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ABSTRACT. 

The structure of a good syntax is derived from the requirement to 
understand and therefore to analyse a !anguage easily. Every 
language possesses an abstract, representation-independent syntax. 
From this the operator precedence method and other complementary 
or alternative methods of analysis are deduced. It is possible to 
construct syntactic definition mechanisms by means of which for any 
abstract syntax different concrete languages can be defined, which 
are concise, surveyable, unambiguous and easily analysable. In- 
corporated in a programming language these syntactic definition 
mechanisms make that language syntactic extensible. 

INTRODUCTION. 

At the present day the syntax definition mechanism that is used to 
define almost every programming language, is Backus Naur Form. It is 
a simple mechanism but it appears to be difficult to develop an easy 
syntax directed analysis for it. Many methods have been proposed to 
improve the efficiency of the analyser, but they remain unsatisfactory 
unless a number of restrictions is accepted. As a result of these 
disadvantages, most commercial compilers are written by hand. If in 
an extensible language the programmer is allowed to declare new BNF 
rules, an efficient analysis may not be expected. This decreases 
the value of such an extensible system. However, a language is a 
means of communication so its sentences should be understood by 
every reader as well by a human reader as by a computer. The ease 
of understanding and therefore, the ease of the analysis belongs to 
the nature of the language itself. The syntax definition mechanism 
must guarantee the ease of analysis. BNF does not come up to this 
requirement and therefore, it should be replaced by another mechanism. 
An examination of the nature of programming languages may provide 
a top-down deduction of the nature of a goo d syntax. 

ABSTRACT SYNTAX. 

A program is only a piece of information, however, a very complex one, 
Algol 68 describes how compl'ex-informati0n can be built up. A value 
of a mode of information can be constructed by joining values of 
several different modes of information, and is called a structure, 
Joint values of the same kind of information are called array or row. 
When the value itself determines its mode, it is called a union. 
It appears to be rather easy to define the mode of an Algol 60 
program: 
mode program = statement 

mode block = struct (~ ] dec___~, [ ] statement) 

mode statement = union (block, . . . .  assignment , conditional.,s~a~, + ~ for star, ...) 
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mode conditional stat = struct (bool, statement , statement) etc. 

A mode describes the kind of its values indePendent of their 
representation e.g. a value of the mode integer may have a decimal 
representation on paper, a punch card representation or a binary 
representation in a computer memory. Because of this abstract nature 
delimiters like the semicolon, begs_q, end, if then else and := 
are not present in the mode declaration of an Algol 60 program. 
Except for this, a close relationship exists between a mode and 
a syntactic unit: A mode can be considered as the set of all its 
values and a syntactic unit as the set of all its terminal strings. 
The union operator for modes has its translation in the alternatives 
of a BNF rule. The fields of a structure correspond with the components 
of one alternative of a BNF rule. The row operator for modes does not 
have a direct equivalent in BNF but is implemented as a recursive 
structure. However, sequences or chains exist in some extended BNF 
formalisms. The construction union (int, int~ E_eal) is forbidden in 
Algol 68 but it may occur that different cases of a union in an abstract 
syntax have the same mode accidentally. Then it is necessary to be 
able to distinguish between the different cases by means of identifiers. 
An example: 
mode aexpr = union (arithmvariable a, unsigned number u, 

struct (aexpr a, aexpr b) power, struct (aexPr a, aexpr b) multipli- 
cation, 

struct (aexpr a, aexpr b) addition, etc ..... ) 
A value of a complex mode constructed with the operators of struct, 
row, and union has the form of a tree, in which the fields of a 
structure or the elements of a row are parallel branches. With explicit 
information about the case of the union each time, the tree becomes a 
labelled tree. 

CONCRETE SYNTAX. 

A tree value of an abstract syntax may be represented as a tree on a 
two dimensional sheet of paper but it is handier to have a textual represen- 
tation. A text means a linear ordered set of symbols. Defining the 
textual representation of a language is the task of a concrete syntax. 
The difference between the abstract and the concrete syntax is 
important to a language designer as because of this difference he 
does not have to worry about the representation when he is thinking 
about the essential, abstract structure of his language. After having 
fixed the structure of his language, he is free to pay attention to 
a good readibility of the representation. The most natural way to 
represent a structure by a string is placing the representations of 
its fields one after another and in the same way the representations 
of the elements of a row can be placed one after another. This proces 
is very easy. However, the other way around is more difficult. If one 
wants to reconstruct the tree value from its textual representation, 
it is necessaI~ to know where the boundaries of the representations 
of the subtrees are and further the union information is needed. 
Information about the boundaries means that between two symbols - or 
after so~le reduction: between two syntactic units - it is known 
whether the first syntactic unit must be reduced first or the two 
syntactic units must be reduced at the same time or the second syntactic 
unit must be reduced before the first. These three possibilities of 
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precedence relation are generally called: greater than, equal, and 
less than. As the information about the boundaries of the subtrees, 
and therefore, the knowledge of the precedence relation is of vital 
importance to an efficient analysis, we must require that it can be 
deduced from its direct environment. This deduction should not be too 
difficult and so it seems desirable that it depends on two syntactic 
units at most. Such dependence can be described as a matrix. Here the 
first syntactic unit indicates the row, the second one indicates the 
column and each matrix element is the value of the corresponding 
precedence relation if the relation exists. However, remembering 
such a matrix is still too difficult. To reduce the quantity of 
information that must be remembered it is desirable that the matrix 
can be deduced from two functions f and g which map the syntactic 
units into integers. The value of the matrix element of the row 
x and the column y must, if it exists, be equal to the relation 
between g(x) and f(y). The actual construction of concrete syntax 
will show more nuances. 

THE FUNCTION OF DELIMITERS. 

The two problems of concrete syntax, namely the indication of the 
boundaries and of the union information, may be solved by placing 
extra symbols before, between or after the representations of the 
fields of a structure. The first problem can be solved by surrounding 
each structure by brackets. The second problem can be solved by 
preceding the first bracket by a symbol representing the union 
information. Any abstract syntax can be represented by this phrase mar- 
ker form, (whose precedence relations can indeed be described by two 
functions and) which can be analysed very easily. Therefore, we may 
require that each concrete syntax has at least the same degree of 
easiness of analysis. The infix notation of dyadic operations demands 
less symbols and is more readable, as a good readability does not 
only imply an easy bottom up analysis but also implies that the 
bottom up analysis leads to a good top down survey. A good top down 
survey implies that the extent of large operands can be found easily. 
The parenthesized, the phrase marker, the prefix and the Postfix 
notation need a counter to calculate the extent. The infix notation 
does not need such a counter and is therefore a more readable notation. 
Since the operator symbol does not only provide the union information 
but also the precedence information, the precedence functions of the 
operator symbols should be compared directly without looking at the 
operands. So the set of syntactic units must be divided into two 
subsets: the units that have precedence information and the other ones. 
Herewith we have deduced the operator precedence method. In order to 
avoid ambiguities in BNF thelsyntactic unit aexpr must be divided 
artificially into term, factor etc. which makes the language more 
difficult to learn then a language definition containing priority 
declarations. Moreover, the BNF formulation requires a transformation 
into priorities anyhow, either by men or by computers to obtain an 
easy analysis. 

PRIORITY DECLARATIONS. 

The examples show what the power of an extensible language could be. 
An operator may have only one left and one right priority; defined 
e.g. : 
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= ( 2 ,  
However usuallythe left and right priority are the same: 
2ziority += 6 means: priorit~ += (6, 6). 
Different from what is stated above: when an operator ~ is succeeded 
by 02_ and when they have equal priorities, they may not be reduced 
together, but the left one must be reduced first. So the rule is: 
association to the left. If association to the right is wanted, the 
following declaration can be used: 
priority. := = 4 right means: priority := = (4, 3). 
In Algol 68 the complement of the priority declaration is the operator 
declaration: 
o~ (real, real) real += some semantics. 
To show the position of the operator in an applied occurrence and to 
define the formal parameters the operator declaration should be changed 
to a form declaration. 
form real a + real b - > real = some semantics. 
The form declaration is more general than the operator declaration: 
form if bool a then real b else real c fi ~ real = some semantics. 
This declaration implies the priority declarations: 
priority if = (maximum, minimum), priority the__n = (min, min) 
priority else = (min, min), priority f i = (min, max) 
If a form is open to the left (which means: it begins with an operand) 
the first operator is called infix and needs an explicit priority 
declaration, similarly when a form is open to the right. So the else 
and the do of Algol 60 require explicit priority declarations. 
monadic ~--= 6 means: priority - = (max, 6) 

MONADIC OPERATORS. TWO DEVIATIONS OF AN OPERATOR GRAMMAR. 

When the same operator symbol is used to represent dyadic as welI 
as a monadic operator (e.g. the minus symbol), the strong rule that a 
symbol may have only one left and right priority is violated. In this 
special case however, the violation can be allowed with the following 
analysis: If an operato r that must be reduced, requires an operand 
at its right side and finds an operator, it examines whether that 
operator is allowed to be monadic. If it is not, then a 
syntactic error has been discovered, otherwise that second operator 
must be reduced first, as a monadic operator. 
Every form declaration has to contain one operator symbol at least. 
There are no restrictions on the number of operands that follow 
each other immediately. The priorities of the operators determine 
which operator must be reduced and then this operator asks for that 
number of operands on the left and on the right it wants itself. So 
prefix and postfix dyadic operators are allowed. The main function of 
an operator symbol is not to have priorities but to give the union 
information. The union information is necessary if two or more 
production rules have the same kinds of operands (e.g. the addition 
and the multiplication ) . If two kinds of operands have only one 
corresponding production rule or if one corresponding production rule 
is selected, the union information may be absent, e.g. the procedure 
call: in sin x. This asks for a Wirth & Weber precedence. Above, 
operands have been defined as those syntactic units that have no 
precedence information. Now operands have precedence functions but 
these functions are neglected if an operand is enclosed between 
operators. The harmonic cooperation between the monadio operators and 
the first and the second deviation of an operator grammar needs further 
examination before examples of explicit formal syntactic definitions 
can be given. 

7O 



CHARACTERIZING A RULE. 

When more abstract syntax rules exist with the same fields, in the 
concrete syntax an extra (operator) symbol is needed to obtain the 
union information. Now it would be wasteful to reserve this symbol 
for this purpose only. It is sufficientwhen the combination of 
the operator and its operands indicates the rule. So, more operator 
declarations having the same operator symbol are allowed, e.g.: 
int +, real +, complex +. However, large syntactic forms need the 
characteristic information at the beginning in order to give the 
human reader an easy top down survey. Following operators are 
allowed to be not characteristic and may occur in several form 
declarations as separators. In a large syntactic form parts follow- 
ing the characterizing information should be allowed to be defined 
optional. The language designer is strongly advised to define all 
large syntactic forms such that they are opened b-r a prefix symbol 
which is characterizing on its own and suoh that they are closed 
by a postfix symbol which is characterizing too. The postfix symbol 
is important to facilitate the recognition of the extent of the 
large form. By this a number of different types of brackets is 
introduced: (), Sf f_~, case esac, for do od. This decreases 
strongly the need for counting the brackets. Brackets remain 
necessary when infix operators are used for raising the priority. 
So infix operators, normal brackets and special brackets together 
with prefix information are important to get an easy top down 
survey. The readability can also be improved by underlining exactly 
those symbols that have priority. So the booleans: true and false, 
the primitive modes: real, int, char and bool i and all mode indica- 
tions must loose their underlining and the difference between 
indications and identifiers disappears. 

ABSTRACT METASYNTAX. 

The abstract syntax has previously been defined by mode declarers, 
which generate new modes (syntactic units) from old ones, and by 
mode declarations, which connect new indications (identifiers) with 
generated modes. Such an indication on all applied occurrence can be 
substituted by the right side of its defining occurrence. To obtain 
a recursive mode a declaration is necessary because the indication 
cannot be removed by substitution. So it becomes an entity in itself 
and the right side of its declaration becomes a set of rules by which 
the indication can be generated. The definition of aexpr presented 
above was not satisfactory since new operator declarations change the 
mode of aexpr. Now a new operator declaration gives aexpr a new rule, 
but aexpr remains itself. The (concrete) metasyntax of ALGOL 68 
implies an infinite number of syntactic units. The abstract syntax 
defined so far, only allows a finite number. So it should be made 
more powerful. The metasyntax of ALGOL 68 appears to be really a 
metasyntax. A metalevel contains schemes by which objects and rules 
of the lower level are generated. Indeed, the metasyntax is a means 
to generate syntactic units and syntactic rules. The most simple 
form of Such a scheme that generates syntactic units, is a function 
that maps the values of a certain set into syntactic units. The last 
ones are created by this mapping. This is not compatible with the 
definition of syntactic units by mode declarations, but it is when 
they are entities in themselves. The function may be considered as 
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a syntactic unit with one or more parameters in it. A set of values 
that is mapped into syntactic units is called a metanotion in ALGOL 
68. There, a metanotion is defined by a BNF grammar. The set Js a 
set of terminal strings then. However, it is better to take the 
lesson of ALGOL 68 that every set should be defined by a mode 
declaration. The BNF rule that defines the metanotion SORT: 
SORT ::= soft I weak I strong I firm; 
may be read as: the set SORT has the values soft, weak, strong and 
firm. The mode of an abstract finite set can be defined as integer. 
So: 
mod___~ sort = int; 
sort soft = I, sort weak = 2, sort strong = 3, sort firm = 4; 
At the same way the meta notion: PRIMITIVE MODE can be defined as an 
integer with the values real, int, char and bool. The metanotion MODE 
needs a more complex declaration: 
mode mod = union (primitive mode p, arra~ mod union, arra~ struct (mod, 

" identifi~ struct mod ref mo,1 r0w, stone ~ (array ~od~ ~od) proc) 
Here again a union is wanted that may have the same mode more than once. 
Examples of schemes that generate abstract syntactic rules: 
mod___~mod condexpr = struct (boolexpr, modexpr, modexpr) 
mode ref mod assign = struct (r_ef mod expr, mod expr) 
These examples show the power of the metasyntax: as mod is an infinite 
set, an infinite number of abstract rules is generated by these two 
examples. 
When a metanotion occurs more than once in a scheme, it should be replaced 
by the same value at all occurrences. 
"Re~" should be considered as a monadic operator that maps a metavalue on 
a new metavalue. 

CONCRETE METASYNTAX. 

For a good cooperation between meta- and usual syntax: rules it seems 
necessary to require that the usual syntax is totally independent of the 
metasyntax. This means that during the usual analysis the metavalues within 
the syntactic units stay undefined. So for a moment the functions that may 
metavalues on syntactic units become syntactic units themselves. After 
the labelled tree has been generated by the usual rules the metavalues 
get relevant. Some labels cause the creation of a metavalue in their 
corresponding mode. Then such a metavalue may pass some modes up or 
downwards until it is used. A consistent use of metavalues requires them 
to walk in one direction only, either up or down. This direction could 
be fixed in a declaration: 
meta sort down 
N .  

Indeed after being generated in some node, the values of SORT always walk 
downwards and get used there. The metanoti0n MODE does walk in both direc- 
tions. The direction appearsto depend on the value of SORT: 
m eta soft, mod u~ meta strong, mod d0w ~ 
meta weak, mod u~ met~ firm, mod dow____n 
The best example is the assignation: 
form soft ref mod expr := strong mod expr ) 

ref mod coercend = .... 
Soft descends along the tree until a coercend is reached. There a value 
of mod is generated by the soft coercion that straps all possible proc's 
of the mode contained within the coercend. After this the value climbs 
the tree until the assignation is reached. As a re~ mod expression is 
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expected, the value which is a union value, is examined on being 
the ref case of the union, if it is not then an error has been found, 
because no other form declaration with ":=" exists. If it is then" the 
value of that case is taken and is considered as the value of mod 
in the assignation. So the first occurrence of mod denotes a defining 
occurrence, and the other denote applied ones. Indeed the second 
occurrence must be an applied one as the presence of strong indicates 
that the mod value must be passed downwards. 

THE COERCION. 

The coercion is that part of the grammar that consists of rules which 
reduce only one syntactic unit into another one. Most of them have 
disappeared by means of the precedence analysis: e.g. term and factor 
get identical. Only the production rules with a really semantic meaning 
are left over, e.g. 
identifier ~ variable identifier 
variable identifier > primary. 
These rules represent monadic operations and could be preceded by a 
monadic operator symbol. However, if it is possible, a short notation 
is important, as well for the size itself as for a good top down survey 
over the program. The information which rules must be applied, has 
to be provided by the context. It is called the syntactic position. 
The context of a syntactic unit is the form in which it is an operand. 
So it should be possible to provide the position of an operand in a 
form declaration with the information which coercions must be applied. 
This information should descend to the operand. The metanotion sort 
contains this information exactly and indeed it walks top down. At the 
moment that the coercion should be executed, two or three kinds of 
information are available. Firstly the syntactic position e.g. a value 
of sort, secondly the syntactic unit a priori, which has already been 
generated by a bottom up process and thirdly the syntactic unit a 
posteriori that should be reached by the coercion. The last information 
is only available if provided by the form of which this unit is an 
operand. This information should descend the tree together with the 
syntactic position. An example is the right side of an assignation. 
The syntactic position is strong, The mode is known from the left side 
and descends the tree. The definition of syntactic position implies 
that a set of rules is fixed, or better that an algorithm is fixed. 
An algorithm is a procedure. So a syntactic position should be consider- 
ed as a procedure, which is called at the moment that the descent of 
the syntactic position is stopped because a coercend has been reached. 
coercio~ soft u~ = (proc mod ~oercend > mod coercend; soft 

mod coercend > mod expr) 
'~!~' means that the a posteriori mode or unit is not available so 
that only bottom up rules may be applied. The result should climb the 
tree. The meaning of the right side is: If the meta value within the 
coercend is the proc case of the union, and if its parameter part is 
void, then a new node is built with the result part of the proc as 
its meta value, after which the coercion soft is called again, else 
the mod coercend becomes a mod expr and the coercion has been finished. 
In order to describe the body of such a procedure a usual, powerful 
algorithmic language (e.g. Algol 68) is needed which has to be extended 
with operations that generate new syntactic nodes bottom up or top down 
and with the possibility of backtracking. The algorithmic nature of the 
body prevents ambiguities because the produced syntactic (sub)tree is 
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uniquely determined by the input; among other things by a serial 
treatment cf syntactic alternatives. A same approaoh appears advantageous 
to treat competitive operator declarations e.g. int +, real +, complex +. 
A form: 'a+b' is equivalent to a procedure call: plus (a,b). The 
parameters of a call may have a strong position as the mode of the 
procedure contains the mode of its parameters. So a strong position is 
wanted for the operands of a form too. This increases the danger of 
ambiguities. Algol 68 solves the problem as well by restrictions on 
operator declarations as by weakening the coercion to the firm coercion. 
The compromise makes both things dirty. Both give troubles when learn- 
ing the language. Both decrease the syntactic power of the language: 
The stronger the coercion is, the more restrictions to operator 
declarations are necessary. The syntactic order solves the problem. 
When the alternatives should be treated in a predetermined sequence 
ambiguities are excluded, the coercion may be so stro~Ig as possible 
and operator restrictions become superfluous. 
The preference in the treatment of the alternatives could be defined by: 
form int a + int b pref 1 ----> int ..... 
form real a + real b pref 2 _i> real ..... 
form complex a + complex b pref 3 > complex ..... 
By means of the strong coercion together with the preference the 
addition of an integer and a ~omplex is considered as an addition of 
two complex numbers. This appears to be the usual mathematical convention. 
Each coercion could be replaced by an equivalent monadic operator and 
each quasi ambiguous operator symbol could be replaced by a number of 
characterizing procedure identifiers. So coercion and quasi ambiguous 
operators are only a matter of notation and are therefore absent 
in the abstract syntax. Without coercion metavalues need not descend 
the tree. The strictly bottom up causality of metavalues gives the 
abstract syntax its desired simplicity, although we do not yet under- 
stand the meaning of causality in an abstract syntax. 

CONCLUSION. 

We have seen that every (one level) abstract syntax rule can be 
represented by an operator precedence form. Although already rather 
good, this representation may be improved by deviations of an operator 
grammar, coercion and by quasi ambiguous operators. Further it seems 
possible to construct a definition mechanism by means of which an 
easily analysable metasyntax can be declared. 
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