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Definition mechanisms for extensible progranTning languages, in 
principle, allow variation of the language definition in various 
directions: data types, operations, control structure and syntax. We 
will focus our attention here on the definitional capabilities that 
one might expect from a data type extension mechanism. First, we will 
define informally what the nature of a data type is, what kind of 
information it contains. Then, we will discuss the most classical 
approach for data type definition in extensible languages. Finally, we 
will sketch a model for a mechanism which would permit to introduce 
really new data types in a language. 

I. WHAT IS A DATA TYPE ? 

Classically, in most progranming languages, if not in all of 
theme the role played by data types is two-fold: 

A- They serve to specify the external 
representations of objects. 

and internal 

B- They serve to define the rules in handling those objects. 

An example will help to clarify those two points: let us take the type 
integer in Algol 60. 

A- If one writes the number "I00", those characters are recognized as 
denoting an object which is an integer value, the type information 
being implicitly associated with the form of that external 
representation of the object. Then, an internal representation will be 
built for that object: for example, a fixed point binary 
representation occupying on, word in memory. Thus, one might consider 
that a "representation function" is associated with the type integer: 
that function recognizes external representations of integer values 
and builds corresi:x:)nding internal representations. 

This can be generalized and stated in a slightly different way: 
given a type JL, it serves to specify an external representation for a 
set of objects and it establishes a correspondence between that 
external representation and an internal representation of the same 
objects. However, one may remark that the existence of an external 
representation is not mandatory. When it does not exist, the tYPe! 
specifies only the internal representation. For example, this is the 
case for names (objects of type rgf) in Algol 68. (I am not sure 
whether the converse is meaningful, except, may be, for conments in a 
program...) 

B- An ob jec t  of type in teger ,  to keep the same example in Algol 60, 
can be handled in a number of  wel l  def ined ways: i t  can be added to 
another ob jec t  of  the same type, i t  can be used as a subscr ip ts  i t  can 
be converted in to  an ob jec t  of type rea l ,  e tc .  But i t  may not be 
Handed" w i th  an ob jec t  of type boolean, i t  may not be subscr ip ted,  
e tc .  Thus, there are ru les which must be obeyed when using such an 
ob jec t .  Those ru les  are d i c ta ted  by the fac t  tha t  the ob jec t  has the 
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type inteEer. Moreover, the user may define o ther ,  more elahorate 
rules fo r  using integer values, by declar ing procedures taking 
parameters of  t h a t  type. In fac t ,  a]1 possible uses of inte£ers can be 
considered as defined by funct ions:  a funct ion fo r  inte£er add i t ion ,  a 
funct ion fo r  ar ray subscr ip t ing,  a funct ion for  inte£er conversion 
in to  rea l ,  etc.  But no funct ion fo r  "andin~'  an inteEer w i th  a 
boolean. 

Thus, in general, a data type ~ serves to def ine the proper t ies ,  
or the ru les in handling a l l  objects having that  type ~. Those 
proper t ies  can be viewed as speci f ied by the set of funct ions to which 
objects of t y p e s  can be passed as arguments. 

2, CLASSICAL DATA TYPE EXTENSION 

In the ma jo r i t y  of c u r r e n t l y  proposed extensib le languages, the 
data type d e f i n i t i o n  mechanisms correspond very c lose ly  to a scheme 
o r i g i n a l l y  described by Standish [2] .  That scheme has even been used 
in other languages which were not e x p l i c i t l y  presented as being 
extens ib le ,  f o r  example in Algol 68 [3 ] .  Roughly, th i s  c lass ica l  way 
of extending data types works as fo l lows:  

A- A number of data types are provided as p r im i t i ves .  

B- The mechanism i t s e l f  is formulated as a set of  
const ructors ,  which can be regarded as specia l ized funct ions 
tak ing a number of ex i s t i ng  - i . e .  p r im i t i ve  or already 
def ined- data types as arguments and re turn ing  a new one as 
resu l t .  

Usual ly,  a dec lara t ive  statement is also part  of that  mechanism, thus 
permi t t ing  to i den t i f y  a newly b u i l t  data type. 

H~vever, that  approach fo r  data type d e f i n i t i o n  presents a number 
of  major drawbacks when i t  is considered in the general framework of  
an extens ib le  language. 

A- With the c lass ica l  data type extension scheme, a 
representat ion funct ion is associated - i m p l i c i t l y -  w i th  each 
p r im i t i ve  data type, exact ly  in the same way as fo r  data 
types in non extensib le languages. The essent ia l  imp l ica t ion  
is that  a user may not choose the representat ions he wants 
f o r  objects of p r im i t i ve  data types. 

B- The elenentary proper t ies of objects of p r im i t i ve  data 
types are predefined. For example, the conversion scheme 
between p r im i t i ve  data types is not def ineable from w i t h i n  
the language. 

Thus, as a consequence of points A and B, the number of 
p r im i t i ve  data types is f ixed and predefined. So is t he i r  
nature. There are no means of  pu t t ing  together a 
representat ion funct ion  and a number of p roper t ies ,  and of 
saying that  they cons t i t u te  a data type: one cannot r e a l l y  
"c rea te"  a new data type which would be at the sane level as 
the p r im i t i ve  ones. 
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C- The nature and the number of constructors are also fixed 
and predefined. They imply an internal representation which 
cannot be chosen by the user. They imply a number of 
properties for objects having a constructed data type, and 
one is not free to attach additionnal properties of the same 
kind. 

D- All data types are necessarily related to each other in a 
strict hierarchical fashion, as specified by the 
constructors: given a set of data type definitions, all 
relations between data types are "vertical" and can indeed 
be represented by a tree-like structure. There is no way of 
specifying any "horizontal" relation between data types: 
such relations would include essentially conversions of any 
kind and transformations between data types, thus 
generalizing the simple mappings obtained through the 
hierarchical scheme. 

Let us take a very simple example 
remarks. The m o d e - i . e ,  the type, 
declared by: 

in Algol 68 to i l l u s t r a t e  those 
in Algol 68 terminology- complex is 

mode complex = s t ruc t (  real rp, real. ip ) 

If one declares: 

complex z 

he may write: 

z := 3.14 

That statement assigns 3.14 to rp o._.fC z and 0.0 to ip 9]. z. But, i f  
another mode is declarede to represent the mode of imaginary numbers: 

mode ima~ = struct( real ip ) 

and if one writes: 
imam i 

the assignment statement: 
z := i 

is not al lowed, and there is no way of making i t  lega l ,  since i t  is 
not possible to def ine a new conversion transforming ima~ values into 
complex values, whereas a conversion was predefined fo r  real into 
complex. 

Clearly, that classical data type definition mechanism is not 
flexible enough for extensible languages. The reason seems to be that 
all data types are defined in terms of a number of other simpler 
preexisting data types. More flexibility and more generality would be 
provided if the points of departure were more elementary, thus 
permitting to build really new data types, for which the building 
blocks would represent the basic information that data types actually 
contain: the representation functions and the various properties of 
objects. 
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3. DATA TYPES: ANO'II-IER APPROACH 

The approach which is very roughly sketched here cons t i tu tes  a 
model fo r  a data type d e f i n i t i o n  f a c i l i t y  which attempts to provide 
the sufficient flexibility of definition required in the framework of 
an extensible language.A more detailed description of that mechanism 
is presented in [1]. 

The fundamental assumption upon which that method is bui l t  can be 
stated as follows: a data type is a class of data items having a 
number of properties in conmon. In fact, the word "class" wi l l  be used 
instead of "data type". 

I n  that scheme, no class is present at the outset: thus, the base 
lan£ua£e is a "type-less" language, which acts as an interface between 
languages where classes have been introduced via extensions, and the 
machine. The base language provides essentially functions for the 
representation of data items, whether they belong to a particular 
class or not: storage access, address calculation, allocation 
functions, transformation of external representations of values ( i .e.  
constant denotations) into internal representations, operations on 
internal representations, etc. The base language provides also an 
elementary function definition an application capability which is 
close to lambda calculus. 

Then, the class definition mechanism is capable of specifying the 
following points: 

A- De f i n i t i on  of a new class, considered as a set, and, eventual ly ,  
d e f i n i t i o n  of  i t s  re la t ions wi th other classes, using set operat ions: 
inc lus ion,  union, in tersect ion ,  complement and cartesian product. When 
a new class has been introduced i t  has a purely forn~l existence, 
since, in general, no element (data item) belongs to i t  nor any 
funct ional  property has been defined fo r  i t s  potent ia l  elements. 

In fac t ,  def in ing a class can be viewed as introducing a node in 
a graph, and set operations speci fy various kinds of  arcs between the 
nodes. For exannple: 

dCf( I NT, ¢la~s ) 
def( EVEN, .J.D I NT ) 
d~f( REAL, class ) 
def( ARITH, union( INT, REAL ) ) 
def( POS I T, J_D. I NT ) 
def( POSEVEN, in ter (  EVEN, POSIT ) ) 
def( ODD, compl( EVEN, INT ) ) 
def( COMPLEX, carl;( REAL, REAL ) ) 
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Those definitions are pictured by the following graph, where an i-arc 
means inclusion, a "~_i-arc means non inclusion and an ~(i)-arc means 
selection of the i-th component of a cartesian product: 

PO3EVEN 

i 

~/EN . I  j NT 
i 

ARITH FA 
COHPL EX 

Inclusion of a class C1 into a class C2 means that the elements of Cl 
have all the properties of the elements of C2, and that they may have 
other specific properties, kbn inclusion means that the elements of C1 
have none of the specific properties of the eIBnents of C2. 

B- Properties of all data items belonging to a particular class. These 
properties may be considered as "rules of utilization" of the data 
items: they are defined as functions to which the elements of the 
considered class can be passed as arguments. In fact, the relations 
between classes which are deduced from set operations are of a very 
primitive nature. ~bre elaborate relations can be defined between two 
classes Cl and C2 when it is possible to define functions taking as 
argument an element of C1 and producing as result an element of C2: 
such functions define the properties of the elements of CI. 

Two kinds of functional relations can be defined between classes: 
conversions and procedures. The essential difference between a 
procedure and a conversion is that requests to evaluate a procedure 
are always expl ic i t ly formulated in the program whereas, in general, 
they are done implicit ly for conversions: with a given data type 
scheme in an extended language, i t  is the job of the compiler to 
choose conversions. 

Conversions and their classification 

A conversion is defined by: 

.d_~.f.( N, cony.( 1, C1, C2, ~-exp ) ) 

where N is the -op t iona l -  name of that  conversion, Cl and C2 speci fy 
that  i t  is a conversion from class C1 to class C2 and the X-exp 
describes the process of conversion i t s e l f .  The argument 1 introduces 
the considered conversion into a set of conversions cal led a level :  
by the i r  d e f i n i t i o n s ,  conversions are c l ass i f i ed  into various levels.  
Levels th~nselves are defined by: 

def( 1, level ) 

and, since a level is a set ,  set operations l i ke  ~ union, in te r  and 
compl may be used in the d e f i n i t i o n  of levels.  For example: 

def( 11, level ) 
def( 12, i._D 11 ) 
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Thus, levels may also be represented in a graph: 

12: ± =:1~ 

Then• the level 11 being defined• i t  possible to introduce into that 
level a conversion from INT's into REAL's: 

.d.ef( , cony( 11• INT, REAL, h i . f l o a t (  I ) ) ) 

where f loat is one of the functions of the base language: i t  
transforms a fixed point internal representation into a floating point 
internal representation. 

Such a definition adds a new arc to the graph of classes: 

|NT . i ( ]~,FL]  ~_~ REAL 

where FL represents the ~-exp. 

Procedures 

A procedure is defined by: 

dCf( P, proc( k, 01, C2, ~-exp ) ) 

where P is the name of the procedure• C1 and C2 specify that P takes 
its argument in Cl and returns a result in C2, the ~-exp describes the 
actions of the procedure• and k is a level of conversions. The 
evaluation of the argument of P may require a number of conversions in 
order to produce a value of class Cl, and those conversions would be 
applied to the value which has been original ly passed as argument. The 
level k specified in the definition of P sets a maximum lev~1 for the 
conversions which nBy be applied during the evaluation of its 
argument: any conversion belonging to k or to any level k ' ,  such that 
i * ( k ' • k )  is true, is a11owed. (~* is the transitive closure of the 
relation Z(1' I) which is true when an i-arc goes from I '  to 1 in the • i 

graph of levels.) 

Thus• the classification of conversions into levels constitutes a 
formalization and a generalization of the essential concept involved 
in tile notion of "syntactic position" in Algol 68, where conversions 
-called "coercions" in [ ~ -  obey to a linear hierarchy. 
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Examples of procedure definit ions: 

def( SQRT, proc( 11, REAL, REAL, some X-exp S ) ) 

d~f( ADD, proc( 12, INT2, INT, 
X l . f i x a d d ( ~ e I ( 1 , 1 ) ,  se1(2,1) ) ) ) 

def( ADD, pro¢( 12, REAL2, REAL, 
Xx . f loadd(~el(1,X), sel(2,X) ) ) ) 

where 11 and 12 are the levels defined ea r l i e r  and where INT2 and 
REAL2 are defined by: 

dCf( INT2, cort;( INT, INT ) ) 
def( REAL2, cart;( REAL, REAL ) ) 

The operator sel performs selection on cartesian products. The 
functions f ixadd and floadd are functions of the base language 
performing addit ion on f ixed point and f loa t ing  point binary internal 
representations respectively. 

I t  must be noted that the procedure ADD is generic, in the sense that 
two d i f fe ren t  meanings have been attached to i t .  

Those definit ions add a number of arcs to the graph of classes: 

~(12,AFX) 

I NT2 INT c (]C[, FL) P , . E A L ~  gEAL2 

where AFX and AFL represent the X-expressions respectively specif ied 
in the two de f in i t i ons  of ADD. 

C- MEmbership of a particular data i tem in an existing class. A 
primitive data object bui l t  by an expression of the base language does 
not belong to any class. But i t  is possible to define classified 
objects: their actual meaning s t i l l  is some internal object bui l t  by 
the base language, but, when they are used, they must obey to the 
rules attached to the class to which they belong. 

A classified object is defined by: 

def( N, 9.~_( C, E ) ) 

where N is i ts name, C is a class and E is some base language 
expression. The actual meaning of N, at the base language level, is 
the result of E, but i t  wi l l  be used a_.s_ an object of class C. 

I t  must be noted that c lass i f ied  objects are also b u i l t  by the 
evaluation of conversions and procedures. 
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D- Utilization of the ~raph. All the strategy for data type control 
and conversion is defined by the graph of classes and the graph of 
levels. Given a procedure defined by: 

def( P, proc( k, Cl, C2, some X-exp L ) ) 

and given a classified object A belonging to C1, a call of Pwith the 
argument A is represented in the base language by: 

eval( .~.D.~_( L, A' ) ) 

where A' is the internal object represented by A, and where bind and 
eval are two functions of the base language, for  the binding of 
parameters and the evaluation of expressions respect ively.  

Thus, a l l  class information has disappeared in that base language 
statement. In fact ,  that statement is automatical ly generated a f te r  
the class checking has been performed: does A belong to the class C1 
required by P ? 

Class checking and production of the base language statement are done 
by a special operator, called aDDIV, which constitutes the essential 
interface between the class mechanism and the base language: 

aDDlV( P, A ) 

I f  the classes match, the base language statement is produced. 
Otherwise, the application fails. 

But the operator apply does not permit intervening conversions in the 
evaluation of the argument. Another operator, ca l l .  w i l l  take 
advantage of the possible existence of conversions in the graph of 
classes: 

ca l l (  P, X ) 

I f  X belongs to C1, the effect is the same as aDDIv(P,X). But, i f  this 
is not the cases a conversion path must be found in the graph. That 
path, which goes from the class C of X to Cl, is bui l t  only with 
conversion and inclusion arcs (~(l,L)-arcs andS-arcs). But i t  is 
possible that more than one path satisfy these conditions. I f  they 
d i f fer  only by~-arcs, they are considered as a single path, since no 
action is involved by such arcs: only conversion arcs are of interest. 
But i f  they d i f fer  by one or rnore~(ItL)-arc, a choice must be made: 
this is the main reason why more select iv i ty is introduced by the 
levels of conversions. I f  tile definit ion of P has set a maximum level 
k for conversions applied to i ts argument, al l  ~(l,L)-arcs of the path 
must be such that l=k or ~*( l ,k)  is true. Then, i f  more than one path 
remain, the data type scheme which has been defined is ambiguous. 

When a single path has been found, a functional composition of all the 
~expressions specified in the implied conversions is applied to the 
object X' represented by X, and the result of those conversions is 
passed as argument to the X-expression specified in the definition of 
P. 
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For example, i f  d is defined by: 

def( J, as( POSEVEN, some expression y ie ld ing d' ) ) 

the base language statement produced by: 

¢a11( SQRT, d ) 

is: 
~va1( bind( S, eva1( ~i.nd( FL, d' ) ) ) ) 

In the case of: 

ca11( ADD, ( l , d ) )  

where ( l ,d )  bui lds an object of class INT2, there wi11 be no 
temptation to use the de f i n i t i on  of ADD for  REAL addi t ion,  since ADD 
has set a maximum level 12 for  conversions applied to i t s  argument. 
Thus, the choice of the correct meaning of ADD is quite simple, and no 
ambiguity is due to the fact  that ADD is generic. 
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