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I. Introduction: 

The data-type definition scheme in ECL is designed to 
furnish its users with a natural notation, in which the 
composition and behavior of complex objects can be readily 
described, and Which simultaneously produces efficient 
underlying representations. The purpose of this paper is to 
discuss how these objectives are met in the implementation 
of ECL on Harvard's PDP-10. 

Section II outlines the fundamentals of data definition 
in ECL. For a full discussion of the ECL programming system 
and its language component, the reader is referred to [ I ], 
[21, or [4]; an overview of the system is presented in a 
co~anion ~aper by Wegbreit [5]. A complete description of 
ECL s data extensmon mechanism is given in [1] and [3]. 

Section III presents the main features of the 
implementation of the ECL data definition scheme, discusses 
the ~'mode compiler", analyzes the internal representation 
chosen for data objects, and describes the efficiencies 
resulting from this representation. 

Finally, section IV deals with some of the interfaces 
between the data extension mechanism and the rest of the ECL 
system, and section V proposes some areas where further 
research would be useful. 

II. Main Features : 

The fundamental feature of the ECL data definition 
facility is that data-types (hereafter called modes) are 
values in the language ~ there are mode-valued constants, 
mode-valued variables, and executable routines which can 
take modes as arguments or deliver them as results. 

For example, the built-in data-types provided by ECL 
are mode-valued constants: these include BOOL, INT, REAL, 
CHAR, REF, MODE, and SYMBOL. The first four are the 

• ata-types for boolean (logical), integer, real 
floating-point), and character values. A REF is an object 

which can point to any value allocated in the heap. A 
data-type, whether built-in or user-defined, has mode MODE. 
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And SYMBOLs include, among other things, any variable ~mes 
appearing in the course of anECL program. 

The ECL programmer can define new data-types falling 
into five classes, corresponding to the mode construction 
routines ROW, STRUCT, PTR, PROC, and 0NEOF. We illustrate 
these routines in turn: 

A. ROW 
The routine ROW is used to create a new mode M, each of 

whose instances consists of some number of components, each 
component having the same mode, say M'. For example, 

triple~oROW(3,I~); 
ml~-ROW(begi~ k>0 => 2*k; 4 end, triple); 
m2~ROW('BUUILT; ........ 

Any object of mode triple will consist of three components, 
each an INT. If k>O, each object of mode ml will co~prise 
2*k sub-objects, where each sub-object is a triple; if k is 
less than or equal to 0, each ml will consist of 4 triples. 
And an object of mode m2 will comprise some nunber of BOOLs, 
the number (the size of the object) specified when the 
object is created; ~TTTerent objects of mode m2 can be of 
different sizes. The mode m2 is said to be "length 
unresolved" in this instance. The built-in mode STRING is 
also length unresolved, being equivalent to R~(CHAR). 

B. STRUCT 
An object whose data type is of class ROW is subject to 

the restriction that all its comlonents have the same mode 
and size. A second class of modes, STRUCT, allows composite 
objects whose components do not necessarily have the same 
mode. For example, 

record~STRUCT(id:STRING, history:triple, flag:BOOL); 

This assignment establishes record as a mode-valued variable 
whose value is a STRUCTure of three components. The first 
coml~onent is a STRING, the second is a triple, and the third 
is a BOOL; the names "id", "history u, and "flag", 
respectively, may be used as selectors for these components. 
Since STRING is a length tmresolved mode, so is record. 

C. PTR 
ECL provides both a stack discipline, as in ALGOL 60, 

which expends and contracts on block entry and exit, and a 
free storage region, or he~, as in LISP and ALGOL 68, which 
is periodically garbage-~llected. Objects existing in the 
heap can be referenced only through pointers; e.g., a datum 
of mode REF is a pointer which can point to (i.e., contain 
the address of) an arbitrary object allocated in the heap, 
thus permitting the sharing of values. 
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The mode construction routine PTR is used to define a 
mode which we may term "restricted pointer". For example, 

printname ~- PTR (string) ; 

produces a mode whose objects are restricted to point only 
to data of mode string. Similarly, objects of mode 
arith\ptr, where the latter is defined by: 

arith\ptr~-l~TR(INT, REAL) ; 

can point only to objects of mode INT or objects of mode 
REAL. While anything that can be done with a restricted 
pointer can also be accomplished by a REF, the former is 
useful from efficiency considerations: ( I ) in many cases 
storage can be saved by not carrying type information 

• xplicitly with the pointer, as must be done with REFs, and 
2) more efficient compilation can result when the mode of 
the object pointed to is known. 

D. PROC 
An object whose mode is PROC(MI,...,Mn; MO) will be a 

routine whose arguments have data types MI,... ,~hq 
respectively, and whose result has mode M0. For example, 

hash\fns ~-PROC(string; INT) ; 

defines a mode whose objects are routines which, given a 
string as argument, produce an INT. 

E. 0NEOF 
It is frequently useful to have a routine which has an 

argument, result, or local variable whose mode can vary from 
one call to another; e.g., a function which takes sn INT or 
a REAL and produces as result an INT or a REAL. This can be 
accomplished through the mode construction routine 0NEOF. 
To illustrate, 

arith~-0NEOF(INT, REAL) ; 
arith\fn~-PROC(arith, arith; arith) ; 

An object whose mode is arith\fn is said to be a generic 
routine. 

ECL provides as a built-in data type the mode ANY, 
which denotes the "union" of all modes; i.e., ANY bears the 
same relation to 0NEOF as REF does to PTR. 
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III. Implementation: 

A. The Allocation and Completion of DDBs 

All of the information which the ECL system needs 
concerning a data type is contained in a body of stgrage 
called a "DDB", or "data definition block". A DDB Is a 
structure which includes several fields: e.g., pointers to 
selection, generation, assignment, and garbage collection 
functions; a variety of BCOLs indicating whether the mode is 
length resolved, whether objects of the mode occupy less 
than one word and whether they include any embedded 
pointers; etc. Each primitive data type has a DDB which is 
assembled into the system, while a user-defined type may 
cause the creation of a new DDB. 

To illustrate the basic mechanics of the 
implementation, we assume that the user is defining: 

tuple~ROW(n, INT) ; 

An "external denotation" (or "canonical name" ) is 
constructed; if n has the value 5, then this denotation is 
the symbol "ROW(5,INT)". A check is made to see if this is 
also the denotation of any other data type m if so, the 
value of the mode tuple is a pointer to the DDB for this 
data type; if not, a new DDB is constructed, and the value 
of the mode tuple is a pointer to this DDB. Thus a mode 
value is a pointer to a DDB -- the built-in definition for 
MODE is, in fact, PTR(DDB). 

Continuing with the example, let us suppose that no 
other data type has the canonical name "ROW(5,INT)". Then a 
DDB gets allocated (by calling the generation function for 
the mode DDB), and several fields of the DDB are filled in: 
e.g., the canonical n~me, the class (here ROW), and the 

• escriptor. The latter is a structure comprising an INT 
here 5) and a MODE (here INT). 

At this point the "mode compiler" is called. Given the 
descriptor of the new data type, this system routine deduces 
the storage layout for objects of the mode and, based on 
this internal representation, compiles three pieces of 
machine code: a generation function, which will be called 
whenever an object of mode tuple is to be created; a 
selection function, called when a selection is performed on 
a tuple; and an assignment function, invoked when an 
assignment of one tuple to another is performed. 

After the compilation of these functions, the remaining 
fields in the DDB are filled in, and a pointer to the DDB is 
created; this pointer is the value of the new mode. 
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It should be mentioned that the sequence of events will 
be somewhat different in some cases. For example, when the 
mode to be constructed is a ONEOF, the mode compiler is not 
called, since there will never be an object whose mode is a 
ONEOF. 

B. The Mode Compiler 

The decision to implement a mode compiler which 
rOduces generation, assignment, and selection functions 
ilored to the individual mode was based primarily on two 

considerations: 
1) Thealternative (say a single system function SET,ECT 

which takes, as arguments, an object X, its mode M, and the 
index I) would be unattractively slow. Savings of up to 50% 
of execution time can be realized by having mode specific 
functions. 

2) Having separate assignment and generation functions 
for each mode facilitates the efficient treatment of 
"sensitive" modes and data monitoring. E.g, attempted 
generation of an object of mode M can be trapped by the 
generation function for M, thus avoiding pa~ent of any 
overhead when generatir~ objects of other modes. 

R~qther than compile large bodies of code in line for 
each function it compiles, the mode compiler instead 
produces several words summarizing the essential features of 
the mode, followed by a call on a block of machine 
instructions. The result is a considerable saving of 
storage, at the expense of three or four extra machine 
instructions during function execution. 

C. Internal Representation 

As mentioned earlier, when the mode compiler is given 
the description of a new data type, it deduces a storage 
layout for objects of the new mode. The fundamental notion 
whlch shapes this representation is the "storage a~om~' [I~ 
page 328], which asserts that i or any moae m, any oojec~ oi 
mode M will occupy a contiguous block of storage, ~hose size 
is fixed for the lifetime of the object. This axiom 
essentially rules out the use of hidden pointers in the 
implementation and simplifies the management of stack and 
heap storage. While ruling out such features as arrays with 
flexible bounds, these features can be obtained as 
extensions, with the user exercising precise control over 
how they are handled. 

Another significant factor influencing the choice of 
storage layouts is the desire to minilnize the time required 
to perform such operations on objects as selection, 

• ssignment, generation, . size calculation, and tracing 
during garbage collection). The attempt was made to choose 
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a representation to minimize the amount of storage taken by 
objects while allowing these operations to be performed 
efficiently. 

The actual storage layout chosen for an object depends 
on the class of the object s mode: 

a) Primitives 
A B00L will take I bit, a CHAR 7 bits (its ASCII 

code), and an INTand a REAL one word each. Since addresses 
on the PDP-10 take 18 bits, and since a mode, being a 
pointer to a DDB, is an address, a REF consists of a full 
word: half of it is the mode, and the other half the 
address, of the object referenced. 

b) PTRs 
An object whose mode is a simple PTR will occupy 

18 bits. That is, if the mode of X is PTR(M) for some mode 
M, then X takes 18 bits, independent of M. 

If the mode of the object Y is a united PTR (i.e., 
PTR(M1,...,Mn)) then Y will look like a REFunless all the 
Mi are spaced, in which case Y will only occupy 18 bits. (A 
mode M is_s ~_ if there is a special segment of heap which 
is used so!Vel~for objects of mode M, so that the address is 
sufficient to determine the data type.) Among the spaced 
modes are the ~rimitives I}~and REAL and the built-in data 
types DDB and ~4BOL. 

For "composite" modes (i.e., ROWs and STRUCTs) the 
internal representation will depend critically on the 
storage layout of the sub-objects, since we are abiding by 
the "axiom of contiguous storage". The general scheme is to 
pack byte sub-objects as tightly as possible, except that a 
byte cannot overlap between one word and another. 
Similarly, each object requiring a full word or more will 
begin on a full-word boundary. These assumptions were 
adopted to match the byte and full word addressing 
conventions on the host machine, the PDP-IO. 

To illustrate the internal representation for some of 
the various ROWs = 

ROW(4,CHAR)~ Each object takes 28 bits. 
ROW(37,B00L); Each object takes 2 words (the word size 

on the PDP-IO is 36 bits) 
ROW(CHAR); For each object X there is a size 

specification K; X will take w words, where w=l+(K+4)/5. 
The first word (the "header") consists of w in one half, K 
in the other; the ~maining w-1 words contain the K CHARs. 

ROW(ROW(BOOL)), For each object Y there is a size 
specification El, K2; Y will take w words, where w=l+K1*w'. 
with w'=1+(K2+35)/36. The first word of Y consists of w s nd 
KI; the remainder of Y comprises the KI sub-objects. Each 
sub-object has a layout analogous to the one described in 
the previous case, ROW(CHAR). 
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Choosing an internal representation for objects whose 
mode is of class STRUCT is complicated by the fact that the 
components can be of different modes. In this case the 
storage will be laid out so that the byte components are 
first, packed according to a scheme which scans the byte 
sub-objects in decreasing order of size and arranges the 
placement of the currently scanned byte in the first word 
that has enough bits remaining. Following the byte 
components are the sub-objects requiring at least a full 
word; and finally appear the components (if any) whose modes 
are length unresolved. Though not logically necessary, a 
set of "internal pointers" (relative addresses) is used to 
facilitate selection on these latter sub-objects (see [1, 
page 323]). For each Eode of class STRUCT, a table is 
compiled (as ~art of the selection function) which encodes 
this representation. 

As far as the other mode classes are concerned, PROCs 
are treated as a special type of PTR, and there is never an 
object whose mode is of class ONEOF, so internal 
representation is not an issue in this case. 

D. Effects of Internal Representation 

The storage layout scheme described in the preceding 
subsection has proved to be an efficient host for ECL's data 
extension facility. For example: explicit size information 
is never stored with an object of length resolved mode; 
selection on an object whose mode is a length unresolved 
matrix is fast because of the easy retrieval of the index 
bound and component size from the object. 

As mentioned earlier, a function produced by the mode 
compiler will typically consist of several words encoding 
the features of the specific mode, followed by a call on one 
of several blocks of machine language. For example, there 
are 13 distinct routines for row selection functions, with 
the categories corresponding both to natural differences in 
representation and special efficiencies desired because of 
their expected frequency of use. In the case of assignment 
functions there are 9 separate routines, while for 
generation functions there are 21. (In the latter case the 
mode compiler goes to rather great lengths to compile an 
efficient function: e.g., in some c a s e s  a "template" is 
produced which only needs to be copied when an object is 
generated. ) 

IV. System Interfaces: 

The direct application of the mode compiler is to 
produce functions which will be called from the interpreter 
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to perform selection, assignment, and generation for objects 
of user-defined modes (thus these operations are partly 
compiled, even from interpreted programs). In addition to 
this use, however, there are other times when the mode 
compiler, or the functions it produces, are invoked. 

One such occasion is during system initialization. ECL 
was carefully structured, being formally defined through its 
own data extension facility, so that any object required 
during the execution of a program has an ECL-definable data 
type. The initialization (or "bootstrapping") phase then 
includes a sequence of calls on the mode compiler, which 
constructs functions for each non-primitive built-in mode. 
(Thus when any system component needs to create an object 
whose mode is built-in, it will call the generation function 
compiled for that mode.) Of course, some of these functions 
have to be assembled in; for example, the functions produced 
by the mode compiler are objects whose mode is the built-in 
data type CEXPR ~com~iled ex~ligit routine), so to get the 
bootstrapping oft %he ground (the--mode compiler constructs 
CEXPP~ by calling the generation function of the mode CEXPR) 
a hand coded generation function is assembld into the DDB 
for CEXPR. 

In addition to being a vital part of bootstrapping, the 
mode compiler is also valuable to the regular ECL compiler. 
Each function iFoduced by the mode compiler has two entry 
points: a "B--entry, to which the in%erpreter branches and 
which assumes arguments on the name stack; and an "R" entry, 
which assumes arguments in a predetermined set of machine 
registers. The ECL compiler, In producing code for an 
assignment, selection, or generation, can thus compile a 
call on the "R" entry of the function produced by the mode 
compiler (if it is trying to optimize on space), or it may 
compile code in-line (if it is optimizing time). 

V. Areas of Further Study: 

In the preceding sections we have discussed various 
aspects of the implementation of the data extension 
mechanism in ECL; in particular, we concentrated on the 
issues of choosing an internal representation and compiling 
efficient functions which employ that representation. Let 
us conclude by suggesting some places where further research 
might result in fruitful generalizations. 

One such area would involve ~,Jork in formalizing the 
illusive concept of "representation". In the implementation 
of the ECL data definitlon scheme, the fact that bytes are 
packed in a ROW or a STRUCT, that a header word for a length 
unresolved row contains the total lensth and the number of 
components, etc., are all implicit in the operation of the 
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mode compiler and the functions it produces. It would be 
useful if the representation information could be "factored 
out~; perhaps the mode compiler could accept a 
representation as an argument and then compile functions 
corresponding to this representation. 

A related problem would be to allow (but not to compel) 
the user to influence the way in which his objects are laid 
out. For example, if he wants to define the mode 

mle-ROW(2,BOOL); 

and is more concerned with saving time during selection than 
with saving space, he might prefer the sub-objects not to be 
packed into 2 bits, but stored one per word instead. 

VI. Summary: 

The treatment of data types in ECLis based on a set of 
fairly straightforward notions, most of which are readily 
implemented. Through the choice of a suitable internal 
representation, and a mode compiler which produces 
generation, selection, and assignment functions tailored to 
each mode, the ECL programming system provides its users 
with a highly efficient mechanism for dealing with complex, 
structured data. 
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