
AN IMPLEMEntATION OF ECL DATA TYPES

Benjamin M. Brosgol

Center for Research in Computing Technology
Harvard University

Cambridge, ~ss. 02138

I. Introduction:

The data-type definition scheme in ECL is designed to
furnish its users with a natural notation, in which the
composition and behavior of complex objects can be readily
described, and Which simultaneously produces efficient
underlying representations. The purpose of this paper is to
discuss how these objectives are met in the implementation
of ECL on Harvard's PDP-10.

Section II outlines the fundamentals of data definition
in ECL. For a full discussion of the ECL programming system
and its language component, the reader is referred to [I],
[21, or [4]; an overview of the system is presented in a
co~anion ~aper by Wegbreit [5]. A complete description of
ECL s data extensmon mechanism is given in [1] and [3].

Section III presents the main features of the
implementation of the ECL data definition scheme, discusses
the ~'mode compiler", analyzes the internal representation
chosen for data objects, and describes the efficiencies
resulting from this representation.

Finally, section IV deals with some of the interfaces
between the data extension mechanism and the rest of the ECL
system, and section V proposes some areas where further
research would be useful.

II. Main Features :

The fundamental feature of the ECL data definition
facility is that data-types (hereafter called modes) are
values in the language ~ there are mode-valued constants,
mode-valued variables, and executable routines which can
take modes as arguments or deliver them as results.

For example, the built-in data-types provided by ECL
are mode-valued constants: these include BOOL, INT, REAL,
CHAR, REF, MODE, and SYMBOL. The first four are the

• ata-types for boolean (logical), integer, real
floating-point), and character values. A REF is an object

which can point to any value allocated in the heap. A
data-type, whether built-in or user-defined, has mode MODE.

87

http://crossmark.crossref.org/dialog/?doi=10.1145%2F942582.807988&domain=pdf&date_stamp=1971-09-01

AN IMPLE~h~ATION OF ECL DATA TYPES

And SYMBOLs include, among other things, any variable ~mes
appearing in the course of anECL program.

The ECL programmer can define new data-types falling
into five classes, corresponding to the mode construction
routines ROW, STRUCT, PTR, PROC, and 0NEOF. We illustrate
these routines in turn:

A. ROW
The routine ROW is used to create a new mode M, each of

whose instances consists of some number of components, each
component having the same mode, say M'. For example,

triple~oROW(3,I~);
ml~-ROW(begi~ k>0 => 2*k; 4 end, triple);
m2~ROW('BUUILT;

Any object of mode triple will consist of three components,
each an INT. If k>O, each object of mode ml will co~prise
2*k sub-objects, where each sub-object is a triple; if k is
less than or equal to 0, each ml will consist of 4 triples.
And an object of mode m2 will comprise some nunber of BOOLs,
the number (the size of the object) specified when the
object is created; ~TTTerent objects of mode m2 can be of
different sizes. The mode m2 is said to be "length
unresolved" in this instance. The built-in mode STRING is
also length unresolved, being equivalent to R~(CHAR).

B. STRUCT
An object whose data type is of class ROW is subject to

the restriction that all its comlonents have the same mode
and size. A second class of modes, STRUCT, allows composite
objects whose components do not necessarily have the same
mode. For example,

record~STRUCT(id:STRING, history:triple, flag:BOOL);

This assignment establishes record as a mode-valued variable
whose value is a STRUCTure of three components. The first
coml~onent is a STRING, the second is a triple, and the third
is a BOOL; the names "id", "history u, and "flag",
respectively, may be used as selectors for these components.
Since STRING is a length tmresolved mode, so is record.

C. PTR
ECL provides both a stack discipline, as in ALGOL 60,

which expends and contracts on block entry and exit, and a
free storage region, or he~, as in LISP and ALGOL 68, which
is periodically garbage-~llected. Objects existing in the
heap can be referenced only through pointers; e.g., a datum
of mode REF is a pointer which can point to (i.e., contain
the address of) an arbitrary object allocated in the heap,
thus permitting the sharing of values.

88

AN IMPLEMENTATION OF ECL DATA TYPE

The mode construction routine PTR is used to define a
mode which we may term "restricted pointer". For example,

printname ~- PTR (string) ;

produces a mode whose objects are restricted to point only
to data of mode string. Similarly, objects of mode
arith\ptr, where the latter is defined by:

arith\ptr~-l~TR(INT, REAL) ;

can point only to objects of mode INT or objects of mode
REAL. While anything that can be done with a restricted
pointer can also be accomplished by a REF, the former is
useful from efficiency considerations: (I) in many cases
storage can be saved by not carrying type information

• xplicitly with the pointer, as must be done with REFs, and
2) more efficient compilation can result when the mode of
the object pointed to is known.

D. PROC
An object whose mode is PROC(MI,...,Mn; MO) will be a

routine whose arguments have data types MI,... ,~hq
respectively, and whose result has mode M0. For example,

hash\fns ~-PROC(string; INT) ;

defines a mode whose objects are routines which, given a
string as argument, produce an INT.

E. 0NEOF
It is frequently useful to have a routine which has an

argument, result, or local variable whose mode can vary from
one call to another; e.g., a function which takes sn INT or
a REAL and produces as result an INT or a REAL. This can be
accomplished through the mode construction routine 0NEOF.
To illustrate,

arith~-0NEOF(INT, REAL) ;
arith\fn~-PROC(arith, arith; arith) ;

An object whose mode is arith\fn is said to be a generic
routine.

ECL provides as a built-in data type the mode ANY,
which denotes the "union" of all modes; i.e., ANY bears the
same relation to 0NEOF as REF does to PTR.

89

AN IMPLEME~fATION OF ECL DATA TYPES

III. Implementation:

A. The Allocation and Completion of DDBs

All of the information which the ECL system needs
concerning a data type is contained in a body of stgrage
called a "DDB", or "data definition block". A DDB Is a
structure which includes several fields: e.g., pointers to
selection, generation, assignment, and garbage collection
functions; a variety of BCOLs indicating whether the mode is
length resolved, whether objects of the mode occupy less
than one word and whether they include any embedded
pointers; etc. Each primitive data type has a DDB which is
assembled into the system, while a user-defined type may
cause the creation of a new DDB.

To illustrate the basic mechanics of the
implementation, we assume that the user is defining:

tuple~ROW(n, INT) ;

An "external denotation" (or "canonical name") is
constructed; if n has the value 5, then this denotation is
the symbol "ROW(5,INT)". A check is made to see if this is
also the denotation of any other data type m if so, the
value of the mode tuple is a pointer to the DDB for this
data type; if not, a new DDB is constructed, and the value
of the mode tuple is a pointer to this DDB. Thus a mode
value is a pointer to a DDB -- the built-in definition for
MODE is, in fact, PTR(DDB).

Continuing with the example, let us suppose that no
other data type has the canonical name "ROW(5,INT)". Then a
DDB gets allocated (by calling the generation function for
the mode DDB), and several fields of the DDB are filled in:
e.g., the canonical n~me, the class (here ROW), and the

• escriptor. The latter is a structure comprising an INT
here 5) and a MODE (here INT).

At this point the "mode compiler" is called. Given the
descriptor of the new data type, this system routine deduces
the storage layout for objects of the mode and, based on
this internal representation, compiles three pieces of
machine code: a generation function, which will be called
whenever an object of mode tuple is to be created; a
selection function, called when a selection is performed on
a tuple; and an assignment function, invoked when an
assignment of one tuple to another is performed.

After the compilation of these functions, the remaining
fields in the DDB are filled in, and a pointer to the DDB is
created; this pointer is the value of the new mode.

9O
m

AN IMPLEM]Z2~ATION OF ECL DATA TYPES

It should be mentioned that the sequence of events will
be somewhat different in some cases. For example, when the
mode to be constructed is a ONEOF, the mode compiler is not
called, since there will never be an object whose mode is a
ONEOF.

B. The Mode Compiler

The decision to implement a mode compiler which
rOduces generation, assignment, and selection functions
ilored to the individual mode was based primarily on two

considerations:
1) Thealternative (say a single system function SET,ECT

which takes, as arguments, an object X, its mode M, and the
index I) would be unattractively slow. Savings of up to 50%
of execution time can be realized by having mode specific
functions.

2) Having separate assignment and generation functions
for each mode facilitates the efficient treatment of
"sensitive" modes and data monitoring. E.g, attempted
generation of an object of mode M can be trapped by the
generation function for M, thus avoiding pa~ent of any
overhead when generatir~ objects of other modes.

R~qther than compile large bodies of code in line for
each function it compiles, the mode compiler instead
produces several words summarizing the essential features of
the mode, followed by a call on a block of machine
instructions. The result is a considerable saving of
storage, at the expense of three or four extra machine
instructions during function execution.

C. Internal Representation

As mentioned earlier, when the mode compiler is given
the description of a new data type, it deduces a storage
layout for objects of the new mode. The fundamental notion
whlch shapes this representation is the "storage a~om~' [I~
page 328], which asserts that i or any moae m, any oojec~ oi
mode M will occupy a contiguous block of storage, ~hose size
is fixed for the lifetime of the object. This axiom
essentially rules out the use of hidden pointers in the
implementation and simplifies the management of stack and
heap storage. While ruling out such features as arrays with
flexible bounds, these features can be obtained as
extensions, with the user exercising precise control over
how they are handled.

Another significant factor influencing the choice of
storage layouts is the desire to minilnize the time required
to perform such operations on objects as selection,

• ssignment, generation, . size calculation, and tracing
during garbage collection). The attempt was made to choose

91

AN IMPLE~,[EK~rATION OF ECL DATA TYPES

a representation to minimize the amount of storage taken by
objects while allowing these operations to be performed
efficiently.

The actual storage layout chosen for an object depends
on the class of the object s mode:

a) Primitives
A B00L will take I bit, a CHAR 7 bits (its ASCII

code), and an INTand a REAL one word each. Since addresses
on the PDP-10 take 18 bits, and since a mode, being a
pointer to a DDB, is an address, a REF consists of a full
word: half of it is the mode, and the other half the
address, of the object referenced.

b) PTRs
An object whose mode is a simple PTR will occupy

18 bits. That is, if the mode of X is PTR(M) for some mode
M, then X takes 18 bits, independent of M.

If the mode of the object Y is a united PTR (i.e.,
PTR(M1,...,Mn)) then Y will look like a REFunless all the
Mi are spaced, in which case Y will only occupy 18 bits. (A
mode M is_s ~_ if there is a special segment of heap which
is used so!Vel~for objects of mode M, so that the address is
sufficient to determine the data type.) Among the spaced
modes are the ~rimitives I}~and REAL and the built-in data
types DDB and ~4BOL.

For "composite" modes (i.e., ROWs and STRUCTs) the
internal representation will depend critically on the
storage layout of the sub-objects, since we are abiding by
the "axiom of contiguous storage". The general scheme is to
pack byte sub-objects as tightly as possible, except that a
byte cannot overlap between one word and another.
Similarly, each object requiring a full word or more will
begin on a full-word boundary. These assumptions were
adopted to match the byte and full word addressing
conventions on the host machine, the PDP-IO.

To illustrate the internal representation for some of
the various ROWs =

ROW(4,CHAR)~ Each object takes 28 bits.
ROW(37,B00L); Each object takes 2 words (the word size

on the PDP-IO is 36 bits)
ROW(CHAR); For each object X there is a size

specification K; X will take w words, where w=l+(K+4)/5.
The first word (the "header") consists of w in one half, K
in the other; the ~maining w-1 words contain the K CHARs.

ROW(ROW(BOOL)), For each object Y there is a size
specification El, K2; Y will take w words, where w=l+K1*w'.
with w'=1+(K2+35)/36. The first word of Y consists of w s nd
KI; the remainder of Y comprises the KI sub-objects. Each
sub-object has a layout analogous to the one described in
the previous case, ROW(CHAR).

92

AN IMPLEMENTATION OF ECL DATA TYPES

Choosing an internal representation for objects whose
mode is of class STRUCT is complicated by the fact that the
components can be of different modes. In this case the
storage will be laid out so that the byte components are
first, packed according to a scheme which scans the byte
sub-objects in decreasing order of size and arranges the
placement of the currently scanned byte in the first word
that has enough bits remaining. Following the byte
components are the sub-objects requiring at least a full
word; and finally appear the components (if any) whose modes
are length unresolved. Though not logically necessary, a
set of "internal pointers" (relative addresses) is used to
facilitate selection on these latter sub-objects (see [1,
page 323]). For each Eode of class STRUCT, a table is
compiled (as ~art of the selection function) which encodes
this representation.

As far as the other mode classes are concerned, PROCs
are treated as a special type of PTR, and there is never an
object whose mode is of class ONEOF, so internal
representation is not an issue in this case.

D. Effects of Internal Representation

The storage layout scheme described in the preceding
subsection has proved to be an efficient host for ECL's data
extension facility. For example: explicit size information
is never stored with an object of length resolved mode;
selection on an object whose mode is a length unresolved
matrix is fast because of the easy retrieval of the index
bound and component size from the object.

As mentioned earlier, a function produced by the mode
compiler will typically consist of several words encoding
the features of the specific mode, followed by a call on one
of several blocks of machine language. For example, there
are 13 distinct routines for row selection functions, with
the categories corresponding both to natural differences in
representation and special efficiencies desired because of
their expected frequency of use. In the case of assignment
functions there are 9 separate routines, while for
generation functions there are 21. (In the latter case the
mode compiler goes to rather great lengths to compile an
efficient function: e.g., in some c a s e s a "template" is
produced which only needs to be copied when an object is
generated.)

IV. System Interfaces:

The direct application of the mode compiler is to
produce functions which will be called from the interpreter

95

AN IMPLEMEI,~ATION OF ECL DATA TYPES

to perform selection, assignment, and generation for objects
of user-defined modes (thus these operations are partly
compiled, even from interpreted programs). In addition to
this use, however, there are other times when the mode
compiler, or the functions it produces, are invoked.

One such occasion is during system initialization. ECL
was carefully structured, being formally defined through its
own data extension facility, so that any object required
during the execution of a program has an ECL-definable data
type. The initialization (or "bootstrapping") phase then
includes a sequence of calls on the mode compiler, which
constructs functions for each non-primitive built-in mode.
(Thus when any system component needs to create an object
whose mode is built-in, it will call the generation function
compiled for that mode.) Of course, some of these functions
have to be assembled in; for example, the functions produced
by the mode compiler are objects whose mode is the built-in
data type CEXPR ~com~iled ex~ligit routine), so to get the
bootstrapping oft %he ground (the--mode compiler constructs
CEXPP~ by calling the generation function of the mode CEXPR)
a hand coded generation function is assembld into the DDB
for CEXPR.

In addition to being a vital part of bootstrapping, the
mode compiler is also valuable to the regular ECL compiler.
Each function iFoduced by the mode compiler has two entry
points: a "B--entry, to which the in%erpreter branches and
which assumes arguments on the name stack; and an "R" entry,
which assumes arguments in a predetermined set of machine
registers. The ECL compiler, In producing code for an
assignment, selection, or generation, can thus compile a
call on the "R" entry of the function produced by the mode
compiler (if it is trying to optimize on space), or it may
compile code in-line (if it is optimizing time).

V. Areas of Further Study:

In the preceding sections we have discussed various
aspects of the implementation of the data extension
mechanism in ECL; in particular, we concentrated on the
issues of choosing an internal representation and compiling
efficient functions which employ that representation. Let
us conclude by suggesting some places where further research
might result in fruitful generalizations.

One such area would involve ~,Jork in formalizing the
illusive concept of "representation". In the implementation
of the ECL data definitlon scheme, the fact that bytes are
packed in a ROW or a STRUCT, that a header word for a length
unresolved row contains the total lensth and the number of
components, etc., are all implicit in the operation of the

94

AN IMPT,EMENTATION OF ECL DATA TYPES

mode compiler and the functions it produces. It would be
useful if the representation information could be "factored
out~; perhaps the mode compiler could accept a
representation as an argument and then compile functions
corresponding to this representation.

A related problem would be to allow (but not to compel)
the user to influence the way in which his objects are laid
out. For example, if he wants to define the mode

mle-ROW(2,BOOL);

and is more concerned with saving time during selection than
with saving space, he might prefer the sub-objects not to be
packed into 2 bits, but stored one per word instead.

VI. Summary:

The treatment of data types in ECLis based on a set of
fairly straightforward notions, most of which are readily
implemented. Through the choice of a suitable internal
representation, and a mode compiler which produces
generation, selection, and assignment functions tailored to
each mode, the ECL programming system provides its users
with a highly efficient mechanism for dealing with complex,
structured data.

Bibliography

[1] Wegbreit, B., Studies in
languages, ESD-TR-70-297, Harvard
Mass., May 1 970

extensible
University,

programming
Cambridge,

[2] Wegbreit, B., The ECL Programming System. Technical
rel~ort, Division of Engineering and Applied Physics, Harvsafd
Unzver~!t~x ~ ~mb~idge, Mass., April 1971. Vi'o appear in
~roc. ~duc]~11).

[3] Wegbreit, B., The Treatment of hata Types in EL1.
Technical report, Division of Engineering and Applied

•s YSiCS, Harvard University, Cambridge, Mass., May 1971
ubmitted for publication).

[4] ECL User's Manual ; (In preparation)

~] Wegbreit, B., An Overview of the ECL Programming System.
oc. of the International Symposium on Extensible

Languages, SIGPLAN Notices, Vol. 6, Number 12 (December,
1971).

95

