
DATA SPACE TESTING

Michael Paige
Manager Product Quality Assurance
Wang Laboratories
Lowell, Mass. 01851

ABSTRACT

A complete software testing process
must concentrate on examination of the
software characteristics as they may im-
pact reliability. Software testing has
largely been concerned with structural
tests, that is, test of program logic
flow. In this paper, a companion software
test technique for the program data called
data space testing is described.

An approach to data space analysis
is introduced with an associated notation.
The concept is to identify the sensitivity
of the software to a change in a specific
data item. The collective information on
the sensitivity of the program to all data
items is used as a basis for test selection
and generation of input values.

INTRODUCTION

The initial emphasis in software
development was on efficiency. Hardware
costs were high so there was pressure to
fully utilize available resources. Soft-
ware, on the other hand, was relatively
cheap and could be made to mask out
hardware de~ciencies. The situation has
changed and software effeiciency has given
way to effectiveness (reliability) as the
cornerstone of software development.

The problems in developing reliable
software systems are becoming increasingly
critical, and the need for integrated,
practical methodologies for the design,
implementation, and testing of such systems
has been widely recognized. In the short
term, software reliability can be enhanced
through use of systematic program testing
techniques.

The central concept in software is
that of a program and the most frequently
used definition of a program is a sequence
of instructions. This approach tends to
ignore the role of data in the program;
hence, an alternative definition is that
a program is a series of transformations
and other relationships over sets of data.
The purpose of this paper is to examine
this data and how it can be tested in con-
jun~ion with the program.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Data testing is of key concern in
software checkout. The current literature
concerning data testing has largely
centered on "data flow analysis", that
is, the use of the set/use pattern for
a given variablel within the software.
Anomalies in the usage of given variables
can be detected by this approach, for

• xample, if a variable is referenced
used) before it is defined (set). This

approach, howe~er, does not shed much
light on the problem of actually creating
software tests.

The current emphasis on software
test data generation is divided into two
modes: control path related and data
definition related. The first mode uses
the control flow (or program graph) re-
presentation ~f the software as a basis
for testing ~,~. The concept is to select
a possible test path through the code,
determine the variables which control the
execution of that path, determine the
constraining conditions on those variables,
and then select a specific set of values
for those variables which satisfy those
conditions. The result is test data for
the given test path. (Computational
accuracy may be checked as a by-product
of this approach.)

The alternative test data generation
approach is to concentrate on the user
supplied data declarations 4. The concept
is to fabricate an input value which
satisfies all the declared (or implied)
size, type, etc. characteristics. This
test can then be executed and the correspond-
ing test path determined. Techniques for
random number generation can be used to
determine how the software will handle
variable conditions.

A third approach for the use in
test data generation is considered in this
paper. This approach represents a synthesis
of the two preceding techniques. It also
introduces a more tractable basis for
systematic test data generation than either
paths which in most cases are extremely
large in number, or static dat~ declaration
manipulation, which tends to ignore the
actual software algorithms. This approach

©1981 ACM 0-89791-038-9 /81/0003/0117 $00.75

117

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800003.807916&domain=pdf&date_stamp=1981-01-01

is based on the usage patterns and the
physical characteristics of the data,
~ointly considered as data space.

In the next section the concept of
data space is considered and an analysis
model is described. An approach to data
space testing is discussed in the follow-
ing section.

DATA SPACE AND DATA FLOW ANALYSIS

The first step in this discussion
must be to separate the data space from
the program.

As described earlier, a program can
be regarded as a transformation which
converts input data to output data. In
this sence, the data space consists of
a set of containers, that is, forms to
contain the information to be processed.
Each container has a size and shape, and
other attributes which relate ta form.
Information within the containers is
identified by types and values and ether
attributes which relate to cbntent.

The containers for the sample pro-
gram shown in Figure 1 are listed in
Figure 2. Note the containers are either
constant or identifiers. Subroutine calls
are treated like arrays, for example,
CALL PE(12) is considered to be data items
12 and PE.

Implicit in the program is an order
of the effect of one data item on another.
True to the nature of programming l&uguages,
this order of precedence is in the form of
a modifier, that is, an item which re-
stricts or limits another. A subscript
expression, for example, modifies the
variable to which it applies. Consider
the assignment statement shown below:

R(N) = T (M + L , K) * * 2 + R(S(K))
We will let the notation (X,Y) imply that
X modifies Y; the parsing of this assign-
ment statement would yield:

K,~ ~K,S)
M, ~S,R~
L, (R,R)
T,

The list above of formulae can also be
presented in a matrix format where the
rows and columns are the container names
and the entries.

A container which appears only as a
row but not as a coltann is said to be
prime. In Figure 4 L2, L4, 1, 600, 2, 12
are primes. All constants must be prime.

A container X's reach,o(X), is
determined by iterative~f~ming the
union of all the rows which correpond
to columns in its modification matrix.
For example the reach for J would be
formed as indicated in Figure 5. A
reach is the set of all data items
which could be effected by a change
in a given data item. A reach matrix
e a n be formed by collecting all the
individual row's reaches as shown in
Figure 6.

The modification matrix represeats
the effect of one data item on the next
and the complete effect of a single ~ata
item. In a more global basis the reach
of a container X represents the sensLtivity
of the program to that item.

The sensitivity of program P to item
X will be referred to as dP/dX, that is,
the change in P due to a change in X,
This sensitivity is indicated by an item's
reach, e.g.,

a P = p(x)
dX

Henc e ,

aP = p(x)ax

which implies that the change in X, or dX,
is propagated through p(X) to its global
program effect. This effect is felt through
one or two routes; it is either

I) computation (R)

2) ~ontrol (C)

3) both

SOFTWARE TESTING APPROACH

The most practical means to demonstrate
software reliability is by testing. Test-
ing is the process of evaluating the
appropriateness of the program results and
the robustness of the code in practical
machine environments. In a large sense,
testing is equivalent to exercising the
system. A test corresponds to input
stimulus or event, and a correspondinN
system response. In production environ-
ments, it is far too often the case that
unexpected events prove to be the major
obstacle in demonstrating software
reliability. Programmers, and the program
designers before them, often overlook or
discount some of the potentialities; ~his
is understandable since there is usua~Lly
too many events to consider at one tine.

For purposes of this discussion, a
software test will be defined not only
in the terms of the input and the correspond-
ing output but the data items which are
modified by that particular input.

1 1 8

1.

2.

3.

4 .

5 .

6 .

7.

8 .

9 .

10

11

12

13

14

15

1 6 .

17 .

18 .

1 9 .

2 0 .

2 1 .

22 .

SUBROUTINE S.~/~PLE (LI,L2,L3,L4)
DIMENSION L3(1,2)
INTEGER LI,L2,L3,L4,P,J,E

P = MD(L2,L4) +I

IF (L2.EQ.600) RETURN

IF (L3(P,I).EQ. L2)

L1 = L3(P, 2)

ELSE

J=P

WHILE (L3(J,I).NE.L2.AND.J.NE.P-I)

IF (J. LT.L4)

J = J+l

ELSE

J= 1

ENDIF

ENDWH I LE

IF (L3(J, I) .EQ.L2)

L1 = L3(J,2)

ELSE

CALL PE(12)

ENDIF

ENDIF

RETURN

END

Figure I. Sample Program

119

CONTAI NER TYPE SHAPE SIZE

L1

L2

L3

L4

P

J

E

1

2.

600

PE

12

INTEGER Word

INTEGER Word

INTEGER Array

INTEGER Word

INTEGER Word

INTEGER Word

INTEGER Word

CONSTANT

CONSTANT

CONSTANT

SUBROUTINE

CONSTANT

1

1

(& ,2)
1

1

1

1

Figure 2. Containers for S~MPLE

120

R T S

N x

K x

M x

L x

T x

2 x

K x

S x

R x

Figure 3. Modification Matrix

121

E C

C 3 C 4 C 8 C 9 C15

1

L4

L2

MD

60C

P

L3

2

J

12

X

X

X

X

X X

X X

X

X

X X

I
I

I

1
!

I
x I

I

X

X X X X

x

x

x x

x x

Figure 4 . Modification Matrix for SAMPLE

122

L c,Z 9

Figure 5. J's Reach

P MD L3 L1 J PE

C

1

L4

L2

MD

606

P

L3

2

J

12

X X X X

X X X X X

X X X X X

X X X X

X X X

X

X X

X X X

X

I X X X X
|

X X X X

I
X X X X X

i

X X X X

I x
I x x x x

X X X

I X X X

I x x x x

I
t

Figure 6. Reach Matrix

123

The modification matrix (such as
that shown in Figure 4) presents two
t~pes of test information: data items
which affect the control of the pro-
gram (C~), and data items which affect
the computation of the program. These
are not necessarily disjoint classes;
for example, the item J belongs to both
classes.

A test corresponds to an input
value, a corresponding series of
modified items, and an output, During
the test design process there are three
questions that need to be addressed:

I) What is a "good" test set?

2) ~at is a test for a given data
item?

3) During the test for a given data
item what else is affected?

Before the formation of tests is
addressed an observation concerning the
modification and reaching matrices is
necessary. The set of prime items may
not include all input data items; how-
ever, the set of prime items is a ready
vehicle for manipulation of all program
data items. The prime items are, in
essence, a baseline set of test controls.

The answers to the three questions
can now be addressed as follows:

A "good" test set should exercise
each data item in the program at least
once. The set of prime items represents
an ideal series of test controls, however,
it is often the case that these items do
not cover all other data items. If a
program has no prime items or the primes
do not form a complete cover then a
cover has to be selected; in this case,
a cover is a set of data items which
have within their reach all other items.

A test is an input, the data items
modifie ,End the output; hence a test
T is represented as:

(dX,p(X), dP)
or simply T = dP = p(X)dX. In words, a
test is in input change, the resulting
set of modified items, and their effect
on the program.

The answer to the second question
involves the determination of which data
item, Y, is to be tested and the selection
of all primes which reach Y. In short,
select all primes such that Y~£(X).

The thrid question simply involves
the determination of the reach of the
data item.

The remaining issue to address is
the formulation of dX.

The data items can be defined as
constants or parameters. The testing
with these two types differ significantly.
The test for a constant requires a check
to insure the equi~alance of the item
name, e.g., O, 1, 201, and the actual item

124

value. Often constants can be "clobbered"
an~hence must be checked for value.
Hence, dX corresponds to creating an
entity whose name and value differ, al-
though Y is a constant.

The test for parameters requires
that a sample item be generated. The
container information now becomes ex-
tremely.important. To test L3, for ex-
ample, (from Figure 2) we known that L3
is an array of size (1,2) consisting of
integers. The nature of these numbers,
that is, their properties would be of
help in generating a test, however, for
the first level of testing it is important
to merely establish the response of the
program to item X.

Much of the process of software
testing invlcves rediscovery of software
intent, that is, the testing process should
re-establish the general software character-
istics. These discovered features are
then compared with the original speci-
faction to validate the software design.
By focusing attention on the effect of
data characteristics, e.g., shape, size,
type, and not on actual values, questions
can be resolved on the ability of the
program to process that particular data
item. Using the information in Figure 2
a set of possible input values can be
selected by fabricating a sample which
lies inside the acceptable definition
and then outside by virtue of the wrong
type, shape, or size as shown in Figure
7.

A "good" test set for the example
program (Figure I) is (I, 2, 12, 600, L2,
L4), the primes from the program. One
set of test cases is shown in Figure 8.
If further information is made available
concerning the actual output data items
or the ranges on the values of L2 and L4
further dX situations could be developed.

FINAL NOTE

At the present time there is no
comprehensive strategy for software
testing. Much of the literature has
concentrated on structural or flow tests
and very little on the testing of data.
The technique described in this paper
provides an analytic basis for data
testing. The concept of data space is
intended to includethe relationships
induced by the program, since the idea
of data base seems to often exclude the
actual program and its characteristics.

A program is often best understood
as a sum of its parts. A program should
be tested in parts as well as a whole in
order to avoid the myopia which often
accompanies dealing with an integrated
product.

The role of testing is to rediscover
the nature of the software, in essence a
second opinion on its operational capa-
bilities. (The first opinion, that of the
designer-developer is too often biased.)

o3

0

0

0

0

"o

~r

o

0

0
Z O

0

0

~ Z

v

0

Z

0

0

0 " 0 O ~

~ 0 ~ 0

,.1:~ I,.E: ~ m M

UI

125

i

~4
03

o
f~

II II ~ II II

~ u ~

~ -~

0

126

The work described here is one step in
an extended effort at The Analytic Sci-
ences Corporation (TASC) to develop a
complete software test strategy. Such
a strategy would address the different
aspects of a program: control, data,
operations, timing, etc. The approach
discussed in this paper is intended as a
way to get a handle on the testing of the
data aspect of a program. This technique
admittedly treats the program as a static
entity and hence misses the execution
relationships between data elements. The
techniques described in this paper are
intended to serve as much as a format of
addressing this problem as a technique
for actually deriving tests.

REFERENCES

I) L.D. Fosdick and L.J. Osterweil,
"Data Flow Analysis in Software
Reliability", ACM Computing Surveys,
September 1976, pp. 305-330

2) W.E. Howden, "Methodology for the
Generation of Program Test Data",
IEEE Transactions on Comouters,
May 1975, pp. 554-560.

3) C.V. Ramamoorthy et al, "On the
Automated Generation of Program
Test Data", IEEE Transactions on
Software Engineering, December 1976,
pp. 293-300.

4) "MIS Using Test Data Generators to
Reduce Software Development Costs",
Dept. of the Army Technical Bulletin,
T.B. 18-22, 1974.

127

