
ADAPTIVE SEARCH TECHNIQUES APPLIED TO

SOFTWARE TESTING

Abstract

An experiment was performed in which
executable assertions were used in con-
juction with search techniques in order
to test a computer program automatically.
The program chosen for the experiment
computes a position on an orbit from the
description of the orbit and the desired
point.

Errors were interested in the program
randomly using an error generation method
based on published data defining common
error types. Assertions were written for
program and it was tested using two
different techniques. The first divided
up the range of the input variables and
selected test cases from within the sub-
ranges. In this way a "grid" of test
values was constructed over the program's
input space.

The second used a search algorithm
from optimization theory. This entailed
using the assertions to define an error
function and then maximizing its value.
The program was then tested by varying
all of them. The results indicate that
this search testing technique was as
effective as the grid testing technique
in locating errors and was more efficient.
In addition, the search testing technique
located critical input values which helped
in writing correct assertions.

I~ Introduction

Although Di jkstra's famous comment
on testing, that it will never show the
absence of bugs, only their presence, is
undoubtedly true, testing is still the
method most used for showing the correct-
ness of software. If testing is to be used,
ways must be found to make it more efficient
and effective.

A paper by Alberts I presents data in-
dicating that testing and validation
efforts account for approximately 50% of
the cost of developing a software system,
where development includes the typical
phases of conceptual design, requirements
analysis, development, and operational use.
This cost includes those associated with
locating the errors, correcting the errors

Permission to copy without ~e all or part oi this ma~nal is grant~u
prov~ed that the copies am not made or distributed ~ r di~ct
commercial advant~e , t ~ ACM copyri~t notice and t ~ title of the
publi~tion and i~ date appear, and notice is given that copying is by
~rmission of the Association ~ r Computing Machinery. To copy
otherwise, or to republish, requires a ~e aM/or spec~lc permission.

©1981 ACM 0-89791-038-9 /81/0003/0109 $00.75

109

J.P. Benson
General Research Corporation
5383 Hollister Avenue
Santa Barbara, California 93111

(which may include redesign), and
checking that the corrections have re-
moved the cause of the error. The
testing process is a very labor-inten-
sive activity, as is any aspect of
software development. If methods could
be found to automate the testing process,
the cost of developing software could be
reduced.

II. Problems With Testing

Two of the many problems involved
in testing software are I) how to
develop test cases which identify errors
and 2) how to check the results from
these test cases. Before software test-
ing can be automated and its cost re-
duced, these two problems must be solved.

Many methods have been proposed
for identifying test cases which will
show that a program performs correctly
or indicate the errors which are pre-
sent in the program. For examples of
these methods see Howden ~ and Gannon3.
Basically, the problem is one of com-
plexity. For most programs, the number
of different combinations of input values
is practically infinite. Therefore,
using exhaustive testing to show that
a program works correctly is an impossible
task.

Given the fact that programs cannot
be tested by trying all test cases, what
are the alternatives? Boundary value
testing I path testing, and symbolic ex-
ecution* have been some of the suggested
solutions. The key problem is finding
test cases which detect the errors pre-
sent in the software. At present, there
are no methods for deriving test cases
with this property although many studies
of the types of errors commonl~ound in
software have been undertaken, rl

The second problem has to do with
checking whether a test has been success-
ful. Even if there were a method for
selecting test cases which was able to
identify specific errors in a program,
the process of evaluating whether or
not the program ran successfully is a
manual one. The output from the program
must be compared with the expected results.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800003.807915&domain=pdf&date_stamp=1981-01-01

For large programs composed of many func-
tions this is a very time-consuming task.

III. A Proposed Solution

From the above discussion, it is
evident that automatingthe testing of
computer programs requires finding
met:hods for developing effective test
cases as well as methods for efficiently
evaluating the results of using them. A
method for solving these problems has been
developed that combines the use of
search algorithms from operations research
with executable assertions from software
verification research.

Finding the maximum or minimum value
of a function of several variables, each
subject to some set of constraints, is a
common problem in operations research.
Minimizing the cost of constructing a
building given the choice of using brick,
wood, and adobe materials in different
proportions typifies problems of this sort,
Many methods have been developed for ~olving
such problems, for example, see Denn.
One of the simplest is to define the
parameter of interest (e.g., cost) as a
function of the possible alternative
(e.g., brick, wood, adobe). The problem
then is to find a minimum value of the
function defined by the values of the
alternatives (variables). Figure I
illustrates this for two variables,
brick and wood. The cost function defines
a surface, with "hills" (maximum) and
"valleys" (minimums).

The goal is to find a point on this
surface which is a minimum (in the example
of building cost). This point corresponds
to a particular set of values of the alter-
natives or variables. Finding such a
minimum value requires that this surface
be searched. There are many methods for
traversing the surface according to some
search heuristic (for example, in the
direction of the gradient) until a
solution is found.

The problem of evaluating the results
limits the application of these techniques
to the testing of computer programs.
That is, in operations research, we are
usually trying to maximize ~r minimize
the value of one variable, whereas in
software testing we are usually trying to
compute the value of many output variables
with their expected values.

The solution of this problem has been
found in "executable assertions," a
technique developed for providing software
correct and for checking it while it is
running. Assertions are comments added
to a program which specify how the pro-
gram is to behave. They may specify a
range of values for a variable, the
relation the values of two ar more vari-
ables have to each other or compare the

COST

AMOUNT
OF BRICK

AMOUNT
OF WOOD

110

Figure I. Cost as a Function of Building Haterial

the state of a present computation to
that of a past computation. Figure 2 shows
an example of two assertions that
specifies the range of values that the
variable Value can assume.

To make an assertion "executable,,"
we merely translate it into machine
language. Then while the program is ~run-
ning, the assertion can be evaluated.
As in the case of a logical function, the
assertion has a value of true or false.
If the value of an assertl~'beco~--"
false at any point in the execution of a
program, then this can be reported as
any other error message.

ASSERT (VALUE .GE. ~.0) ,
ASSERT (VALUE .LE. TWOPI)

Figure 2. Examples of Assertions

IV. Combinin~ Assertions and Search Algorithms

AsSertions give us a method for
evaluating whether a program has run
correctly without looking at all of its

c~±put. If the assertions are written
correctly and they completely specify the
algorithm, then the correctness of the
program can be determined while the pro-
gram is running. This is not to say that
writing assertions to accomplish this is
easy; a comprehensive and complete set of
assertions for a program is difficult ;o
develop. But if it can be done, then
the problem of examining the output of a
program to determine whether it executed a
test case correctly has been solved.

Since using assertions means that we
no longer have to examine the output of a
program, the automated testing of computer
programs becomes possible--provided we
can automate the selection of teat cases.
If we can transform the output from the
assertions into a function, we can utilize

the search techniques from operations
research to locate errors.

The basic idea is this: The func-
tion we define is the number of assertions
that become false during the execution of
a particular test case. The independent
variables are the values of the input
variables of the program. The search
techniques will be used to find the
values of the input variables for which
the maximum number of assertions are
violated. The function relating the
number of assertions violated to.the
values of the input variables is called
the "error function," and the surface
that it describes is called the "error
space."

If the search algorithm is to per-
form correctly, the error function must
I) not define a flat (uniform) surface and
2) not be discontinuous (have spike~) at
any points. A previous experiment, ~ in-
vestigated the error function for a
scheduling program. It was found that
the error function for this program was
neither uniform nor discontinuous. In a
second experiment, described below, we
have attempted to show that this is also
true for another program "seeded" with
several types of errors. We have also
attempted to determine the efficiency
of the search technique in locating these
errors relative to other types of testing
methods.

V. The Experiment

The experiment was to select a pro-
gram, add assertions to it, and seed it
with errors from a list of typical soft-
ware errors. The location of the errors
was determined random3y. Each of the
errors was inserted in the program one at
a time and the program was then tested by
systematically choosing combinations of
values for the input parameters. This
testing was done automatically by a
program which varied the input parameters
over the required values. After this,
the program was tested by the search
routine, first by allowing the search
algorithm to vary the same variables
that were varied in the first tests, and
then allowing it to vary all of the input
variables.

V.I The Program

The program selected takes an orbit
described by six independent parameters
(longitude of the ascending node, in-
clination of the orbit plane, angle of
the perigee, eccentricity, time at perigee,
and semi-major axis) and converts this
description into a state vector represent-
ation of a point on the orbit (time, position,
velocity, and acceleration). The point is
determined by the values of two other
parameters. The range of values of one
of these parameters is dependent upon the
other. In all, there are ten input para-
meters is ~ependent upon the other. In all,
there are ten input parameters, seven of

111

which are independent of the other.

V.2 The Search Routine

The search routine chosen for the
experiment was one developed by Box 10
called complex search. This algorithm
constructs a hypertriangle, or complex,
of the values of the function from severhl
tests and then rotates, skrinks, expands,
and projects the complex in order to
locate a value which is larger (in the
case of finding the maximum) than the
worst point currently in the complex.
The worst point is then replaced by the
new point and the process continued until
no further progress can be made.

~.3 The Test Driver

Several programs were also written
in order to support the testing and
make it as automatic as possible: I) A
test driver, which handled the selection
of the testing method to be used and
read in an initial test case was written,
2) a set of subroutines which implemented
the constraints among the input variables
used in generating new values for the
search routine, and 3) a set of routines
to count the number of assertions violated
in each test and print the results.

V.4 The Assertions

Assertions added to the program were
of three types: I) Those that described
ranges of variable values, 2) Those that
describe the relationship between values
of variables, and 3) Those which kept
track of the history of the computation.
Two routines were also written which
included assertions to check the values
of the~input variables and the correct-
ness of the results. These routines were
invoked at the beginning of the test
program and at the end of the test program.

V.5 Selecting Errors

Certain categories of errors were
selected from a list of common software
errors. 5 Errors of these types were
inserted into the test program by random-
ly selecting sites (statements in the
program) where the particular type of
error could occur. Table I shows the
errors used in the experiment.

V.6 Testing Techniques

The program was then tested by in-
serting one error at a time. First, the
program was tested by taking combinations
of values from three input variables.
The permissible input range of each of
the variables was divided up into equal
subranges so that a reasonable number of
test cases could be performed. Test
values for each variable were selected by
choosing the end-points of each subrange.
The program was then testes using the
selected values for the three input
variables. The program was then tested
using the selected values for the three

Error
Number

13

14

28

31

36

37

40

41

46

47

48

52

54

55

56

57

62

64

67

74

77

TABLE 1
ERRORS USED IN THE EXPERIMENT

Category

A200

A300

A600

AI00

AS00

B400

B400

B200

B200

B300

D200

Di00

Di00

D400

D600

D600

D600

D400

D300

FI00

FI00

F700

F200

FT00

Description

incorrect use of parenthesis

sign convention error

incorrect/inaccurate equation used
/wrong sequence

incorrect operand in equation

missing computation

missing logic or condition tests

missing logic or condition tests

logic activities out of sequence

logic activities out of sequence

wrong variable being checked

data initialization done improperly

data initialization not done

data initialization not done

variable referred to by the wrong
number

incorrect variable type

incorrect variable type

incorrect variable type

variable referred to by the wrong name

variable used as a flag or index not
set properly

wrong subroutine called

wrong subroutine called

software/software interface error

call to subroutine not made or made in
wrong place

software/software interface error

112

input variables. First, the values of
two of the three variables were fixed at
a value selected from their range of test
values. Then, a test was run for each of
the test values of the third variable.
The value of the third variable was then
fixed, and the first variable was varied
over its set of test values. After this,
the values of the first and third variable
were fixed and the second was varied.
The testing continued until all combina-
tions of the test values for the test
values for the three variables had been
used. In this way a "grid" over the in-
put space was obtained. The values of
the variables which caused assertions to
be violated and the number of assertions
violated were recorded.

A majority of the errors (15 out of
24) were not detected by the original
assertions for a number of reasons. Two
of the errors were not detected since
they occurred only if another error had
occurred previouly during program ex-
ecution. For other errors, it was found
to be very difficult to write assertions
that would detect them. Finally, eight
of the errors were not detected simply
because the program did not contain enough
assertions. In order to investigate the
performance of the search algorithm, new
assertions were added to the program and
the grid tests were run again. Errors
which were not detected in this second set
of tests were removed from the list of
errors used in the experiment.

Next, the errors were again inserted
one at a time and the search routine was
allowed to vary only the variables which
were varied in the grid tests. The
number of assertions violated and the
input values which caused the violations
were recorded.

Finally, the errors were again used
one at a time; but this time the search
routine was allowed to vary any of the
seven independent variables in order to
locate a maximum. Again, the assertions
violated and the input values which caused
the violations were recorded.

VI. Results

The results from the grid tests demon-
strated the effectiveness of the assertions
in detecting the errors. Table 2 shows the
results of these tests. Of the original
24errors, nine (thirty-eight percent)
were detected by the original assertions,
and eight (thirty-three percent) were
detected by the assertions that were added.
(The seven errors, twenty-nine percent,
which could not be detected by assertions,
were not tested).

The relative effectiveness of the
search testing methods versus the grid
testing method is summarized in Table 3.

113

(In this table, and those following,
the "error n~ber" column refers to a
unique number assigned to each error
by the error generation method.) In
one case, the grid technique caused an
assertion violation violation which
neither search technique caused. In
another case, the search technique using
all variables was not able to cause an
assertion violation that was caused by
the grid technique and the search
varying three variables. On the other
hand, the search technique using all
variables was able to cause an assertion
violation which neither the grid tech-
nique nor the search using three variables
was able to cause. Finally, in one case
the search technique using three variables
caused an assertion violation that the
grid technique did not cause while the
search using all variables caused another
assertion violation in addition to the
one discovered by the search using three
variables. In all other tests, each of
the methods caused the same assertions
to be violated.

The efficiency of the search tech-
nique was not measured directly, but an
estimate of the behavior of the all-vari-
able search technique in relation to the
grid technique in relation to the grid
technique can be given. Except for
error 52, which required 683 tests, the
grid technique required 317 tests. In
the case for each error, the number of the
test in which the first assertion vio-
lation was detected. In all, fifteen of
the seventeen detectable errors were
detected by the seventh test in the
search.

VII. Discussion

The results from the experiment show
that it is possible to detect errors
automatically using assertions and search
techniques. The major limitation of the
technique as we see it is the difficulty
in writing the assertions. The number of
assertions which need to be written, the
conditions they should describe and where
they should be placed are all questions
which are difficult to answer. In add-
ition, the assertions are difficult to
write and the task of writing them is
not pleasant. On the other hand, the
search testing technique aids in the re-
finement of the assertions.

Unfortunately, our results have also
shown the limitations of assertions.
There is sometimes no way to easily ex-
press exactly what is wanted by using
the current semantics. In some cases, it
seems that other techniques are more suited
to detecting certain types of errors.

One may also argue with the technique
of "error seeding," but we believe it to
be a very effective way in whi~ t~io:on~rcl

Errors Detected by
Original Assertions

Errors Detected by
Added Assertions

Errors Not Detected
by Assertions

Total

TABLE 2

RESULTS FROM GRID TESTS

Number Percentage

9 38

8 33

7 29

24 i00

TABLE 3

EFFECTIVENESS OF SECOND TESTING TECHNIQUES

Number of Assertion Violations
Detected by Testing Technique

Error S-Variable All-Variable
Number Grid Search Search

14 1 2 3

28 1 0 0

47 2 2 1

74 7 7 8

114.

TABLE 4

DETECTION OF ASSERTION VIOLATIONS BY SEARCH METHOD

Error Test Number of First
Number Assertion Violation

I 5

3 2

13 7

14 5

28 *

31 4

37 5

41 3

47 57

48 3

52 3

54 3

56 5

57 7

64 2

67 5

74 2

*No assertion violations detected.

115

some of the problems in an experiment
such as this. Using programs from actual
development efforts containing unknown
errors would introduce factors into the
experiment which could not be controlled.
Interpreting the results of such an ex-
periment would therefore be more difficult.

Equating assertion violations with
errors is also a point which may be argued.
In this experiment, it was assumed that
once an assertion violation was detected,
the error would become self-evident. This
is obviously not true in the case. This
will be true only if assertions are placed
in the correct spot and describe the
nature of the error. Again, only further
experimentation can determine how useful
the technique is at locating errors.

The way in which the error function
was constructed to allow the search
routine to be used can also be questioned.
Simply summing the number of assertions
to determine the value of the function is
a crude technique. The search technique
is thereby driven to select input values
which maximize the number of assertions
violated. We have found some evidence to
indicate that errors are not randomly
distributed; that they occur in groups.
Therefore, searching for maximums of the
error function should locate most of the
errors in a program. However, this is
still a crude method. We are investigating
a method which takes the content of the
assertions into account in generating
new input values. This technique is
taken from artificial intelligence re-
search and will be the basis for further
experiments.

In addition to the new experiments
described above, we also believe that
the techniques need to be applied to
cases where more than one error occurs in
the software, and to types of programs
other than arithmetic computations (e.g.,
compilers). The efficiency of the tech-
nique relative to other types of testing
should also be investigated.

We believe that the experiment
successfully demonstrated the value of the
search testing method. We were able to
locate errors in a program automatically
and relieved ourselves of the necessity
of inventing test cases. In addition, the
technique identified errors in our con-
ception of the operation of the program as
embedded in the assertions.

1.

2.

.

References

.

D.S. Alberts, "The Economics o:~
Software Quality Assurance" in
AFIPS Conference Proceedings: "976
~nal Computer ConFerence, ~o."
45, AFIPS Press, Montvale, N.J.
pp. 433-442.

.

W.E. Howden, "Theoretical and Empirical
Studies in Program Testing," I~EE
Transactions on Software En~i~ing,
Vol. SE-4, July 1978.

.

C. Gannon, "Error Detection Usiug
Path Testing and Static Analysis,"
Computer, Vol. 12, August 1979.

LoA. Clarke, "A System to Generate
Test Data and Symbolically Execute
Programs," IEEE Transactions on
Software Engineering, Vol. SE-4[
September 1976.

T.A. Thayer et al., Software Re:Liability
Stro~udp, TRW Defense and Bpace Sy~tems

, RADC-TR-76-238, Redondo :3each,
Calif., August 1976.

M.J. Fries, Software Error Data
n~ Boeing Aerospace Company,
- 30, Seattle, Washington,

April 1977.

7. Verification and Validation for Terminal
Defense Program Software: The Develop-
ment of a Software Error Thepry-to
Classify and Detect Software Erzors,
~-0gic0n HR-74012, May 1974.

8. M.M. Denn, Optimization by Variational
Methods, New York, McGraw-Hill, 1969.

9. Jo Benson, A Preliminary Experiment in
Automated Software Testing, Gene:~---"
Research Corporation TM'~308, February
1980.

10. M.J. Box, "A New Method of Constrained
Optimization and Comparison with Other
Methods," C0mputer Journal, Vol. 8, 1965.

116

