
A SYNTAX MACRO PROCESSOR

P.L. Wodon
MBLE Research Laboratory, Brussels

I. The Context

Since syntax macros are not new, a few words of justification for still
another experiment are necessary. The origin is the following question : "In
which language to program the software of electronic telephone exchanges?"
Roughly, this is the known problem of choosing a language for software program-
ming, i.e. a language which should be "high-level" to ensure reliability and
hardware-oriented to ensure efficiency. Telephone exchanges however, have par-
ticularities of their own, two of which are worth mentioning. Firstly, no two
exchanges are exactly alike, and this rules out plain assembly code. Secondly,
the exchange builders know what they want but seem to have difficulties in
expressing it in terms of algorithms. This means that designing at once another
special purpose language was out of the question.

Something flexible was needed. To pro~i~e for an immediately usable pro-
gramming tool, a GPM-like macro generator [4J was put into service and is being
used for producing software.

In fact, a set of macros which expand into assembly code define a program-
ming "language". This "language" is of course extenslble and very flexible so
that the user can adapt it to his needs when he d~scovers them. This gives an
important side-effect : the properties of a possible specialized programming
language can be investigated simply by looking at the macros which are being
used.

A processor like GPM, however, has three obvious disadvantages : the
structure of programs does not appear in the text, there is no syntactic con-
trol and the system is an inefficient string processor.

In the present case, expansion efficiency has a secondary importance : it
is the efficiency of the assembly code constituting the result of expansion
which matters. It therefore remains to take care of program structure and syn-
tactic control. This leads to syntax macros, seen as a system in which a langua-
ge (i.e. a set of macro definitions and call formats) and its translation Cthe
associated macro bodies) are defined together and thereafter used.

Such a system, which has obvious similarities with extensible languages and
compller compilers, is justified only if two conditions hold. Firstly, nothing
better should be available. This is the case and in fact one of the aims is to
find something better using the system itself. The second condition is that
software programmers should be able to use it and this remains to be seen.

2. The System

The user of the system has to define formats and contexts for macro calls,
he may consider this as the syntax of his language, and corresponding expansion
rules, the associated "semantics". For example, he may define a syntax for arith-
metic expressions and expansion into some assembly code. The call 'A+B' then
expands into 'LOAD,A ; ADD, B;'. The intended use is along these lines but the
system is more general and similar things have been made long ago (see e.g.[3]).

_ 48

http://crossmark.crossref.org/dialog/?doi=10.1145%2F942582.807980&domain=pdf&date_stamp=1971-09-01

The problem is to have something to be put into the hands of software program-
mers, hence to choose a general yet not too exotic way of writing macro formats
and expansion rules.

Formats are expressed as a set of context-free rules without restrictions.
This is not ideal but general enough, well known and there are available parsing
methods. Non context-free features may either appear in the expansion rules
which have then to use tables or be left to an assembler processing the expanded
string.

A parsing algorithm [I], derived from [2], is used to transform calls into
syntactic trees. It is less efficient than algorithms which work on restricted
classes of CF grammars. For the simplicity of use, it was chosen to put no res-
trictions on the CF rules. Indeed, it is easy to recognize at a glance that CF
rules are indeed CF rules and difficult to see if CF rules constitute for exam-
ple an operator precedence grar~nar.

To illustrate expansion, an over used example will serve once again :
I. sum : sum, "+", term.
2. sum : term.
3. term : term, "m", factor.
4. term : factor.
5. factor : "(", sum, ")" .
6. factor : [any identifier]

Usually, one expmnsion routine (i.e. macro body) is associated to each
grammar rule (i.e. macro name). This was found to lack flexibility. For example,
if the call 'A+BmC' expands into 'LOAD,A ; STACK ; LOAD, B ; ... ' , it is not
easy to have 'A+B' expand into 'LOAD,A ; ADD, B' instead of 'LOAD, A ; STACK ;
LOAD, B ; ADD, UNSTACK ;'. Either the grammar has to be changed or a bunch of
predeflned tree predicates have to be used. It was felt more natural and gene-
ral to have several routines, characterized by mode and identifier, associated
with each CF rule. One of these routines ('exp' in the example) is the expansion
in the usual sense. For example, with the symbol 'I' denoting concatenation :

I. string exp = if simple ~f sum then "LOAD", "else" "fi I exp of sum I
i--~ simple o'-f term then "ADD," I exp o~-term

else "ST--ACE ;" I exp of term I "~D, UNSTACK;" f_~.
bool simple = false.

2. string exp = exp of term.
bool simple = simple of term.

3. string exp = if simple--of term then "LOAD, "else" "fi I exp of term I
i--f simple o--f factor then "MUL,T~-exp~f factor
-- else "STA--CK;" I exp" of factor I "MU~ UNSTACK;" f_~.

bool simple = false.
4. string exp = exp m°f' factor.

bool simple = simple of factor.
5. string exp = exp m°f sum.

bool simple = simple of sum.
6. string exp = id I";"

bool simple = true.

As usual, an example chosen for its shortness is misleading in several res-
pects. First of all, it makes the system look like a sledgehammer used to drive
a nail. This cannot behelpe~Furthermore, each routine consists here of a single
expression but it could be a program with several statements. Also, each grammar
rule is associated with the same number of routines with same mode and same

4g

identifier. This is necessary only for grammar rules having the same left-hand
side.

With this, the call 'A • B' is first transformed into a tree which can be
visualized thus :

NI N2 N3

f ! J
term term : [4 -[factor : l

"I" exp = ..
factor : • simple = .

exp = .. 1 1 ' simple = . N4

i " B " l exp = ...
simple = ...

@
J "A" • exp = ...

simple . ..

This tree is built by a syntactic analysis which stops when the smallest
complete tree is obtained for the particular isolated call. This permits piece-
wise expansion. Each node is then considered as a structure with several fields.
Some are pointers to other nodes : they correspond to non-termlnals. Others
correspond to the expansion routines. Roughly, expansion consists in filling in
these fields with values by computing the associated routines : each routine is
computed once, when its result is first needed.

Starting with field 'exp' in N|, the value of field 'simple' in N2 is
needed (rule 3 : 'simple of term'). This one (rule 4) needs the field 'simple'
in N3. Its value is 'trueW-(rule 6). The value of 'simple' in N2 and N| become
'true', etc. Eventually, field 'exp' in N] gets the value 'LOAD, A ; MUL, B;'
(whatever the order of evaluation).

Together with tables, this mechanism takes care of various cases. For exam-
ple, it suffices to add routines for calculating a type to have the same syntac-
tic rules serve for fixed and floating point arithmetic. The association of se-
veral, instead of one, expansion routines to a syntactic construct is a source
of simplicity of use as well as inefficiency of expansion. The latter is accep-
ted, at least as long as nothing more is known on the actual needs in telephone
exchange programming.

This is sufficient to give an idea of an experiment which w~ll be complete
only when the system has been tried to actually produce software for telephone
exchanges. So far, it can only be said that people who use GPM are certainly
able to use a simple syntactic macro processor.

References.

ill Bouckaert, M.,Pirotte, A.,Snelling, M. "More efficient general context-free
top-down parsers", MBLE Report R|73 (Nov. |97|).

[2] Earley, Jay. "An efficient context-free parsing algorithm" Comm. ACM 13, 2
(Feb. |970), 94-IO2.

[3] Irons, E. T. "The structure and use of the syntax-dlrected compiler"
Annual Review in Automatic Programming, Vol. 3, 1963, pp. 207-227.

[4] Strachey, C. "A general purpose macrogenerator" Comput. J. 8 (1965),
225-241.

_ 50 _

