
DATA TYPES AND EXTENSlBLE LANGUAGES

Phi l ippe dORRAND
IBM France S c i e n t i f i c Center, Grenoble

Definition mechanisms for extensible progranTning languages, in
principle, allow variation of the language definition in various
directions: data types, operations, control structure and syntax. We
will focus our attention here on the definitional capabilities that
one might expect from a data type extension mechanism. First, we will
define informally what the nature of a data type is, what kind of
information it contains. Then, we will discuss the most classical
approach for data type definition in extensible languages. Finally, we
will sketch a model for a mechanism which would permit to introduce
really new data types in a language.

I. WHAT IS A DATA TYPE ?

Classically, in most progranming languages, if not in all of
theme the role played by data types is two-fold:

A- They serve to specify the external
representations of objects.

and internal

B- They serve to define the rules in handling those objects.

An example will help to clarify those two points: let us take the type
integer in Algol 60.

A- If one writes the number "I00", those characters are recognized as
denoting an object which is an integer value, the type information
being implicitly associated with the form of that external
representation of the object. Then, an internal representation will be
built for that object: for example, a fixed point binary
representation occupying on, word in memory. Thus, one might consider
that a "representation function" is associated with the type integer:
that function recognizes external representations of integer values
and builds corresi:x:)nding internal representations.

This can be generalized and stated in a slightly different way:
given a type JL, it serves to specify an external representation for a
set of objects and it establishes a correspondence between that
external representation and an internal representation of the same
objects. However, one may remark that the existence of an external
representation is not mandatory. When it does not exist, the tYPe!
specifies only the internal representation. For example, this is the
case for names (objects of type rgf) in Algol 68. (I am not sure
whether the converse is meaningful, except, may be, for conments in a
program...)

B- An ob jec t of type in teger , to keep the same example in Algol 60,
can be handled in a number of wel l def ined ways: i t can be added to
another ob jec t of the same type, i t can be used as a subscr ip ts i t can
be converted in to an ob jec t of type rea l , e tc . But i t may not be
Handed" w i th an ob jec t of type boolean, i t may not be subscr ip ted,
e tc . Thus, there are ru les which must be obeyed when using such an
ob jec t . Those ru les are d i c ta ted by the fac t tha t the ob jec t has the

75
m

http://crossmark.crossref.org/dialog/?doi=10.1145%2F942582.807986&domain=pdf&date_stamp=1971-09-01

type inteEer. Moreover, the user may define o ther , more elahorate
rules fo r using integer values, by declar ing procedures taking
parameters of t h a t type. In fac t , a]1 possible uses of inte£ers can be
considered as defined by funct ions: a funct ion fo r inte£er add i t ion , a
funct ion fo r ar ray subscr ip t ing, a funct ion for inte£er conversion
in to rea l , etc. But no funct ion fo r "andin~' an inteEer w i th a
boolean.

Thus, in general, a data type ~ serves to def ine the proper t ies ,
or the ru les in handling a l l objects having that type ~. Those
proper t ies can be viewed as speci f ied by the set of funct ions to which
objects of t y p e s can be passed as arguments.

2, CLASSICAL DATA TYPE EXTENSION

In the ma jo r i t y of c u r r e n t l y proposed extensib le languages, the
data type d e f i n i t i o n mechanisms correspond very c lose ly to a scheme
o r i g i n a l l y described by Standish [2] . That scheme has even been used
in other languages which were not e x p l i c i t l y presented as being
extens ib le , f o r example in Algol 68 [3] . Roughly, th i s c lass ica l way
of extending data types works as fo l lows:

A- A number of data types are provided as p r im i t i ves .

B- The mechanism i t s e l f is formulated as a set of
const ructors , which can be regarded as specia l ized funct ions
tak ing a number of ex i s t i ng - i . e . p r im i t i ve or already
def ined- data types as arguments and re turn ing a new one as
resu l t .

Usual ly, a dec lara t ive statement is also part of that mechanism, thus
permi t t ing to i den t i f y a newly b u i l t data type.

H~vever, that approach fo r data type d e f i n i t i o n presents a number
of major drawbacks when i t is considered in the general framework of
an extens ib le language.

A- With the c lass ica l data type extension scheme, a
representat ion funct ion is associated - i m p l i c i t l y - w i th each
p r im i t i ve data type, exact ly in the same way as fo r data
types in non extensib le languages. The essent ia l imp l ica t ion
is that a user may not choose the representat ions he wants
f o r objects of p r im i t i ve data types.

B- The elenentary proper t ies of objects of p r im i t i ve data
types are predefined. For example, the conversion scheme
between p r im i t i ve data types is not def ineable from w i t h i n
the language.

Thus, as a consequence of points A and B, the number of
p r im i t i ve data types is f ixed and predefined. So is t he i r
nature. There are no means of pu t t ing together a
representat ion funct ion and a number of p roper t ies , and of
saying that they cons t i t u te a data type: one cannot r e a l l y
"c rea te" a new data type which would be at the sane level as
the p r im i t i ve ones.

7G

C- The nature and the number of constructors are also fixed
and predefined. They imply an internal representation which
cannot be chosen by the user. They imply a number of
properties for objects having a constructed data type, and
one is not free to attach additionnal properties of the same
kind.

D- All data types are necessarily related to each other in a
strict hierarchical fashion, as specified by the
constructors: given a set of data type definitions, all
relations between data types are "vertical" and can indeed
be represented by a tree-like structure. There is no way of
specifying any "horizontal" relation between data types:
such relations would include essentially conversions of any
kind and transformations between data types, thus
generalizing the simple mappings obtained through the
hierarchical scheme.

Let us take a very simple example
remarks. The m o d e - i . e , the type,
declared by:

in Algol 68 to i l l u s t r a t e those
in Algol 68 terminology- complex is

mode complex = s t ruc t (real rp, real. ip)

If one declares:

complex z

he may write:

z := 3.14

That statement assigns 3.14 to rp o._.fC z and 0.0 to ip 9]. z. But, i f
another mode is declarede to represent the mode of imaginary numbers:

mode ima~ = struct(real ip)

and if one writes:
imam i

the assignment statement:
z := i

is not al lowed, and there is no way of making i t lega l , since i t is
not possible to def ine a new conversion transforming ima~ values into
complex values, whereas a conversion was predefined fo r real into
complex.

Clearly, that classical data type definition mechanism is not
flexible enough for extensible languages. The reason seems to be that
all data types are defined in terms of a number of other simpler
preexisting data types. More flexibility and more generality would be
provided if the points of departure were more elementary, thus
permitting to build really new data types, for which the building
blocks would represent the basic information that data types actually
contain: the representation functions and the various properties of
objects.

77

3. DATA TYPES: ANO'II-IER APPROACH

The approach which is very roughly sketched here cons t i tu tes a
model fo r a data type d e f i n i t i o n f a c i l i t y which attempts to provide
the sufficient flexibility of definition required in the framework of
an extensible language.A more detailed description of that mechanism
is presented in [1].

The fundamental assumption upon which that method is bui l t can be
stated as follows: a data type is a class of data items having a
number of properties in conmon. In fact, the word "class" wi l l be used
instead of "data type".

I n that scheme, no class is present at the outset: thus, the base
lan£ua£e is a "type-less" language, which acts as an interface between
languages where classes have been introduced via extensions, and the
machine. The base language provides essentially functions for the
representation of data items, whether they belong to a particular
class or not: storage access, address calculation, allocation
functions, transformation of external representations of values (i .e.
constant denotations) into internal representations, operations on
internal representations, etc. The base language provides also an
elementary function definition an application capability which is
close to lambda calculus.

Then, the class definition mechanism is capable of specifying the
following points:

A- De f i n i t i on of a new class, considered as a set, and, eventual ly ,
d e f i n i t i o n of i t s re la t ions wi th other classes, using set operat ions:
inc lus ion, union, in tersect ion , complement and cartesian product. When
a new class has been introduced i t has a purely forn~l existence,
since, in general, no element (data item) belongs to i t nor any
funct ional property has been defined fo r i t s potent ia l elements.

In fac t , def in ing a class can be viewed as introducing a node in
a graph, and set operations speci fy various kinds of arcs between the
nodes. For exannple:

dCf(I NT, ¢la~s)
def(EVEN, .J.D I NT)
d~f(REAL, class)
def(ARITH, union(INT, REAL))
def(POS I T, J_D. I NT)
def(POSEVEN, in ter (EVEN, POSIT))
def(ODD, compl(EVEN, INT))
def(COMPLEX, carl;(REAL, REAL))

78

Those definitions are pictured by the following graph, where an i-arc
means inclusion, a "~_i-arc means non inclusion and an ~(i)-arc means
selection of the i-th component of a cartesian product:

PO3EVEN

i

~/EN . I j NT
i

ARITH FA
COHPL EX

Inclusion of a class C1 into a class C2 means that the elements of Cl
have all the properties of the elements of C2, and that they may have
other specific properties, kbn inclusion means that the elements of C1
have none of the specific properties of the eIBnents of C2.

B- Properties of all data items belonging to a particular class. These
properties may be considered as "rules of utilization" of the data
items: they are defined as functions to which the elements of the
considered class can be passed as arguments. In fact, the relations
between classes which are deduced from set operations are of a very
primitive nature. ~bre elaborate relations can be defined between two
classes Cl and C2 when it is possible to define functions taking as
argument an element of C1 and producing as result an element of C2:
such functions define the properties of the elements of CI.

Two kinds of functional relations can be defined between classes:
conversions and procedures. The essential difference between a
procedure and a conversion is that requests to evaluate a procedure
are always expl ic i t ly formulated in the program whereas, in general,
they are done implicit ly for conversions: with a given data type
scheme in an extended language, i t is the job of the compiler to
choose conversions.

Conversions and their classification

A conversion is defined by:

.d_~.f.(N, cony.(1, C1, C2, ~-exp))

where N is the -op t iona l - name of that conversion, Cl and C2 speci fy
that i t is a conversion from class C1 to class C2 and the X-exp
describes the process of conversion i t s e l f . The argument 1 introduces
the considered conversion into a set of conversions cal led a level :
by the i r d e f i n i t i o n s , conversions are c l ass i f i ed into various levels.
Levels th~nselves are defined by:

def(1, level)

and, since a level is a set , set operations l i ke ~ union, in te r and
compl may be used in the d e f i n i t i o n of levels. For example:

def(11, level)
def(12, i._D 11)

79

Thus, levels may also be represented in a graph:

12: ± =:1~

Then• the level 11 being defined• i t possible to introduce into that
level a conversion from INT's into REAL's:

.d.ef(, cony(11• INT, REAL, h i . f l o a t (I)))

where f loat is one of the functions of the base language: i t
transforms a fixed point internal representation into a floating point
internal representation.

Such a definition adds a new arc to the graph of classes:

|NT . i (]~,FL] ~_~ REAL

where FL represents the ~-exp.

Procedures

A procedure is defined by:

dCf(P, proc(k, 01, C2, ~-exp))

where P is the name of the procedure• C1 and C2 specify that P takes
its argument in Cl and returns a result in C2, the ~-exp describes the
actions of the procedure• and k is a level of conversions. The
evaluation of the argument of P may require a number of conversions in
order to produce a value of class Cl, and those conversions would be
applied to the value which has been original ly passed as argument. The
level k specified in the definition of P sets a maximum lev~1 for the
conversions which nBy be applied during the evaluation of its
argument: any conversion belonging to k or to any level k ' , such that
i * (k ' • k) is true, is a11owed. (~* is the transitive closure of the
relation Z(1' I) which is true when an i-arc goes from I ' to 1 in the • i

graph of levels.)

Thus• the classification of conversions into levels constitutes a
formalization and a generalization of the essential concept involved
in tile notion of "syntactic position" in Algol 68, where conversions
-called "coercions" in [~ - obey to a linear hierarchy.

80

Examples of procedure definit ions:

def(SQRT, proc(11, REAL, REAL, some X-exp S))

d~f(ADD, proc(12, INT2, INT,
X l . f i x a d d (~ e I (1 , 1) , se1(2,1))))

def(ADD, pro¢(12, REAL2, REAL,
Xx . f loadd(~el(1,X), sel(2,X))))

where 11 and 12 are the levels defined ea r l i e r and where INT2 and
REAL2 are defined by:

dCf(INT2, cort;(INT, INT))
def(REAL2, cart;(REAL, REAL))

The operator sel performs selection on cartesian products. The
functions f ixadd and floadd are functions of the base language
performing addit ion on f ixed point and f loa t ing point binary internal
representations respectively.

I t must be noted that the procedure ADD is generic, in the sense that
two d i f fe ren t meanings have been attached to i t .

Those definit ions add a number of arcs to the graph of classes:

~(12,AFX)

I NT2 INT c (]C[, FL) P , . E A L ~ gEAL2

where AFX and AFL represent the X-expressions respectively specif ied
in the two de f in i t i ons of ADD.

C- MEmbership of a particular data i tem in an existing class. A
primitive data object bui l t by an expression of the base language does
not belong to any class. But i t is possible to define classified
objects: their actual meaning s t i l l is some internal object bui l t by
the base language, but, when they are used, they must obey to the
rules attached to the class to which they belong.

A classified object is defined by:

def(N, 9.~_(C, E))

where N is i ts name, C is a class and E is some base language
expression. The actual meaning of N, at the base language level, is
the result of E, but i t wi l l be used a_.s_ an object of class C.

I t must be noted that c lass i f ied objects are also b u i l t by the
evaluation of conversions and procedures.

81

D- Utilization of the ~raph. All the strategy for data type control
and conversion is defined by the graph of classes and the graph of
levels. Given a procedure defined by:

def(P, proc(k, Cl, C2, some X-exp L))

and given a classified object A belonging to C1, a call of Pwith the
argument A is represented in the base language by:

eval(.~.D.~_(L, A'))

where A' is the internal object represented by A, and where bind and
eval are two functions of the base language, for the binding of
parameters and the evaluation of expressions respect ively.

Thus, a l l class information has disappeared in that base language
statement. In fact , that statement is automatical ly generated a f te r
the class checking has been performed: does A belong to the class C1
required by P ?

Class checking and production of the base language statement are done
by a special operator, called aDDIV, which constitutes the essential
interface between the class mechanism and the base language:

aDDlV(P, A)

I f the classes match, the base language statement is produced.
Otherwise, the application fails.

But the operator apply does not permit intervening conversions in the
evaluation of the argument. Another operator, ca l l . w i l l take
advantage of the possible existence of conversions in the graph of
classes:

ca l l (P, X)

I f X belongs to C1, the effect is the same as aDDIv(P,X). But, i f this
is not the cases a conversion path must be found in the graph. That
path, which goes from the class C of X to Cl, is bui l t only with
conversion and inclusion arcs (~(l,L)-arcs andS-arcs). But i t is
possible that more than one path satisfy these conditions. I f they
d i f fer only by~-arcs, they are considered as a single path, since no
action is involved by such arcs: only conversion arcs are of interest.
But i f they d i f fer by one or rnore~(ItL)-arc, a choice must be made:
this is the main reason why more select iv i ty is introduced by the
levels of conversions. I f tile definit ion of P has set a maximum level
k for conversions applied to i ts argument, al l ~(l,L)-arcs of the path
must be such that l=k or ~*(l ,k) is true. Then, i f more than one path
remain, the data type scheme which has been defined is ambiguous.

When a single path has been found, a functional composition of all the
~expressions specified in the implied conversions is applied to the
object X' represented by X, and the result of those conversions is
passed as argument to the X-expression specified in the definition of
P.

82

For example, i f d is defined by:

def(J, as(POSEVEN, some expression y ie ld ing d'))

the base language statement produced by:

¢a11(SQRT, d)

is:
~va1(bind(S, eva1(~i.nd(FL, d'))))

In the case of:

ca11(ADD, (l , d))

where (l ,d) bui lds an object of class INT2, there wi11 be no
temptation to use the de f i n i t i on of ADD for REAL addi t ion, since ADD
has set a maximum level 12 for conversions applied to i t s argument.
Thus, the choice of the correct meaning of ADD is quite simple, and no
ambiguity is due to the fact that ADD is generic.

REFERENCES

[I] JORRAND, P. and BERT, D., On some Basic Concepts for Extensible
ProgranTning Languages, Proceedings of the International Computing
Syml:x)sium, Venice, (April,1972)

[2] STAE)ISH, T . A . , A Data Def in i t ion Fac i l i t y for Progranming
Languages, Ph.D. Thesis, Carnegie Ins t i tu te of Technology, (May,1967)

[3] van WIJNGAARDEN, A. (Ed.),
Language Algol 68, MR.101,
(October,1969)

et a1., Report on the Algorithmic
Mathemat i sch Cent rum, ,amsterdam,

85

