
GRAMMATICAL INFERENCE FOR DEFINING 

EXTENSIONS 

S. Crespi Reghizzi 
Istituto di Elettrotecnica ed Elettronica - Politecnico 
32, P.za Leonardo da Vinci - Milan 20133, Italy. 

Extensions to a language need be defined by a grammar, 
or by any conceivable method which is apt to discriminate 
valid from unwanted extensions and to provide efficient park 
ing and translation. 

Context-free grammars - a traditional choice - have a 
major drawback with respect to practical use. Namely, the u~ 
sophisticated user of an extensible system would find it hard 
to formulate an appropriate BNF definition of the constructions 
he wants. 

It is likely that the user would prefer to define by 
examples the extensions he has in mind. In an interactive en- 
vironment the system should be able to 

a) extract from the examples some principles of well-formedness 
of the extensions, e.g. in the form of BNF rules to be submit- 
ted to the user for approval. 
b) Modify the rules derived in a), in order to account for new 
examples supplied by the user and specific statements of what 
is, or is not, a valid extension. 

The nucleous of such a definition facility could be pro- 
vided by a 5rammatical inference alsorithm, described in 
Biermann and Feldmann ~lJ and Crespi-Reghizzi E23 E3] . 

In the two latter works, data to the algorithm are bracket 
ed sentences such as 

+ A + ~ , (~ + ~) + ~ , etc. 

where underscores display the structure to be assigned to the 
language. The grammatical inference algorithm E2~ construct an 
operator precedence grammar which l) generates the sentences of 
the sample with the specified structure; 2) generates an infi- 
nite number of sentences not in the sample, which are a"reason 
able" generalization of the given examples. 
As new examples are added to the sample, the grammar inferred 
by the algorithm is incrementally updated. Certain properties 
of convergence of the algorithm are also considered in the quot 
ed references. The state of the art of grammatical inference is 
the following. 

There exists a satisfactory algorithm for finite-state 
languages Eh~ which is actually running. 

The program E2~ for operator precedence grammars is very 
fast, by has some restrictions (not discussed here) on the 
class of grammars. 

An improvement over E2] is presented in ~3] hut has not 
been tested. 

65 
m 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F942582.807984&domain=pdf&date_stamp=1971-09-01


No matter which algorithm is chosen, the inferred gram- 
mar should be submitted to the user for approval, either di- 
rectly, or by generating a representative set of strings 
which the user examines• The capability of taking other in- 
formation from the user, as suggested in b), should be added 
to an inference algorithm for directing the generalization 
and increasing the speed of convergence to the language intend 
ed by the user. 

A proposal for the use of inference techniques in the de- 
sign of programming languages is presented in E5~ . 

REFERENCES 

Eli Biermann, A.W. and Feldmann J.A., "A survey of results in 
grammatical inference" Internat Conf on Frontiers in ' • • ., 

Pattern reco6nition, Honolulu, 1971. 

[2] 

I[3] 

[43 

Crespi-Reghizzi, S., "An effective model for grammar infe 
rence" Proc IFIP Congress, Ljubjana, 1971 

Crespi-Reghizzi, S., "Reduction of enumeration in grammar 
acquisition", Pro_____~. 2nd Joint Conf. Artificial Intelli~.ence, 
London, 1971. 

Biermann, A.W. and Feldmann, J.A., "On the synthesis of 
finite-state acceptors", A.I Memo N. ll4, Computer Science 
Dept., Stanford University, April 197L. 

[5~I Crespi-Reghizzi, S., Melkanoff, M.A. and Lichten, L., "A 
proposal for the use of grammar inference as a tool for 
designing programming languages", Rept. N. 71-i, Istituto 
di Elettrotecnica ed Elettronica, Politecnico di Milano. 

_ 66_ 


