DATA TYPES AND EXTENSIBLE LANGUAGES

- Philippe JORRAND
sk IBM France Scientific Center. Grenoble

Definition mechanisms for extensible progranming languages, in
principle, allow variation of the language definition in various
directions: data types, operations, control structure and syntax. We
will focus our attention here on the definitional capabilities that
one might expect from a data type extension mechanism. First, we will
define informally what the nature of a data type is, what kind of
information it contains. Then, we will discuss the most classical
approach for data type definition in extensible languages. Finally, we
will sketch a model for a mechanism which would permit to introduce
really new data types in a language.

1. WHAT 1S A DATA TYPE ?

Classically, in most programming languages, if not in all of
them, the role plaved by data types is two-fold:

A- They serve to specify the external and internal
representations of objects.

B- They serve to define the rules in handling those cbjects.

An exanple will help to clarify those two points: let us take the type
intezer in Algol 60,

A- If one writes the number "100", those characters are recognized as
denoting an object which 1is an integer value, the type information
being implicitly associated with the form of that external
representation of the object. Then, an internal representation will be
built for that object: for example, a fixed point binary
representation occupying one word in memory., Thus, one might consider
that a "representation function" is associated with the type integer:
that function recognizes external representations of Iinteger values
and builds corresponding internal representations.

This can be generalized and stated in a slightly different way:
given a type t, it serves to specify an external representation for a
set of objects and it establishes a correspondence between that
external representation and an internal representation of the same
objects. However, one may remark that the existence of an external
representation is not mandatory. When it does not exist, the type t
specifies only the internal representation. For example, this is the
case for names (objects of type ref) in Algol 68. (1l am not sure
whether the converse is meaningful, except, may be, for conments in a
program...)

B- An object of type integer, to keep the same exanple Iin Algol 60,
can be handled in a nunber of well defined ways: it can be added to
another object of the same type, it can be used as a subscript, it can
be converted into an object of type real, etc. But it may not be
"anded" with an object of type boolean, it may not be subscripted,
etc. Thus, there are ruies which must be obeyed when using such an
object. Those rules are dictated by the fact that the object has the

75

http://crossmark.crossref.org/dialog/?doi=10.1145%2F942582.807986&domain=pdf&date_stamp=1971-09-01

type intepger. Moreover, the user may define other, more elaborate
rules for using _linteger values, by declaring procedures taking
parameters of that type. In fact, all possible uses of lintegers can be
considered as defined by functions: a function for integer addition, a
function for array subscripting, a function for integer conversion
into real, etc. But no function for "anding" an _integer with a
boolean.

Thus, in general, a data type £ serves to define the properties,
or the rules in handling all objects having that type t. Those
properties can be viewed as specified by the set of functions to which
objects of type t can be passed as arguments.

2. CLASSICAL DATA TYPE EXTENSION

In the majority of currently proposed extensible ‘languages, the
data type definition mechanisms correspond very closely to a scheme
originally described by Standish [2]. That scheme has even been used
in other languages which were not explicitly presented as being
extensible, for example in Algol 68 [3). Roughly, this classical way
of extending data types works as follows:

A- A number of data types are provided as primitives.

B- The mechanism itself is formulated as a set of
constructors, which can be regarded as specialized functions

taking a mumber of existing -i.e. primitive or already
defined~ data types as arguments and returning a new one as
result,

Usually, a declarative statement is also part of that mechanism, thus
permitting to identify a newly built data type.

However, that approach for data type definition presents a number
of major drawbacks when it is considered in the general framework of
an extensible language.

A- With the classical data type extension scheme, a
representation function is associated -implicitly= with each
primitive data type, exactly in the same way as for data
types in non extensible languages. The essential implication
is that a user may not choose the representations he wants
for objects of primitive data types.

B- The elementary properties of objects of primitive data
types are predefined. For example, the conversion scheme
between primitive data types is not defineable from within
the language.

Thus, as a consequence of points A and B, the nunber of
primitive data types is fixed and predefined. So is their
nature. There are no means of putting together a
representation function and a number of properties, and of
saying that they constitute a data type: one cannot really
"ereate' a new data type which would be at the same level as
the primitive ones,

76

C- The nature and the number of constructors are alsco fixed
and predefined. They imply an internal representation which
cannot be chosen by the user. They imply a nunber of
properties for objects having a constructed data type, and
one is not free to attach additionnal properties of the same
kind.

D- A1l data types are necessarily related to each other in a
strict hierarchical fashion, as specified by the
constructors: given a set of data type definitions, all
retations between data types are "vertical"™ and can indeed
be represented by a tree-like structure. There is no way of
specifying any "horizontai" relation between data types:
such relations would include essentially conversions of any
kind and transformations between data types, thus
generalizing the simple mappings obtained through the
hierarchical scheme,

let us take a very simple example in Algol 68 to illustrate those

remarks. The mode -~i.e. the type, in Algol 68 terminology- complex is
declared by:

mode complex = struct(real rp, real ip)

If one declares:

complex z
he may write:

z :=3.14

That statement assigns 3.14 to rp of z and 0.0 to ip of z. But, if
another mode is declared, to represent the mode of imaginary numbers:

mode imag = struct(real ip)

and if one writes:

J

the assignment statement:
z =

is not allowed, and there is no way of making it legal, since it is
not possible to define a new conversion transforming imag values into
complex values, whereas a conversion was predefined for real into

complex.

Clearly, that classical data type definition mechanism is not
flexible enough for extensible languages. The reason seems to be that
all data types are defined in terms of a number of other simpler
preexisting data types. More flexibility and more generality would be
provided if the points of departure were more elementary, thus
pemitting to build really new data types, for which the building
blocks would represent the basic Information that data types actually
contain: the representation functions and the various properties of
cbjects.

77

3. DATA TYPES: ANOTHER APPROACH

The approach which is very roughly sketched here constitutes a
nodel for a data type definition facility which attempts to provide
the sufficient flexibility of definition required in the framework of
an extensible language.A more detailed description of that mechanism
is presented In [1].

The fundamental assumption upon which that method is built can be
stated as follows: a data type is a class of data items having a
number of properties in comoen. In fact, the word ''class'' will be used
instead of ''data type'.

.In that scheme, no class is present at the outset: thus, the base
language is a ""type-less" language, which acts as an interface between
languages where classes have been introduced via extensions, and the
machine. The base language provides essentially functions for the
representation of data items, whether they belong toc a particular
class or not: storage access, address calculation, allocation
functions, transformation of external representations of values (i.e.
constant denotations) into internal representations, operations on
internal representations, etc. The base Jlanguage provides also an
elementary function definition an application capability which is
close to lambda calculus.

Then, the class definition mechanism is capable of specifying the
following points:

A- Definition of a pew class, considered as a set, and, eventually,
definition of its relations with other classes, using set operations:
inclusion, union, intersection, complement and cartesian product. When
a new class has been introduced it has a purely formal existence,
since, in general, no element (data item) belongs to it nor any
functional property has been defined for its potential elements.

In fact, defining a class can be viewed as introducing a node in
a graph, and set operations specify wvarious kinds of arcs between the
nodes. For example:

def(INT, class)

def(EVEN, In INT)

def(REAL, class)

def(ARITH, union(INT, REAL))
def(POSIT, in INT)

def(POSEVEN, inter(EVEN, POSIT))
def(0DD, compl(EVEN, INT)})

def(COMPLEX, cart(REAL, REAL })

78

Those definitions are pictured by the following graph, where an i-arc
means inclusion, a "i-arc means non inclusion and an s(i)-arc means
selection of the i-th component of a cartesian product:

POSEVEN
i
501)
i
EVEN COMPLEX
REAL
ARITH e

OpD

Inclusion of a class £1 into a class C2 means that the elements of Cl
have all the properties of the elements of C2, and that they may have
other specific properties. Non inclusion means that the elements of Cl
have none of the specific properties of the elements of (2.

B- Properties of all data items belonging to a particular class. These
properties may be considered as "rules of utilization" of the data
items: they are defined as functions to which the elements of the
considered class can be passed as arguments. In fact, the relations
between classes which are deduced from set operations are of a very
primitive nature. More elaborate relations can be defined between two
classes C1 and C2 when it is possible to define functions taking as
argument an element of C1 and producing as result an element of C2:
such functions define the properties of the elements of Cl.

Two kinds of functional relations can be defined between classes:
conversions and procedures. The essential difference between a
procedure and a conversion is that requests to evaluate a procedure
are always explicitly formulated in the program whereas, in general,
they are done implicitly for conversions: with a given data type
scheme in an extended language, it is the job of the compiler to
choose conversions.

Conversi and ir classificati
A conversion is defined by:
def(N, conv(1, C1, C2, A-exp)})

where N is the -optional- name of that conversion, Cl1 and C2 specify
that it is a conversion from class Cl to class €2 and the A-exp
describes the process of conversion Iitself. The argument 1 introduces
the considered conversion into a set of conversions called a level:
by their definitions, conversions are cilassified into various levels.
Levels themselves are defined by:

def(1, level)

and, since a level is a set, set operations like [in, union, inter and
compl may be used In the definition of levels. For example:

def(11, level)
def(12, in 11

79

Thus, levels may also be represented in a graph:

12 = e 11

-

Then, the level 11 being defined, it possible to Iintroduce into that
level a conversion from INT's into REAL's:

def(, conv(11, INT, REAL, Al.float(|)))
where float is one of the functions of the base language: it
transforms a fixed point internal representation into a floating point
internal representation.
Such a definition adds a new arc to the graph of classes:

e(11,FL)

INT me REAL

where FL represents the A-exp.

Procedures

A procedure is defined by:
def(P, proc(k, Cl, C2, A-exp))

where P is the name of the procedure, Cl and C2 specify that P takes
Its argument in Cl and returns a result in C2, the A-exp describes the
actions of the procedure, and k is a level of conversions. The
evaluation of the argument of P may require a number of conversions in
order to produce a value of class Cl, and those conversions would be
applied to the value which has been originally passed as argument. The
level k specified in the definition of P sets a maximum level for the
conversions which ray be applied during the evaluation of its
argument: any conversion belonging to k or to any level k', such that
i*(k',k} is true, is allowed. (j* is the transitive closure of the
relation i(1',1) which is true when an i-arc goes from 1' to 1 in the
graph of levels,)

Thus, the classification of conversions into levels constitutes a
formalization and a generalization of the essential concept involved
in the notion of "“syntactic position" in Algol 68, where conversions
-called ""coercions' in [3]~ obey to a linear hierarchy.

ad

Examples of procedure definitions:
def(SQRT, proc(11, REAL, REAL, some A-exp S))

def(ADD, proc(12, INT2, INT,
Al.fixadd(sel(1,1), sel(2,1))))

def(ADD, proc(12, REAL2, REAL,
AX.floadd(sel(1,X), sel(2,X})))

where 11 and 12 are the levels defined earlier and where INT2 and
REAL2 are defined by:

def(INT2, cart(INT, INT))
def(REAL2, cart(REAL, REAL))

The operator sel performs selection on cartesian products. The
functions fixadd and floadd are functions of the base language
performing addition on fixed point and fleoating peint binary internal
representations respectively.

It must be noted that the procedure ADD is generic, in the sense that
two different meanings have been attached to it.

Those definitions add a number of arcs to the graph of classes:

£(12,AFX)

INTZ

$(1)

i(2)

where AFX and AFL represent ﬂmzk-expressions respectively specified
in the two definitions of ADD.

C- Membership of a particular data item in an existing class. A
primitive data object built by an expression of the base language does
not belong to any class. But it is possible to define c¢lassified
objects: their actual meaning still is some internal object built by
the base language, but, when they are used, they must obey to the
rules attached to the class to which they belong.

A classified object is defined by:

def(N, as{ C, E))
where N is its name, C is a class and E is some base language
expression. The actual meaning of N, at the base language level, is

the result of E, but it will be used as an object of class C.

It must be noted that classified objects are also built by the
evaluation of conversions and procedures.

— 31

—

D~ Utilization of the graph. All the strategy for data type control

and conversion is defined by the graph of classes and the graph of
levels, Given a procedure defined by:

def{ P, proc(k, C1, C2, some A-exp L))

and given a classified object A belonging to Cl, a call of P with the
argument A is represented in the base language by:

eval(bind(L, A'))

where A' is the internal object represented by A, and where bind and
eval are two functions of the base language, for the binding of
parameters and the evaluation of expressions respectively.

Thus, all class information has disappeared in that base language
statement. In fact, that statement 1is automatically generated after
the class checking has been performed: does A belong to the class Cl
required by P ?

Class checking and production of the base language statement are done
by a special operator, called apply, which constitutes the essential
interface between the class mechanism and the base language:

apply(P, A)

If the classes match, the base language statement Iis produced.
Otherwise, the application fails,

But the operator apply does not permit intervening conversions in the
evaluation of the arguvent. Another operator, call, will take
advantage of the possible existence of conversions in the graph of
classes:

calll P, X))

If X belongs to C1, the effect is the same as apply{P,X). But, if this
is not the case, a conversion path nmust be found in the graph. That
path, which goes from the ¢class Cof X to Cl, is built only with
conversion and inclusion arcs (c(1,L)-arcs and di=-arcs). But it is
possible that more than one path satisfy these conditions., I[f they
differ only by i-arcs, they are considered as a single path, since no
action is involved by such arcs: only conversion arcs are of interest.
But if they differ by one or more ¢(1,L)-arc, a choice must be made:
this is the main reason why more selectivity is introduced by the
levels of conversions. If the definition of P has set a maximum level
k for conversions applied. to its argument, all c{1,L)-arcs of the path
rust be such that 1=k or i*{(1,k) is true. Then, if more than one path
remain, the data type scheme which has been defined is ambiguous. -

When a single path has been found, a functional composition of all the
expressions specified in the implied conversions is applied to the
object X' vrepresented by X, and the result of those conversions is
passed as argument to the A-expression specified in the definition of
P.

82

For example, if J is defined by:
def(J, as(POSEVEN, some expression yielding J'))
the base language statement produced by:

call(SQRT, J)

ist
eval(bind{ S, eval(bind(FL, J'))))

In the case of:
call{ ADD, (I,Jd})

where (I1,J) builds an object of class [NT2, there will be no
temptation to use the definition of ADD for REAL addition, since ADD
has set a maximum level 12 for conversions applied to its argument.
Thus, the choice of the correct meaning of ADD is quite simple, and no
ambiguity is due to the fact that ADD is generic.

REFERENCES

[1] JORRAND, P. and BERT, D., On some Basic Concepts for Extensible
Programming Languages, Proceedings of the International Computing
Symposium, Venice, (April,1972)

[2] STANDISH, T. A., A Data Definition Facility for Programing
Languages, Ph.D. Thesis, Carnegie Institute of Technology, (May,1967)

[3] wvan WIJUNGAARDEN, A. (Ed.), et al., Report on the Algorithmic

Language Algol b8, MR.101, Mathematisch Centrum, Amsterdam,
(Cctober,1969)

83

