
THE MEASUREMENT OF SOFTWARE SCIENCE PARAMETERS IN SOFTWARE
DESIGNS

ABSTRACT

Metrics of software quality have his-
torically focused on code quality despite
the importance of early and continuous
quality evaluation in a software develop~
ment effort. While software science
metrics have been used to measure the
psychological complexity of computer pro-
grams as well as other quality related
aspects ef algorithm construction, tech-
niques to measure software design quality
have not been adequately addressed. In
this paper, software design quality is em-
phasized. A general formalism for ex-
pressing software designs is presented,
and a technique for identifying and count-
ing software science parameters in design
media is proposed.

ACKNOWLEDGEMENT

This work was funded in part by the
National Bureau of Standards' Institute
of Computer Sciences and Technology, Con-
tract NB79SACA0220. The U.S. Government
retains the right to reproduce all or
portions of this paper and to authorize
others to do so for the U.S. Government
purposes.

T~e authors are with the Charles Stark
Draper Laboratory Inc., Cambridge, MA.,
with the exception of Mark H. Whitworth,
who is with ITP boston Inc., Cambridge,
MA.

If a design is sufficiently well
developed, translation of the design into
a UDD may require the omission of some
design detail. In these cases, extension
of the UDD to allow the expression of trans-
formations and predicate evaluation functions
may be desirable. For this discussion, the
UDD provides sufficient power of expression.

Before proceeding to a discussion of
design quality measurement, a significant
limitation of the present formalism should
be noted. Although several design media
deal with concurrency, the design diagraph
structure can be used to express only
sequential control flow. It is planned to
extend this work to concurrent system
models (such as Petri net or other graph
models(HOLT70)), since many applications

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Paul A. Szulewski
Mark H. Whitworth
Philip Buchan
J. Barton DeWolf

suggest designs which employ concurrency.

~ Software Science Metrics

Software science is a branch of ex-
perimental and theoretical science deal-
ing with the analysis of computer pro-

• rams and other types of written material HALS77). Although lacking a firm math-
ematical foundation, experimental evidence
suggests that the application of software
science to computer software production
provides useful indicators of software
quality. Unfortunately, most efforts to
data support its utility only at the code
level of software representation.

In this section, software science is
briefly outlined and extended to the design
level of software representation.

~.I Software Science Background.

Software science (HALS77), formerly
called software physics (but not to be
confused with Kolence's software physics)
(KOLE72) was developed by M.H. Halstead
to fill the need for a theory which would
provide quantitative and objective measure-
ments of software quality and complexity.
Software seienae deals with those properties
of algorithms that can be measured,
particularly relationships that remain
invariant under translation from one
language to another.

Drawing on intuitive notions from
information theory and the laws of thermo-
dynamics, this theory is based on the
measurement of four fundamental parameters
that are directly available from the lang-
uage used to express the algorithm.

I. INTRODUCTION

Software quality has many attributes,
some of which are amenable to static
quality measurement. Simplicity, as a
function of human understandability, is
one that has been identified as measure-
able. Software development methodologies
comprised of tools, techniques, and
standards that provide and environment for
software production, require an analysis
technique that can measure software simp-
licity. Early visibility of software
quality, particularly in the design phase

©1981 ACM 0-89791-038-9 /81/0003/0089 $00.75

89

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800003.807912&domain=pdf&date_stamp=1981-01-01

of software development, would provide both
designers and managers confidence of a
quality end product. Unfortunately, most
quality metrics to date focus on the
quality of computer code (HALS77, MCCA76,
MCCA77, SULL75).

There is a need to develop quality
metrics specifically oriented to design
specification media. The distinction
between a design specification medium and
a progrsmming language is primarily one
of intent. The objective of a design
medium os to allow representation of the
overall structure of a system, without at
the same time introducing a forest of
details. Design specification media (e.g.,
HIPO (STAY76), PSL (TEIC74), and DARTS
(CSDL80)) generally present a more ex-
plicit portrayal of control flow, data flow,
modularization than do programming lang-
uag e s.

In this paper (which is based on a
study conducted for the National Bureau
of Standards (SZULSO)), measuring the
quality of software designs is emphasized.
Software science has been shown to be an
effective software quality indicator, yet
most work with this technique has been at
the code level of software representation.
This work applies software science to soft-
ware design media and proposes an identi-
fication and counting method for software
science parameters. Two functionally
equivalent but alternative designs for a
simple example are presented in a generalized
design media representation, and an analysis
of design quality is made.

2. A_Design Representation Medium

In seeking measurement techniques to
qua£tify design quality, one is immediately
confronted with the diversity of design media.
The following discussion is based on a
generalized ~o~malism called an uninterpreted
design digraph~(UDD) in which control and
data flow can be expressed. Most of the
media currently in use are compatible with
the UDD formalism.

An uninterpreted design digraph is
defined to be a 4-tuple

=<N,E,D,M>
where

N = a finite set of nodes which in-
cludes a unique initial node, s, and a
unique terminal node, t.

EcNXN
= a set of directed edges joining

nodes of N.
D = a finate set of variable names
M = (INPUT:N 2 ~, Output:N 2~).

The nodes of a UDD represent uninter-
preted data transformations and control
desisions. The edges impose_a control
structure on the transformations represented
by the nodes (As in a flowchart or flowgraph).

9O

Nodes have any in-degree (number of in-
put edges) or out-degree (number of out-
put edges), except that there is only
one node of zero out-degree (the ter-
minal node). A node having an out-
degree of two or more is said to be a
decision node. Other nodes are re-
ferred to-~--functiona I nodes. The
initial and terminal nodes, s and t,
are present only for notational con-
venience and are neither functional
nor decision nodes (they may be viewed
as the system's environment).

The graph may have loops but, by
definition, may not have parallel edges.
The functions INPUT and OUTPUT are used
to associate data names with the input
and output item sets of each node.

Each functional node i represents
an uninterpreted data transformation that
can be expressed as

fi(Input(i)) = Output(i)

Each decision or branch node j represents
an uninterpreted predicate evaluation
function b~ (Input (j)) that directs
the flow of control through exactly one
of its out-edges. The Output set of a
decision node is always null. The Out-
put set of the initial node s is defined
to contain inputs to the digraph. The
Input set of the terminal node t contains
the outputs of the digraph.

I. n I number of unique operators

2. n 2 number of unique operands

3. N I total number of operators

4. N 2 total number of operands.

Other parameters, which are derivable
from these basic quantities, are shown
in Table I.

N LENGTH ~=NI+N2.

LENGTH ESTIMATOR N=~llog2~1÷~2

log2~2.

n VOCABULARY SIZE ~=~i+~2.

V VOLUME V=Nlog2~"

V* POTENTIAL VOLUME V*=~*log2~*"

L L~WL OF ABSTRACTION L:V*IV.

E ~FFORT E=V/L

LANGUAGE LEVEL ~=V*L

Table I: Software Science Equations .

Halstead observed a relationship
between the vocabulary size ~ and the
algorithm length N such that an estimate
of the length~'oould be made knowing
only the algorithm's vocabulary. This

IA digraph is a directed graph.

relationship, the length equation, is
defined as

N= ~llogr~1 + ~21og~2 .
Although no mathematical justification for
this relationship is known, it has been
validated for a number of programming lang-
uages (ELSH76). The accuracy of this es-
timator is, however, dependent on the
purity of the algorithm. Halstead defined
six classes of algorithm impurities, which
address specific ~laws in programming style.
When present, impurities cause discrepancies
betwee~ the observed and predicted lengths
N andS.

The volume V can intuitively be related
to the number of ~its required to encode
the algorithm. In this context, algorithms
specified in more abstract languages (e.g.,
design languages) occupy less volume ~han
those specified in less abstract languages
(e.g., assembler). Halstead hypothesized a
conservation law between level of abstract-
ion and volume such that: LV = constant.
This interesting result allows alternative
implementations to be compared, even is the
level of abstraction (representation) differs
between implementations. The potential
volume V* is defined informally as a measure
of the algorithm's most succinct form. In
this form, the required function is reduced
to a single operation. In translatians
from one language to another, actual volume
V may change, but the potential volume V*
does not. To find the potential volume, it
is necessary to consider the potential voc-
abulary~*.

The potential vocabulary ~* connotes
the number of operators and operands in
the algorithm's minimal form. The minimum
number of operators ~I*' for any algorithm

reduced to a single statement, is ~.*=2
(i.e., function and assignment operators).
The minimum number of operands ~9" is just
the number of input and output p~rameters.

In order to predict the volume at
which an algoritm is implemented in a
given language, it is necessary to determine
the language level ~. The language level~
measures the ability of the language to
express algorithms. This number has been
obtained experimentally for a number of
different languages (HALS77), although the
observed variances are large.

As a measure of the mental effort re-
quired to create a computer program, Hal-
stead introduced the effort metric E. This
number represents the number of elementary
decisions that an experienced programmer
would be expected to make in constructing
the program. It has been used as a measure
of psychological complexity (CURT78). When
coupled with the Stroud Number, a psychological
concept defining the time required by a human
brain to make an elementary decision, Halstead
was able to provide programming time estimates.

3.2 Using Software Soi~uom To Assess
The Qualit 2 Of Software Design

The software science relationships
found by Halstead and others appear to
be independent of any particular implemen-
tation language. Extensions to natural
language (HALS77A) and technical writing
(COME79) provide some evidence that the
relationships may be valid over a wide
range of languages. Since early assess-
ment of software quality, prior to code
generation, is particularly advantageous,
this section explores the extension of
software science to design media.

In order to compute software science
metrics prior to coding it is necessary
to identify and count the operators and
operands in the design medium. In code
media, despite the apparent simplicity
associated with counting these para-
meters (since code when abstracted to
the machine level is only operators and
operands), counting methods can vary for
the same language. Elshoff (ELSH78) re-
ported that when different counting
methods were employed, some properties
of the algorithm varied, while others
remained stable, and no single method
could be shown to be best.

To illustrate a generalized technique
for counting operators and operands in a
design medium, it is assumed that the
design can be translated to the design
digraph structure of Section 2. Rules
can be specified for identifying and
counting operators and operands for the
~esign digraph.

The assignment of values to ~I' ~2'

NI, N 2 requires the identification of

operators and operands and the adoption of
conventions for counting their occurrences.
The definitions of the operand and
operator sets and the four software
science quantities are presented in
Table 2 and are explained as follows.

The operators in a design digraph
are uninterpreted transformations,
uninterpreted predicate evaluation func-
tions, an assignment operator, and a
flow-control operator. Each functional
node i of a design digraph represents
a unique transformation

fi(Input(i)) = (Output(i)).

The set F~0perators consists of all such
transformations f. For each functional
node i, f and the assignment operator
"= " represent two operator occurrences
which contribute a count of two to N I.

Each decision node j of a digraph
represents a unique presicate evaluation
function bj(Input(j)).

The set B ~ Operators consists of all
such functions. Each decision node
contributes a count of one to N 1.

91 i

Table 2:

OPERATORS = F U B U {CTL, = } j

171 = IOPERATORS]

N 1 = 2(IFI) + 1 8 1 + (I E I - g)

where

g = out.degree(s) + in-degree(t)

OPERANDS = ~ (INPUT(n) U OUTPUT(n)) I
n~N

~2 = IOPERANDSI

N 2 = ~ I I N P U T (n l l + ~ IOUTPUT(n)I
neN neN

So;_tuare Science Identification and Countinq
Definitions

The members of a digraph's edge set
E define the flow of control over the
nodes. Flow control is considered to be
affected by an operator which is denoted
CTL. The number of occurrences of CTL is
defined to be the number of digraph edges
which do not originate at the start node
s or terminate at the terminal node t (the
nodes s and t were added to the node set
for notational convenience, and edges in-
volving them are superflouous to the
design).

The operands in a design digraph are
those data items which are input to or
output from the nodes. The operand
count is best described by the definition
in Table 2.

The use of this identification and
counting method is illustrated by the
example in Section 4.

4. Application Of Software Science To
Design Media

To illustrate the ideas presented in
the previous sections, the software sci-

To illustrate the ideas presented in
the previous sections, the software
science metrics will be applied to two
example designs. The designs represent
alternative solutions to the "stores
movement summarT" problem discussed by
Jackson (JACK75). The software is in-
tended to process the product distri-
bution file of an inventory control
systemand provide a report summarizing
product movement. As Jackson demonstrates~
the structure of the input data and by
subjective assessment, design I is of
lower=quality than design 2. The designs
were translated from the DARTS design
specification medium (CSDLS0) into UDD
form. The structure of the UDD for
design I is shown in Figure I and the
UDD for design 2 is similarly displayed
in Figure 2.

To apply the software science metrics
described in Section 3 to the design
digraph representation, it is necessary
to

I. identifx operators and operands in
• ne Geslgn.

Fiquze 2: U DD Eor Design ! Fiqt, ze !- UDD for Desiqn 2

92

2. count the number of occurrences of
each operator and operand

3. calculate the metrics based on the
formulas listed in Table I.

Identifying and counting operators
in the design digraphs of the "stores
movement summary" example (see Figure I
and 2) is simply a matter of counting
edges, functional nodes, and decision
nodes. Since digraph functions are not
interpreted, each functional node and
each decision node are assumed to be
unique.

To identify and count operands,
The data-flow tables available from the

DARTS medium are examined and are summar-
ized in Table 3. In table 4, raw counts
of operators and operands are shown for
designs I and 2, The minimum number of
unique operands, ~* (see Section 3), is
observed to be 3. ~This value is obtained
by countin5 external input and output
variables (identified by the prefix #).
Table 5 summarizes the remaining software
science calculations. The important
complexity indicators (length, volume,
and effort) suggest that design 2 is
less complex than design I. This result
agrees with Jackson's analysis based on
a simplicity argument.

Node

$

I

2
3
4

5

6

7
8

9

10
11

12

13
14

15

16

17
t

Inputs Outputs

FIRST'TIME
#MVTREC
EOF

FIRSTTIME, PARTNO, PI~
FIRS'rTIME

PARTNO
NETMVT
PN
ATYPE

NETMVT, Q
NETMVT, O
#MVTREC

FIRSTTIME

PARTNO
NETMVT
#NETMVT,#PARTNO

Table 3 : In

#f,,IVTREC

PN,ATYPE. Q, EOF

FIRSTTIME
#PARTNO
#NETMVT
PARTNO, NETMVT

NETMVT

NETMVT
PN. ATYPE. Q, EOF

.~PARTNO
#NETMVT

Node Inpuu

S

1 #MVTREC
2 EOF

3 PN

4 PN, PARTNO, EOF
5 ATYPE

6 NETMVT, Q
7 NETMVT. Q
8 #MVTREC
9 PARTNO

10 NETMVT

t #NETMVT,#PARTNO

Outputs

#MVTREC

PN,ATYPE, Q. EOF

NETMVT, PARTNO

NETMVT
NETMVT
PN, ATYPE, Q. EOF
#PARTNO
#NETMVT

)ut/OutDut Table . : f o r Des, iqns I . a n d !

DESIGN 1 ! DESIGN 2 NO."
OPERATORS NO. OPERANDS NO. I OPERATORS NO. OPERANDS

CTL 20 FIRSTIME 5 CTL 12
= 12 # MVTREC 3 7 # MTREC
f i 1 EOF 3 f I 1 EOF
f2 1 PARTNO 4 b 2 1 PARTNO
b 3 1 PN 3 f3 1 PN
b 4 1 NETMVT 6 b 4 1 NETMVT
b 5 1 ATYPE 3 b$ 1 ATYPE

f6 1 Q 4 f6 1 0
f7 1 i I NETMVT 3 f7 1 # NETMVT
f8 1 # PARTNO 3 f8 1 # PARTNO

f9 1 L f9 1
bl0 I fl0 1
fll 1
f12 1
f13 1
b14 1
£I$ 1
f16 1

f17 1

(n2=19) [[Ni=4-8) q2"10 N2.3~---- ~- (ql.12) (Ni=29 n2-9 N2"30

Table 4: O~era%or and Opezand Coun%s for ,D.esians !
and 2

DESIGN 1 DESIGN 2

ql 19 12

n 2 10 9

q 29 21

n~ 2 2

.~ ! 3 3
n* ! 5 5

N 1 48 29

N 2 37 30

N 85 59

1 1 3 . 9 7 1 . 5

N - ~ 2 8 . 9 1 2 . 5

0 . 3 4 0 . 2 1

v 412 259

V* 1 1 . 6 1 1 . 6

L .028 .048

. 3 2 6 .57B

Z 1 4 6 8 6 5784

Table 5: Summary o~ Sol%ware Science Hetrics :for
D__esicyns .I_ ~nnd 2

93

5. Conclusions

The application of the software
science metrics to software designs has
produced evidence that such metrics can
provide designers with useful feedback
during system development. Prior to
colmnitment to code, alternative designs
c~i be compared, using the proposed
technique, to assess the relative static
quality of the designs with respect to
simplicity, or alternatively their lack
of complexity. This technique is general,
in that it compensates for the level of
design abstraction, yielding a tool that
can be used throughout the software
development effort. For this experiment,
manual methods were used to identify and
count operators and operands in a design
medium, although automation of this
melhod to complement modern design aid
tools is possible. More experience with
this quality assessment technique is
needed to validate its utility and pro-
vide insight into its limitations.

6. References

(COME79)

(CURT78)

(CS~L80)

(~SH78)

(KALS77)

(HALS77A)

(HOLT70)

Comer, D., and M.H. Halstead,
"A Simple Experiment in Top-
Down Design," IEEE Transactions
on Software En~mn'-"-~ering, Vol.
SE-5, No. 2, March 1979, pp.
105-109.

Curtis, B., S.B. Sheppard, M.A.
Borst, P. Milliman, and T. Love,
"Some Distinctions Between the
Psychological and Computational
Complexity of Software," Pro-
ceedings of the 2nd Software
Life Cc~M~gemen% Workshop,
A~st 1978, pp. 166-170,
"Design Aids for Real-Time Systems
(DARTS): A Designer's Manual
"Preliminary, The Charles Stark
Draper LabDratory, Inc.,
Cambridge, MA, January 1980.

Elshoff, J.L., "An Investigation
into the Effects of the Counting
Method Used on Software Science
Measurements," SIGPLAN Notices,
Vol. 15, no. 2, February--,
pp. 30-45.

Halstead, M.H., Elements of
Software Science, Elsevier-
North-Holland, Inc., New York,
1977.

Halstead, M.H., "A Quantitative
Connection Between Computer
Programs and Technical Prose,"

• of Fall COMPCON

Holt, A.W., and F.Go Commoner,
"Events and Conditions,"
Applied Data Research, Inc.,
New York, 1970.

94

(JACK75) Jackson, M.Ao, Principles o_f

• rogram Desk, Academic Press,
ew York, 1975.

(KOLE72) Kolence, K.W., "Software Physics
and Computer Performance
Measurements, "Proceedings of
the ACM/~_~Annual Confere~e,
pp. 1024-1040.

(MCCA76) McCabe, T.J., "A Complexity
Measure," IEEE Trans. on
Software Engineering, Vol.
SE-~, NO~ 4~ Deaember 1976,
pp. 308-319.

(MCCA77) McCabe, T.J., et al., ~Factors
in Software quality," RADC-
TR-77-357, Vol. I, II, and III
(AD-A049-014, -015, -055),
General Electric Company,
Sunnyvale, CA, 1977.

(STAY76) Stay, J.F., "HIPO and Integrated
Programs Design," IBM Systems
Journal, Vol. 15, No. 2, 1976.

(SULL75) Sullivan, J.E., "Measuring the
Complexity ~f Computer Software,"
MTR-2648, Vol. V, The MITRE
Corporation, Bedford, M.A.,
January 1975.

(SZUL80) Szulewski, P.A., M.H. Whitworth,
P. Buchan, and J.B. DeWolf,
"Quality Assurance Guidelines
and Quality Metrics for Embedded
Real-Time Software Designs,"
NBS Contract NB76SBCA0220,
Report R-1376, The Charles Stark
Draper Laboratory, Inc.,
Cambridge, MA., May 1980.

(TEIC74) Teichroew, E., M.J. Bastarache,
l, and E.A. Hershey III, An

Introduction to PSL/PSA." ISDOS
Working Paper No. 86, University
of Michigan, Ann Arbor, Michigan,
March 1974,

