
THE MEASUREMENT OF SOFTWARE SCIENCE PARAMETERS IN SOFTWARE 
DESIGNS 

ABSTRACT 

Metrics of software quality have his- 
torically focused on code quality despite 
the importance of early and continuous 
quality evaluation in a software develop~ 
ment effort. While software science 
metrics have been used to measure the 
psychological complexity of computer pro- 
grams as well as other quality related 
aspects ef algorithm construction, tech- 
niques to measure software design quality 
have not been adequately addressed. In 
this paper, software design quality is em- 
phasized. A general formalism for ex- 
pressing software designs is presented, 
and a technique for identifying and count- 
ing software science parameters in design 
media is proposed. 
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If a design is sufficiently well 
developed, translation of the design into 
a UDD may require the omission of some 
design detail. In these cases, extension 
of the UDD to allow the expression of trans- 
formations and predicate evaluation functions 
may be desirable. For this discussion, the 
UDD provides sufficient power of expression. 

Before proceeding to a discussion of 
design quality measurement, a significant 
limitation of the present formalism should 
be noted. Although several design media 
deal with concurrency, the design diagraph 
structure can be used to express only 
sequential control flow. It is planned to 
extend this work to concurrent system 
models (such as Petri net or other graph 
models(HOLT70)), since many applications 
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suggest designs which employ concurrency. 

~ Software Science Metrics 

Software science is a branch of ex- 
perimental and theoretical science deal- 
ing with the analysis of computer pro- 

• rams and other types of written material HALS77). Although lacking a firm math- 
ematical foundation, experimental evidence 
suggests that the application of software 
science to computer software production 
provides useful indicators of software 
quality. Unfortunately, most efforts to 
data support its utility only at the code 
level of software representation. 

In this section, software science is 
briefly outlined and extended to the design 
level of software representation. 

~.I Software Science Background. 

Software science (HALS77), formerly 
called software physics (but not to be 
confused with Kolence's software physics) 
(KOLE72) was developed by M.H. Halstead 
to fill the need for a theory which would 
provide quantitative and objective measure- 
ments of software quality and complexity. 
Software seienae deals with those properties 
of algorithms that can be measured, 
particularly relationships that remain 
invariant under translation from one 
language to another. 

Drawing on intuitive notions from 
information theory and the laws of thermo- 
dynamics, this theory is based on the 
measurement of four fundamental parameters 
that are directly available from the lang- 
uage used to express the algorithm. 

I. INTRODUCTION 

Software quality has many attributes, 
some of which are amenable to static 
quality measurement. Simplicity, as a 
function of human understandability, is 
one that has been identified as measure- 
able. Software development methodologies 
comprised of tools, techniques, and 
standards that provide and environment for 
software production, require an analysis 
technique that can measure software simp- 
licity. Early visibility of software 
quality, particularly in the design phase 

©1981 ACM 0-89791-038-9 /81/0003/0089 $00.75 

89 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800003.807912&domain=pdf&date_stamp=1981-01-01


of software development, would provide both 
designers and managers confidence of a 
quality end product. Unfortunately, most 
quality metrics to date focus on the 
quality of computer code (HALS77, MCCA76, 
MCCA77, SULL75). 

There is a need to develop quality 
metrics specifically oriented to design 
specification media. The distinction 
between a design specification medium and 
a progrsmming language is primarily one 
of intent. The objective of a design 
medium os to allow representation of the 
overall structure of a system, without at 
the same time introducing a forest of 
details. Design specification media (e.g., 
HIPO (STAY76), PSL (TEIC74), and DARTS 
(CSDL80)) generally present a more ex- 
plicit portrayal of control flow, data flow, 
modularization than do programming lang- 
uag e s. 

In this paper (which is based on a 
study conducted for the National Bureau 
of Standards (SZULSO)), measuring the 
quality of software designs is emphasized. 
Software science has been shown to be an 
effective software quality indicator, yet 
most work with this technique has been at 
the code level of software representation. 
This work applies software science to soft- 
ware design media and proposes an identi- 
fication and counting method for software 
science parameters. Two functionally 
equivalent but alternative designs for a 
simple example are presented in a generalized 
design media representation, and an analysis 
of design quality is made. 

2. A_Design Representation Medium 

In seeking measurement techniques to 
qua£tify design quality, one is immediately 
confronted with the diversity of design media. 
The following discussion is based on a 
generalized ~o~malism called an uninterpreted 
design digraph~(UDD) in which control and 
data flow can be expressed. Most of the 
media currently in use are compatible with 
the UDD formalism. 

An uninterpreted design digraph is 
defined to be a 4-tuple 

=<N,E,D,M> 
where 

N = a finite set of nodes which in- 
cludes a unique initial node, s, and a 
unique terminal node, t. 

EcNXN 
= a set of directed edges joining 

nodes of N. 
D = a finate set of variable names 
M = (INPUT:N 2 ~, Output:N 2~). 

The nodes of a UDD represent uninter- 
preted data transformations and control 
desisions. The edges impose_a control 
structure on the transformations represented 
by the nodes (As in a flowchart or flowgraph). 

9O 

Nodes have any in-degree (number of in- 
put edges) or out-degree (number of out- 
put edges), except that there is only 
one node of zero out-degree (the ter- 
minal node). A node having an out- 
degree of two or more is said to be a 
decision node. Other nodes are re- 
ferred to-~--functiona I nodes. The 
initial and terminal nodes, s and t, 
are present only for notational con- 
venience and are neither functional 
nor decision nodes (they may be viewed 
as the system's environment). 

The graph may have loops but, by 
definition, may not have parallel edges. 
The functions INPUT and OUTPUT are used 
to associate data names with the input 
and output item sets of each node. 

Each functional node i represents 
an uninterpreted data transformation that 
can be expressed as 

fi(Input(i)) = Output(i) 

Each decision or branch node j represents 
an uninterpreted predicate evaluation 
function b~ (Input (j)) that directs 
the flow of control through exactly one 
of its out-edges. The Output set of a 
decision node is always null. The Out- 
put set of the initial node s is defined 
to contain inputs to the digraph. The 
Input set of the terminal node t contains 
the outputs of the digraph. 

I. n I number of unique operators 

2. n 2 number of unique operands 

3. N I total number of operators 

4. N 2 total number of operands. 

Other parameters, which are derivable 
from these basic quantities, are shown 
in Table I. 

N LENGTH ~=NI+N2. 

LENGTH ESTIMATOR N=~llog2~1÷~2 

log2~2. 

n VOCABULARY SIZE ~=~i+~2. 

V VOLUME V=Nlog2~" 

V* POTENTIAL VOLUME V*=~*log2~*" 

L L~WL OF ABSTRACTION L:V*IV. 

E ~FFORT E=V/L 

LANGUAGE LEVEL ~=V*L 

Table I: Software Science Equations . 

Halstead observed a relationship 
between the vocabulary size ~ and the 
algorithm length N such that an estimate 
of the length~'oould be made knowing 
only the algorithm's vocabulary. This 

IA digraph is a directed graph. 



relationship, the length equation, is 
defined as 

N= ~llogr~1 + ~21og~2 . 
Although no mathematical justification for 
this relationship is known, it has been 
validated for a number of programming lang- 
uages (ELSH76). The accuracy of this es- 
timator is, however, dependent on the 
purity of the algorithm. Halstead defined 
six classes of algorithm impurities, which 
address specific ~laws in programming style. 
When present, impurities cause discrepancies 
betwee~ the observed and predicted lengths 
N andS. 

The volume V can intuitively be related 
to the number of ~its required to encode 
the algorithm. In this context, algorithms 
specified in more abstract languages (e.g., 
design languages) occupy less volume ~han 
those specified in less abstract languages 
(e.g., assembler). Halstead hypothesized a 
conservation law between level of abstract- 
ion and volume such that: LV = constant. 
This interesting result allows alternative 
implementations to be compared, even is the 
level of abstraction (representation) differs 
between implementations. The potential 
volume V* is defined informally as a measure 
of the algorithm's most succinct form. In 
this form, the required function is reduced 
to a single operation. In translatians 
from one language to another, actual volume 
V may change, but the potential volume V* 
does not. To find the potential volume, it 
is necessary to consider the potential voc- 
abulary~*. 

The potential vocabulary ~* connotes 
the number of operators and operands in 
the algorithm's minimal form. The minimum 
number of operators ~I*' for any algorithm 

reduced to a single statement, is ~.*=2 
(i.e., function and assignment operators). 
The minimum number of operands ~9" is just 
the number of input and output p~rameters. 

In order to predict the volume at 
which an algoritm is implemented in a 
given language, it is necessary to determine 
the language level ~. The language level~ 
measures the ability of the language to 
express algorithms. This number has been 
obtained experimentally for a number of 
different languages (HALS77), although the 
observed variances are large. 

As a measure of the mental effort re- 
quired to create a computer program, Hal- 
stead introduced the effort metric E. This 
number represents the number of elementary 
decisions that an experienced programmer 
would be expected to make in constructing 
the program. It has been used as a measure 
of psychological complexity (CURT78). When 
coupled with the Stroud Number, a psychological 
concept defining the time required by a human 
brain to make an elementary decision, Halstead 
was able to provide programming time estimates. 

3.2 Using Software Soi~uom To Assess 
The Qualit 2 Of Software Design 

The software science relationships 
found by Halstead and others appear to 
be independent of any particular implemen- 
tation language. Extensions to natural 
language (HALS77A) and technical writing 
(COME79) provide some evidence that the 
relationships may be valid over a wide 
range of languages. Since early assess- 
ment of software quality, prior to code 
generation, is particularly advantageous, 
this section explores the extension of 
software science to design media. 

In order to compute software science 
metrics prior to coding it is necessary 
to identify and count the operators and 
operands in the design medium. In code 
media, despite the apparent simplicity 
associated with counting these para- 
meters (since code when abstracted to 
the machine level is only operators and 
operands), counting methods can vary for 
the same language. Elshoff (ELSH78) re- 
ported that when different counting 
methods were employed, some properties 
of the algorithm varied, while others 
remained stable, and no single method 
could be shown to be best. 

To illustrate a generalized technique 
for counting operators and operands in a 
design medium, it is assumed that the 
design can be translated to the design 
digraph structure of Section 2. Rules 
can be specified for identifying and 
counting operators and operands for the 
~esign digraph. 

The assignment of values to ~I' ~2' 

NI, N 2 requires the identification of 

operators and operands and the adoption of 
conventions for counting their occurrences. 
The definitions of the operand and 
operator sets and the four software 
science quantities are presented in 
Table 2 and are explained as follows. 

The operators in a design digraph 
are uninterpreted transformations, 
uninterpreted predicate evaluation func- 
tions, an assignment operator, and a 
flow-control operator. Each functional 
node i of a design digraph represents 
a unique transformation 

fi(Input(i)) = (Output(i)). 

The set F~0perators consists of all such 
transformations f. For each functional 
node i, f and the assignment operator 
"= " represent two operator occurrences 
which contribute a count of two to N I. 

Each decision node j of a digraph 
represents a unique presicate evaluation 
function bj(Input(j)). 

The set B ~ Operators consists of all 
such functions. Each decision node 
contributes a count of one to N 1. 
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Table 2: 

OPERATORS = F U B U  {CTL, = } j  

171 = IOPERATORS] 

N 1 = 2(IFI)  + 1 8 1 + ( I E I - g )  

where 

g = out.degree(s) + in-degree(t) 

OPERANDS = ~ (INPUT(n) U OUTPUT(n)) I 
n~N 

~2 = IOPERANDSI 

N 2 = ~ I I N P U T ( n l l  + ~ IOUTPUT(n)I 
neN neN 

So;_tuare Science Identification and Countinq 
Definitions 

The members of a digraph's edge set 
E define the flow of control over the 
nodes. Flow control is considered to be 
affected by an operator which is denoted 
CTL. The number of occurrences of CTL is 
defined to be the number of digraph edges 
which do not originate at the start node 
s or terminate at the terminal node t (the 
nodes s and t were added to the node set 
for notational convenience, and edges in- 
volving them are superflouous to the 
design). 

The operands in a design digraph are 
those data items which are input to or 
output from the nodes. The operand 
count is best described by the definition 
in Table 2. 

The use of this identification and 
counting method is illustrated by the 
example in Section 4. 

4. Application Of Software Science To 
Design Media 

To illustrate the ideas presented in 
the previous sections, the software sci- 

To illustrate the ideas presented in 
the previous sections, the software 
science metrics will be applied to two 
example designs. The designs represent 
alternative solutions to the "stores 
movement summarT" problem discussed by 
Jackson (JACK75). The software is in- 
tended to process the product distri- 
bution file of an inventory control 
systemand provide a report summarizing 
product movement. As Jackson demonstrates~ 
the structure of the input data and by 
subjective assessment, design I is of 
lower=quality than design 2. The designs 
were translated from the DARTS design 
specification medium (CSDLS0) into UDD 
form. The structure of the UDD for 
design I is shown in Figure I and the 
UDD for design 2 is similarly displayed 
in Figure 2. 

To apply the software science metrics 
described in Section 3 to the design 
digraph representation, it is necessary 
to 

I. identifx operators and operands in 
• ne Geslgn. 

Fiquze 2: U DD Eor Design ! Fiqt, ze !- UDD for Desiqn 2 
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2. count the number of occurrences of 
each operator and operand 

3. calculate the metrics based on the 
formulas listed in Table I. 

Identifying and counting operators 
in the design digraphs of the "stores 
movement summary" example (see Figure I 
and 2) is simply a matter of counting 
edges, functional nodes, and decision 
nodes. Since digraph functions are not 
interpreted, each functional node and 
each decision node are assumed to be 
unique. 

To identify and count operands, 
The data-flow tables available from the 

DARTS medium are examined and are summar- 
ized in Table 3. In table 4, raw counts 
of operators and operands are shown for 
designs I and 2, The minimum number of 
unique operands, ~* (see Section 3), is 
observed to be 3. ~This value is obtained 
by countin5 external input and output 
variables (identified by the prefix #). 
Table 5 summarizes the remaining software 
science calculations. The important 
complexity indicators (length, volume, 
and effort) suggest that design 2 is 
less complex than design I. This result 
agrees with Jackson's analysis based on 
a simplicity argument. 

Node 

$ 

I 

2 
3 
4 

5 

6 

7 
8 

9 

10 
11 

12 

13 
14 

15 

16 

17 
t 

Inputs Outputs  

FIRST'TIME 
#MVTREC 
EOF 

FIRSTTIME, PARTNO, PI~ 
FIRS'rTIME 

PARTNO 
NETMVT 
PN 
ATYPE 

NETMVT, Q 
NETMVT, O 
#MVTREC 

FIRSTTIME 

PARTNO 
NETMVT 
#NETMVT,#PARTNO 

Table 3 : In 

#f,,IVTREC 

PN,ATYPE. Q, EOF 

FIRSTTIME 
#PARTNO 
#NETMVT 
PARTNO, NETMVT 

NETMVT 

NETMVT 
PN. ATYPE. Q, EOF 

.~PARTNO 
#NETMVT 

Node Inpuu 

S 

1 #MVTREC 
2 EOF 

3 PN 

4 PN, PARTNO, EOF 
5 ATYPE 

6 NETMVT, Q 
7 NETMVT. Q 
8 #MVTREC 
9 PARTNO 

10 NETMVT 

t #NETMVT,#PARTNO 

Outputs  

#MVTREC 

PN,ATYPE, Q. EOF 

NETMVT, PARTNO 

NETMVT 
NETMVT 
PN, ATYPE, Q. EOF 
#PARTNO 
#NETMVT 

)ut/OutDut Table . : f o r  Des, iqns I . a n d  ! 

DESIGN 1 ! DESIGN 2 NO." 
OPERATORS NO. OPERANDS NO. I OPERATORS NO. OPERANDS 

CTL 20 FIRSTIME 5 CTL 12 
= 12 # MVTREC 3 7 # MTREC 
f i 1 EOF 3 f I 1 EOF 
f2 1 PARTNO 4 b 2 1 PARTNO 
b 3 1 PN 3 f3 1 PN 
b 4 1 NETMVT 6 b 4 1 NETMVT 
b 5 1 ATYPE 3 b$ 1 ATYPE 

f6 1 Q 4 f6 1 0 
f7 1 i I NETMVT 3 f7 1 # NETMVT 
f8 1 # PARTNO 3 f8 1 # PARTNO 

f9 1 L f9 1 
bl0 I fl0 1 
fll 1 
f12 1 
f13 1 
b14 1 
£I$ 1 
f16 1 

f17 1 

(n2=19) [[Ni=4-8) q2"10 N2.3~---- ~- (ql.12) (Ni=29 n2-9 N2"30 

Table 4: O~era%or and Opezand Coun%s for ,D.esians ! 
and 2 

DESIGN 1 DESIGN 2 

ql 19 12 

n 2 10 9 

q 29 21 

n~ 2 2 

.~ ! 3 3 
n* ! 5 5 

N 1 48 29 

N 2 37 30 

N 85 59 

1 1 3 . 9  7 1 . 5  

N - ~  2 8 . 9  1 2 . 5  

0 . 3 4  0 . 2 1  

v 412 259 

V*  1 1 . 6  1 1 . 6  

L .028 .048 

. 3 2 6  .57B 

Z 1 4 6 8 6  5784  

_Table 5: Summary o_~ Sol%ware Science Hetrics :for 
D__esicyns .I_ ~nnd 2 
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5. Conclusions 

The application of the software 
science metrics to software designs has 
produced evidence that such metrics can 
provide designers with useful feedback 
during system development. Prior to 
colmnitment to code, alternative designs 
c~i be compared, using the proposed 
technique, to assess the relative static 
quality of the designs with respect to 
simplicity, or alternatively their lack 
of complexity. This technique is general, 
in that it compensates for the level of 
design abstraction, yielding a tool that 
can be used throughout the software 
development effort. For this experiment, 
manual methods were used to identify and 
count operators and operands in a design 
medium, although automation of this 
melhod to complement modern design aid 
tools is possible. More experience with 
this quality assessment technique is 
needed to validate its utility and pro- 
vide insight into its limitations. 
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