
BABEL, AN APPLICATION OF EXTENSIBLE COMPILERS

R. S. Scowen
National Physical Laboratory
Teddington, Middlesex, England

INTRODUCTION

The normal approach in providing an extensible programming language seems to
be to design and implement a base language which has facilities enabling the
programmer to define and use extensions. This paper discusses a solution using
an alternative approach in which extensions are made by changing the compiler.
Of course, in theory, any compiler can be altered (it is only a computer
program); in practice it is probably not so easy since difficulties will arise
if the compiler has been designed for one fixed standard language on one
particular computer. If a compiler is to be altered, it must possess various
properties; there should be no danger of accidentally invalidating an existing
program, and it must be clear what changes are required to make a desired
extension. It is also desirable that only a small number of changes should be
required to make an extension.

The method of wr i t ing compilers which is described below sat is f ies these
conditions and has been adopted in three di f ferent appl icat ions:-

(1) Babel, a conventional high level programming language.

(2) SOAP, a program which documents and edits an ALGOL 60
program.

(3) PL516, a high level assembly language for the Honeywell
DDP516 computer.

In each of these systems there is a processor which reads a program as
input, analyses its syntax, and produces output which depends on the syntax.
Each processor has the same overall structure, and can easily be extended or
altered to cope with a different input language or to process a language in a
different way.

This paper describes Babel giving details of the system, the structure of
the compiler and some of the extensions which have been made. SOAP has been
described in Scowen 1971 and PL516 has been described in Wichmann 1970, and
Bell and Wich~iann 1971.

THE BABEL LANGUAGE

The ~abel (,1) language is a cleaner version of ALGOL 60. Concepts which
are only applicable in a local context have been removed from the language,

(1) The name Babel is not an acronym; it is meant as a perpetual warning
of the fate awaiting anyone who makes too many extensions.

i

http://crossmark.crossref.org/dialog/?doi=10.1145%2F942582.807971&domain=pdf&date_stamp=1971-09-01

e.g. own, switch, implicit label declarations, implicit call-by-name.

Other More useful concepts have been added:- (1) Cases, see Hoare 1964, (2)
While and Until statements, (3) Extra global entities, including some for
Input Output, (4) Constant valued entities, (5) More operators, e.g. ABS,
SIGN, REM.

All these changes are designed to help the programmer by making a short and
simple program an efficient one.

The rules of the language have been formulated so that there are fewer
exceptional cases than in ALGOL 60; for instance, in Babel, one sort of
statement is always syntactically equivalent to any other form of statenent.
Other changes have been made so that the compiler can check as much as
possible of a program during translation.

The Babel compiler

The Babel compiler is written in ALGOL 60; this has several very important
advantages (see Garwick 1966):-

(1) It provides a formal definition of the language.

(2) It is machine independent.

(3) The debugging has been simplified.

(4) It is easier to document and understand the compiler.

(5) It has hetped to ensure that the structure remains modular,
neat and tidy.

The ALGOL version is naturally too stow to be a practical tool, but from it
a more efficient compiler has been produced. D. Schofield used a Compiler -
Compiler (see Brooker et at 1963) to convert most of the translator into a
KDF9 assembly language. Other parts of the compiler were also converted to
assembly language automatically. The remaining parts of the new compiler are
either software that already existed (i.e. for input/output, standard
functions) or were coded by hand using the ALGOL compiler as a blueprint. This
compiler has a satisfactory performance (compiling a page of text per sec. and
producing 600 bytes of code per sec.). The speed of translation is
approximately equal to that of the KDF9 Whetstone ALGOL Compiler (Randetl and
Russell, 1964) which was specially designed to translate rapidly.

The cor,~piter contains several segments:-

(1) An Input section which reads the text of a Babel program and
splits it into basic symbols.

(2) A Translator section which analyses the syntax of a Babel
program and translates it into the machine code of a Delta
computer (a hypothetical machine with a Reverse Polish order
code).

(3) A Listing section which prints the Delta machine code of a

2

translated program.

(4) An Interpreter section which simulates a Delta computer and
interprets the code produced by the Translator.

(5) A Conversion section which turns the Delta code into KDF9
machine code which can be executed directly.

Many of the details have been described in a report (Scowen 1970).

The Babel translator

tlost of the compiler segments have a straightforward form of construction
which is simple to extend, but the Translator has had to be designed in a
special way so that facilities can be added or deleted from the language.

The Translator is modular so that any new concept affects the compiler in
clearly defined parts of it. Each syntactic part of the language corresponds
to a unique part of the Translator and each module of the Translator is a
routine for a different part of the Babel language: thus one routine
translates a block, another translates an expression and there are others to
translate a constant, a variable, a conditional, etc.

Each routine is an ALGOL procedure, which, when called, makes a single pass
through the text of the appropriate syntactic part of the Babel program. A
routine reads the basic symbols one at a time, translating as it reads then
and calling other routines whenever appropriate. The routines call each other
recursively in a way determined by the syntactical structure of the program
being translated.

The routines have been written so that each one can be re-written easily as
a subroutine in an assembly language; sore of the properties which ensure this
are:-

(1) The body of each routine is a compound statement, not a
block.

(2) The routines do not have any parameters; instead they
communicate with each other using a (fairly small) number of
global entities, t~henever necessary the current value of one
of these entities is preserved on a stack.

Any version of Babel is a superset or a subset

It would be most unfortunate if a new version of Babel invalidated an
existing program. The modular single pass structure of the Translator is the
most important feature which makes it simple to ensure that an extension to
Babel creates a superset and deleting a facility creates a subset, In either
case programs which do not use the changed feature compile and run with the
same effect as previously. Other features are:-

(1) There is a clear distinction between basic symbols and
identifiers; a programmer creates identifiers and the extender
of Babel can create new basic symbols.

3

(2) There are no impl ic i t type conversion operators so that the
introduction of a new type cannot affect exist ing programs,

(3) Global entities are regarded as being declared in a block
which surrounds the program and not in the outermost block of
the program.

Note also that the modular nature of the Translator makes it far easier to
implement a general extension than a number of special cases. A general
extension can often be made by writing a few statements which call one or more
of the existing routines, but each special case would have to programmed
separately. For example, there are only two reasonable possibilities for a
subscript, either an integer constant or any integer expression.

The strategy of extension

At first sight it may seem that extending a language by altering the
compiler is an inferior and tess powerful toot than being able to specify a
language extension in a program. It is true that an ordinary programmer wilt
not be able to define a private extension and there is a danger of an
un~}anageable number of compilers, but there are some advantages:-

(1) It is possible to define extensions which cannot be expressed
simply in terms of the original language.

(2) It is possible to define a subset or to change the meaning of
the language.

(3) It does not matter whether a programmer uses any of the
possible extensions or not; no noticeable extra tine is needed
for either compilation or execution.

(4) The compiler is simple and fast.

(5) Extensions can be made which do not change the language but
instead give better diagnostics (e.g. a sensible post mortem),
or document programs (e.g. SOAP), or provide facilities for
measuring program performance and analysis.

(6) Error messages can be given in terms of the full language
rather than the base tanouage.

(7) The user has less to learn.

Finally there is no need to teach a large number of people how to make
extensions and thus there is tess danger of misuse. All extensions can be
implemented efficiently because they are made jointly by a software engineer
who amends the compiler and the customer who knows what he wants but not how
to express it. As a result it is hoped that new concepts will always be
implemented in such a way that the programmer is guided into expressing his
algorithm in a sensible way that is both natural and efficient.

4

BABEL EXTENSIONS

A new form of statement

A decision table provides a compact method of specifying many complicated
algorithms which cannot be expressed clearly withh case and conditional
statements. A common method of implementation is to write a preprocessor which
will convert a decision table into a procedure in a standard programming
language which is then inserted into the rest of the user's program. In Babel
an extension has been made so that a decision table is merely a new form of
statement in the language. This is more convenient and efficient than having
to use a preprocessor.

New types

It is possible to introduce a new type into Babel. If it is an 'assignment
type' (i.e. values of the type can be assigned to variables), then some
facilities become available as soon as the new basic symbols can be
recognized. With the new type it will be possible to create and use variables,
arrays, functions, parameters to procedures, assignment statements,
conditional and case expressions. This is because the parts of the Translator
which compile these constructions work for any 'assignment type'.

What else has to be done? It will be necessary to define a constant of the
new type, both how it is to be represented in a program, in a data file, and
in the computer during the execution of a program. Probably it will also be
desirable to define some new operators; for each one it is necessary to
specify its name, precedence, the type of the result, and the code to be
generated. The extension is completed by definin~ any new standard procedures
and functions which are required, e.g. for input or output.

By creating new types it has been possible to create facilities for complex
arithmetic and for processing text (as in compilers and editors). Another
possibility is an extension for performing real fixed-~oint arithmetic; this
would be desirable on small computers with no floating point hardware.

New structures

Record classes (see Wirth and lloare 1966, Hoare 1968) have also been
implemented as an extension to Babel. In this extension RECORDCLASS is a type
and REFERENCE(recordclass identifier) is an 'assignment type'.

A record class declaration creates a record class and specifies its name,
size and structure. A reference entity points to a record of one particular
record class; any field of a record can be used as a variable or primary
because the concept of a variable has been extended to include 'reference
variable.field identifier'. The implementation has not been made with full
generality because (as is well known) an unlicensed use of reference (or
pointer) variables lets the programmer make obscure and catastrophic errors.
In Babel a reference entity always points to a record of one particular
record-class which exists at least as long as the reference entity. The
compiler produces a translation error if the programmer tries to assign a
reference entity to anythinq other than a record of the appropriate record
class. The translator also checks comparisons and procedure parameters to see
that they are compatible.

5

Other sorts of structure can easily be created besides simple variables,
arrays and record classes. For instance it may occasionally be useful to have
symmetric, band or sparse matrices; in each case the programmer would use the
array as though it were stored in full and the comoiler would generate code to
calculate the appropriate address.

Syntax oriented documentation

A radical but simple alteration is to convert the Babel compiler so that it
documents a Babel program in the same way as SOAP edits an ALGOL program. This
is accomplished by amending the Babel Translator so that instead of compiling
the program and outputting code, it outputs the text of the proqram. The
oriqinal editing characters will have been discarded by the input section of
the compiler and the Translator is extended so that new editing characters are
output at points determined by the syntax of the program. Virtually the only
other change which is necessary is to arrange to copy comments instead of
discarding them in the Input section.

It is also fairly simple to modify the Translator so that it uses the name
list to produce a table which gives a complete cross reference listing of all
the entities in the program; i.e. the position of the declaration, assignments
and evaluations of a variable, calls of the procedures and functions, etc..

Diagnostic aids

Another obvious possibility is to keep the language unchanged but to alter
the code which is compiled. By this means it has been possible to extend Babel
to provide diagnostic and prooram analysis aids. When a Babel program fails,
the compiler not only indicates the sort of error but also prints a
retroactive trace to show what was happening just before the error. The
compiler also prints a postmortem which clearly specifies the name, type and
current value of all the entities that existed when the proqram failed.
Subscript checking can be made a translation option. Code can also be output
to count the number of tines each procedure is called and label passed; this
table can then be printed with a listing of the program to show how frequently
different parts were executed.

Other simple changes

~any other simple changes are possible; it is almost a trivial matter to
create a new operator or global entity. The only difficulty that may occur is
in deciding what code to execute when the operator or global entity is used.
One new operator which has been provided gives the remainder after integer
division. Two new global entities enable the programmer to create a file with
his results instead of outputting it directly.

_6

Conclusions and Acknowledgements

The implementation of Babel has shown that extensible compilers are
practicable if the compiler has a modular structure based on the language. A
wide range of extensions have been made without affecting existing programs.
It is also considered that writing a prototype system in ALGOL 60 had many
advantages because it made it easier to verify the ideas and to debug the
system.

I am grateful to D. Allin, D. Schofield, ~. Shimell and B. A. IHchmann for
many discussions and assistance during the the design and implementation of
Babel.

REFERENCES

D. A. Bell and B. A. Wichmann, An ALGOL-like Assenbly Language for a Small
Computer, Software - Practice and Experience, pp61 - 72, Vol 1, 1971.

R. A. Brooker, I. R. MacCullum, D. Morris, J. S. Rohl, The Compiler
Compiler, in 'Annual Review in Automatic Programming', Vol 3, Pergamon, 1963.

J. V. Garwick, The definition of programming languages by their compilers,
in "Formal Language Description Languages for Computer Programming', North
Holland, pp139 - 147, 1966.

C. A. R. Hoare, Case expressions. ALGOL Bulletin 18.3.7, Oct 1964.

C. A. R. Hoare, Record Handling in 'Programming Languages' edited by F.
Genuys, Academic Press, pp291 - 348, 1968.

B. Randell and L. J. Russell, ALGOL 60 Implementation, Academic Press,
1964.

R. S. Scowen, The Babel Compiler, NPL CCU Report No 10, tlarch 1970.

R. S. Scowen, D. Allin, A. L. Hillman, M. Shimell, SOAP - A program which
documents and edits ALGOL 60 programs, Comp J, pp133 - 135, Vol 14, No 2,
1971.

B. A. Wichmann, PL516, An ALGOL-like Assembly Language for the DDP-516, NPL
CCU Report No 9, Jan 1970.

N. Wirth and C. A. R. Hoare, A contribution to the development of ALGOL,
Comm ACM, pp413 - 432, Vol 9, No 6, 1966.

7

