n
a s i n g l e envi ronment i s seen as p r i n c i p a l l y a
r equ i r emen t to p r o v i d e a c o m p l e t e l y f l e x i b l e
S u p e r v i s o r , i n which e v e r y p r o c e s s i s r e p l a c e a b l e ,
and which a l lows s imple ~ n . e r t i o n , d e l e t i o n and
r ep lacemen t o f i t s p a r t s .

The paper has d e s c r i b e d the de s ign o f such a
S u p e r v i s o r and has shown t h a t the f o l l o w i ~
o b j e c t i v e s can be met:

Ca)
(b)
(c)
(d)

E f f i c i e n t o p e r a t i o n

Easy imp lemen ta t i on

Forma l i sed and modular s t r u c t u r e

A b a s i s s t r u c t u r e which a l l ows , by
mio roprogr~- -4 nS, s u b s t i t u t i o n o f
hardware f o r s o f t w a r e f a c i l i t i e s ,
w i thou t l o s i n g any f l e x i b i l i t y

(e) Alterable by regenera t ion ;

by dynamic add i t ion or
replacement of p ro t e s t ed
processes;

f o r dynamic t e s t i n g of
processes;

for selected classes of
users.

12. Acknowledgement

This paper is presented by permission of
~nglish Electric Computers Ltd. The authors
wish to acknowledge many hours of discussion with
their colleagues and particularly Mr. A.Willi~-
and Mr. R.C.Hutton., who are responsible for the
implementation of a Disc Operating System Super-
visor for System 4-50/4-70 based on the principles
described.

~J
o

- - ~

! ~ltl

.o

s~L

d

1

o

m

o

°i
o . t - ~

m

~J

H

H

o
m ~ °

m ~

,-.8

[

_ _ . ~
E ~ ~ o

0o
.~ o o
.~ ~ £ ,,~, _, A ~ ~ o

.~,.- - ~ .~ ~-.~

I~ < ~ ~ e ' ~ ~

•

q

OT.-. I +~ .r-I 4 -~

.r4

/ ~ -~

. -

-~ ~ - . I~ ~na~-~o~= ~ - - - l = ~ ~ ~ - - ~ ~
I

• i o n o~

~I :,~ ~ ~
~.t~ ,~.I,I1,,, ,,,,,1 0 - . I .,~

® ~ I ® ®

- - - 1 ~ < °]'~< ~'~
~ .e..I

. . . . 0 . 1 . ~

~ ~ o o

• ~ o ~

~ o

_J [-

r r J

~ -el ~

H 0 ~

C~J

0 0

CO

q~

q~

Cd

Processor
State

P1

P2

P3

P4

Status

Fully Jut erruptable

Fully interruptable

Uninterruptable
except for machine
failure

Uninterruptable

Use

User Job Processes

Supervisor TP

Supervisor Kernel
and ISPs

Machine failure
conditions

 try

ProgrA...ed
change of
processor state

Programmed
chauge of
processor state

Normal machine
interrupt

Machine failure
interrupt

PIG.8.

Use of Supervisor States

Line 1
m m

Condition ' b'

Block I
Machine Interrupt
Anslysis

I

Block 2
Process Determination
(from MCPT)

I Block 3
Process Type?
ISP or TP
(from PCB)

A

I

ISP
I Block 4
Determine next
Process

Execute ISP

m i |

b

| m •

I Condition a,c,d

Zine 1
i i i , l l l l

Condition
'e'

Ii xeoute P I

FIO.~
i

Superv i sor Kerne l , f l o w diagram.

Process Directly

calls P1

uses T4(W)

P5

Indirectly

P6

T 3 (~W)

P7

T 4 (R)

Called by Uses Tables

MCPT entry 4 T 3 (~W)

PIG.9

Description of Pi

