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I. Introduction 

ECL is a programming language system currently under development 
at Harvard University. A general descrintion of the system is given 
in a companion paper [ l ] .  This ~aDer wil l  describe some of the con- 
trol structure fac i l i t ies  available in ECL - a complete description 
wil l  appear as part of the author's Ph.D. thesis. 

Most existing programming languages allow for only one path of 
control. The programmer is presented with an environment in which he 
may use conditional statements, iteration statements and nested function 
calls (perhaps called recursively) to modify the flow of control through 
his Program but i t  is not usually possible to either suspend execution 
of the current program (control path) and start up another or to set uD 
another control path to execute in parallel with the current one. ELI, 
as originally proposed in [2], allows for only one path of control. 
ECL, however, allows for the creation and manipulation of multiple 
paths of control. These paths may execute in parallel, or act as 
coroutines or in any other relation desirable. Since the number of 
paths which can be created to execute in parallel may be greater than 
the number of processors available on a given machine, some sort of 
path scheduling must be done. The path scheduler is written in ELI 
and is available for redefinition by the programmer. 

The following sections wil l  discuss: 

l) what an ECL path is, 
2) a distinguished path which controls both path scheduling and 

tile flow of control between paths, 
3) primitives for manipulating paths, 
4) examples of multi-path control. 

2. Paths 

A path is the computational environment created by the execution 
of a (sequential) ELI procedure. Associated with each path is an envi- 
ronment and a unique activation record. The environment includes the 
current nesting of function calls an~-'the name-value pairs associating 
formal parameters with actual parameters and local variables with 
current values. The activation record (ACTRC) is defined as an ELI 
STRUCT. All ACTRCs are allocated in the head and thus must be refer- 
enced by pointers. The mode ARPTR is defined as a PTR(ACTRC) for this 
purpose. 

Paths may share cow,non data structures. The sharing may be accom- 
plished by referencing the same global variable (i.e. assignments made 
to variables defined in the "top level" environment) or by passing 
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pointers to objects in the head between paths. Note that i t  is not the 
oointers themselves but the objects pointed to which are shared. 

A path may be created by callinq the primitive function GET. This 
function takes an integer argument specifying the amount of core (in K) 
to be allocated i n i t i a l l y  for the Daths environment (stacks). GET 
returns an ARPTR for the newly created path. 

Two functions can be used to in i t ia te  a computation in a path: PAP 
and PAPO (path-apply). The relation between these two functions is the 
same as the relation between SET and SETO in LISP - the former evaluates 
i ts  f i r s t  argument while the lat ter  does not, i ,e.  

PAP(QUOTE(FOO(X,Y),P)= PAPO(FOO(X,Y),P) 

PAP (or PAPQ) takes two arguments: the f i r s t  argument is a function 
call to be applied in the path which is i ts second argument. The 
function name and the arguments to the function are evaluated in the 
current paths environment (e.q. FO0, X, and Y above), the environment 
of the path which is the second argument to PAP (e.q. P above) is 
modified so that when (or i f )  control passes to i t ,  the function (PO0) 
wil l  be called on i ts arguments (X, Y). I t  is not necessary for a 
path to be newly created in order to PAP a function call into i ts 
environment. PAP may be used to apply a Drocedure in the environment 
of a path which has already started a comnutation (see examnle l for 
a use of PAP in this context). 

Once a path has been created and a function call PAPed into i ts 
environment i t  is ready for execution. The mechanism for passing con- 
trol between paths and executing paths in narallel wily be discussed 
in the next section. 

3. Comtrol Interpreter_ 

There exists one distinguished path in ECL - the control inter- 
~reter (CI) path. This path contains in i ts environment a queue of 
all oaths which would be executing in ~arallel i f  there existed enough 
processors - thus i t  has the ab i l i ty  to act as a hath scheduler. In 
addition, the CI acts as a control switchyard for other paths in the 
system. No path can pass control directly to any other path - i t  must 
communicate the control via the CI hath. 

CI. 
I f  a path cannot proceed (for any reason) i t  nasses control to the 
The CI wi l l  then examine i ts queues, choose a new hath to run and 
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then pass control to that path. Control is passed from a path to the 
CI path by executing a primitive function CIA - (control-interpreter- 
apply). CIA takes two arguments - the f i r s t  i s  the name of a nrocedure 
to be executed in the CI environment, the second is the argument to 
that procedure. The interpretation is as follows: control is to be 
passed from the current path to the CI path (as soon as the C! path is 
free - i .e. no control resides in the CI path) and the function is 
applied to i ts  argument in the environment of the CI. 

The following variables are declared in the C environment: 
LASTRUN (an ARPTR) is the path which has passed control to 

the CI. 
WRUNO (a STRUCT(FIRST:ARPTR,LAST:ARPTR)) is a queue of those 

paths which would be running i f  there were enough processors. 

I~hen control is passed to the CI for a CIA cal l ,  the CI applies 
the function to i ts argument and then checks the value of LASTRUN. I f  
i t  is NIL then the CI chooses a new path to run from the !!RUNn (see 
example 2), i f  i t  is not NIL then the CI passes control to the path 
specified by LASTRUN - which may be a different path from the one which 
executed the CIA call (see example l ) .  

4. Primitive Functions 

Four primitive control functions have been described in the previous 
sections: GET, PAP, PAPQ and CIA. There exist three more functions 
which are primitive in the system: 

l )  RETFROM (FNAME,VALUE) - return from the most recent call to 
the function FNAHE with VALUE as result, 

2) DELETE (P) - indicate that the path P is no lonqer el iq ib le 
for running ( i .e.  an error occurs i f  a path attemDts to pass 
control to P), 

3) MYPATH () - returns an ARPTR to the activation record of this 
path. 

5. Example l :  Tree Walks Using Coroutines 

Consider the following problem: given two binary trees x and y, 
where x and y have the same number of nodes but not necessarily the 
same structure, walk each tree in prefix order and assiqn to each node 
of y two times the node value of the corresponding node of x. 

e.g. 

x y new y 
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The date structure definitions arel: 

TREE÷TREE: :PTR("NODE" ) ; 
NODE÷NODE: : STRUCT(LS: "TREE" ,RS: "TREE" ,NODE~,VAL: INT) ; 

To solve this problem we wil l  define a procedure TREE~DOUBLE which 
wil l  create two new paths px and ny - making a total of 3 paths, including 
the hath in which TREE\DOUBLE is called (which we wil l  refer to as no) 
Po wil l  call upon px and py as coroutines. When called, px (ny) wil l  
return a pointer to the next node in the prefix walk of the tree x (tree v). 
Note that since px and py are separate paths they retain their internal 
state upon returning the next node to Po" 

TREE\DOUBLE is defined as follows: 

TREE\DOUBLE÷EXPR(X:TREE,Y:TREE;TREE) 
BEGIN 
DECL PX,PY:ARPTR; 
DECL NX,NY:TREE; 

[ I ]  PX+COCALL(WALK(X)); 
[2] PY÷COCALL(WALK(Y)); 

[3] LOOP: NX÷RESUME(PX,NIL); 
[4] NY÷RESUME(PY,NIL); 

[5] NX=NIL =>[) DELETE(PX); 
DELETE(PY); 
Y (]; 

[6] VAL (NY).NODE VAL~2*VAL(NX).NODE VAL; 

[7] GOTO LOOP 

END; 

[ l ]  COCALL creates a new path to be called as a coroutine. The 
new path (when started) wil l  a~nlv the nrocedure WALK on 
tree X. 

[2] same as [ l ]  for tree Y. 
[3] Resume coroutine PX. Control leaves this Bath and PX is 

restarted. When PX resumes this Bath i t  wi l l  nass back (as 
the "result" of the procedure RESUME) a pointer to the next 
node of tree X which wil l  be assigned to NX. 

[4] same as [3] for tree Y. 
[5] I f  PX returns NIL then the entire tree has been walked. Delete 

paths PX and PY and return from TREE\DOUBLE with Y as result. 
[6] make the node of Y be two times the node of X. 
[7] Loop. 

l Terminal nodes are represented by NIL LS and RS links 
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COCALL is defined as fol lows: 

COCALL÷EXPR(Z:FORM UNEVAL;ARPTR) 
BEGIN 
DECL P:ARPTR; 

[1 ] P÷GET(1 ) ; 
[2]  P.ANC~-MYPATH(); 
[3] PAP(Z,P); 
[4] P 

END; 

[ I ]  Create a path P, 
[2] The STRUCT de f in i t i on  of ACTRC contains a f i e l d  ANC (ancestor) 

which is an ARPTR. Store in P the fact  thay my path created 
i t .  Note that using ANC avoids passing an extra argument to 
WALK. 

[3] PAP into path P a cal l  to the procedure ( i .e .  WALK(X) or WALK(Y)). 
[4]  Return P as resul t .  

RESUME is defined as fo l lows l :  

RESUME÷EXPR(PATH:ARPTR,VAL:ANY;ANY) 
BEGIN 

[ I ]  PAPQ(RETFROM("RESUME",VAL),PATN); 
[2] ClA("SWITCH\PATHS",PATH) 

END; 

[ I ]  Apply the procedure RETFROM in the path to be resumed. The 
procedure to be returned from is RESUME and the resul t  that 
the cal l  on RESUME should return is VAL. 

I The de f in i t i on  of RESUME which was actual ly  used when these 
functions were run in ECL d i f fe rs  s l i g h t l y  from the de f in i t i on  of 
RESUME given above. Currently PAP jus t  sets up an evaluation of the 
form which is i t s  f i r s t  argument in the environment of the path which 
is i t s  second argument. Thus i t  is necessary to bind VAL to VALUE 
(a global variable) to correct ly  oass the next node of the tree to the 
path to be resumed: 

RESUME÷EXPR(PATH:ARPTR,VAL:ANY;ANY) 
BEGIN 
VALUE÷VAL; 
PAPQ(RETFROM("RESUME",VALUE),PATH); 
CIA("SWITCH\PATHS",PATH) 
END; 
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[2] Call upon the CI to pass control from this Dath to the Dath 
to be resumed. When control passes to the resumed path i t  
wil l execute the RETFROM from the call to RESUME in its en- 
vironment and return VAL as result of the call. Note that 
this path is le f t  in a state such that when another ~ath tries 
to resume i t  the current call to RESUME is the one which will 
be returned from. Also note that the f i r s t  time PX and PY are 
resumed there are no calls to RESUME in their environments to 
return from. This presents no nroblem since RETFROM has no 
effect (returns NOTHING) i f  no call to the function is found 
in the function call environment. In this case, control 
simply "falls through" to the call on the procedure WALK. 

SWITCH~PATHS÷EXPR(Q:ARPTR;NONE) 
BEGIN 
DECL LASTRUN:ARPTR BYREF LASTRUN; 
LASTRUN4-Q 
END; 

SWITCH\PATHS merely modifies LASTRUN to be the path to be resumed. 

WALK÷EXPR(T:TREE;NONE) 
BEGIN 

I l l  WALKI(T); 
[2] RESUME(MYPATH().ANC,NIL) 

END; 

WALKI÷EXPR(T:TREE;NONE) 
BEGIN 

[ l ]  T=NIL => NOTHING; 
[2] RESUME(MYPATH().ANC,T); 
[3] WALKI(T.LS); 
[4] WALKI(T.RS) 

END; 

WALK 

WALK1 

[ I ]  Call upon the aux i l l i a ry  procedure I~ALKI to ~erform the 
actual pref ix walk. 

[2] When t~ALKI returns, the tree walk is complete. Resume 
Po with NIL to indicate completion (see TREE\DOUBLE [5 ] ) .  

[ I ]  T:NIL implies that we have tried to walk from a terminal 
node - thus return NOTHING. 

[2] Resume Pn passing i t  anointer to the node. 
[3] Call WALKI recursively on the LS link. 
[4] Call WALKI recursively on the RS link. 
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6. EXAMPLE 2 - SEHAPHORES 

Semaphores [3] and their associated operations P and V are useful 
for mutual synchronization of processes. P and V can be defined easily 
in ECL as shown below. 

The data structures are: 

ARQPTR÷ARQPTR::STRUCT(FIRST:ARTPR,LAST:ARPTR); 

SEM\ELT÷SEI4\ELT::STRUCT(COUNT:INT,WLIST:ARQPTR); 

SEr~-PTR(SEM\ELT); 
The P operation is defined as follows: 

P÷EXPR(X:SEM;NONE) 
BEGIN 
OECL Y:SEM\ELT BYREF VAL(X); 

[ l ]  MYPATH() # PCIAR => CIA("P",X); 
[2] Y.COUNT÷Y.COUNT-I; 
[3] Y.COUNT GE ~ => NIL; 
[4] ENTERL(LASTRUN,Y.WLIST); 
[5] LASTRUN.,-NIL 

END; 

[ l ]  I f  my path is not the CI path (PCIAR is a global variable which 
points to the CI's ACTRC) then call upon the CI to execute 
P(X). 

[2] Subtract one from the semaohore's count. 
[3] I f  the count is greater than or equal to zero then no work has 

to be done, 
[4] I f  the count is less than zero then enter the hath which 

executed the CIA onto the queue of paths associated with 
the semaphore. 

[5] Set LASTRUN to NIL to indicate to the CI that this path can 
no longer run. The CI wi l l  choose some other ~ath to run. 

The V operation is defined as follows: 

V÷EXPR(X:SEM;NONE) 
BEGIN 
DECL Y:SEM\ELT BYREF VAL(X); 
DECL Z:ARPTR; 

[ l ]  MYPATH() # PCIAR => CIA(~'V",X); 
[2] Y.COUNT÷Y.COUNT+I; 
[3] Y.COUNT GT ~ => NIL; 
[4] Z÷Y.WLIST.FIRST; 
[5] Y.WLIST.FIRST÷Y.WLIST.FIRST.NEXT; 
[6] Y.WLIST. FIRST=NIL÷Y.WLIST. LAST÷NIL; 
[7] ENTERL(~,WRUNQ) 

END; 
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[ l ]  I f  my path is not the CI then call the CI to execute V(X). 
[2] Increment the semaphore count bv l ,  
[3] I f  the count is greater than zero than there is no work to 

be done. 
[4] Z is bound to the f i r s t  path waiting upon the semaphore 
[5] [6] Remove Z from the ~$LIST (ACTRCs are ]inked through a 

a f ield NEXT: ARPTR). 
[ l ]  Put Z on the queue of paths which may be run. 

7. OTHER FEATURES 

The above sections give a brief description of the control structure 
faci l i t ies available in ECL. The system also contains a number of 
faci l i t ies which are beyond the ScoPe of this paper. These include: 
handling of external interrupts, monitoring of variables, and the abi l i ty 
of a path to gain an explicit handle on its environment. 
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