Check for
Updates

The Control Structure Facilities of ECL

Charles J. Prenner Center for Research in Computina Technology
Harvard University

1. Introduction

ECL is a programming language svstem currently under development
at Harvard University. A general descrintion of the system is given
in a comnanion paner [1]. This naner will describe some of the con-
trol structure facilities available in ECL - a comnlete description
will appear as part of the author's Ph.D, thesis.

Most existing nrogramming lanquages allow for only one path of
control. The programmer is presented with an environment in which he
may use conditional statements, iteration statements and nested function
calls {perhaps called recursively) to modify the flow of control through
his program but it is not usually pnossible to either suspend execution
of the current program (control path) and start up another or to set up
another control path to execute in parallel with the current one. FEL1,
as originally proposed in [2], allows for only one nath of control.

ECL, however, allows for the creation and manipulation of multiple
paths of control. These paths may execute in narallel, or act as
coroutines or in any other relation desirable. Since the number of
paths which can be created to execute in narallel mav be greater than
the number of nrocessors available on a given machine, some sort of
path scheduling must be done. The path scheduler is written in ELI]
and is available for redefinition by the programmer,

The following sections will discuss:

1) what an ECL path is,

2) a distinguished nath which controls both path scheduling and
the flow of control between paths,

3) pnrimitives for manipulating vnaths,

4) examples of multi-path control.

2. Paths

A path is the computational environment created by the execution
of a (sequential) EL1 procedure. Associated with each oath is an envi-
ronment and a unique activation record. The environment includes the
current nesting of function calls and the name-value pairs associating
formal parameters with actual parameters and local variables with
current values. The activation record (ACTRC) is defined as an FL1
STRUCT. A1l ACTRCs are allacated in the heap and thus must be refer-
enced by pointers. The mode ARPTR is defined as a PTR(ACTRC) for this
purpose.

Paths may share common data structures. The sharing mav be accom-
plished by referencing the same global variable (i.e. assignments made
to variables defined in the “top level" environment) or by passing

104 _


http://crossmark.crossref.org/dialog/?doi=10.1145%2F942582.807990&domain=pdf&date_stamp=1971-09-01

pointers to objects in the heap between paths. MNote that it is not the
pointers themselves but the objects nointed to which are shared.

A path may be created by calling the primitive function RET. This
function takes an integer arqument snecifying the amount of core {in K)
to be allocated initially for the paths environment (stacks). GET
returns an ARPTR for the newly created nath.

Two functions can be used to initiate a computation in a path: PAP
and PAPQ (path-apnly). The relation between these two functions is the
same as the relation between SET and SETD in LISP - the former evaluates
its first argument while the latter does not, i.e.

PAP (QUOTE(FOD(X,Y),P)= PAPO(FON(X,Y),P)

PAP (or PAPQ) takes two arguments: the first arqument is a function
call to be apnlied in the path which is its second argument., The
function name and the arquments to the function are evaluated in the
current paths environment (e.a. FOO, X, and Y above), the environment
of the path which is the second argument to PAP (e.q., P ahove) is
modified so that when (or if) control nasses to it, the function (F00)
will be called on its arguments (X, Y), It is not necessarv for a
nath to be newly created in order to PAP a function call into its
environment. PAP may be used to apoly a nrocedure in the environment
of a path which has already started a comnutation {see examnle 1 for
a use of PAP in this context).

Once a path has been created and a function call PAPed into its
environment it is ready for execution, The mechanism for rassing con-
trol between naths and executing naths in narallel will be discussed
in the next section.

3. Control Interpreter

There exists one distinguished path in ECL - the control inter-
nreter (CI) path. This path contains in its environment a.queue of
all paths which would be executing in narallel if there existed enough
processors - thus it has the ability to act as a nath scheduler. In
addition, the CI acts as a control switchyard for other naths in the
system. No path can pass control directly to any other nath - it must
communicate the control via the CI nath.

ff

If a nath cannot proceed (for any reason) it nasses control to the
CI. The CI will then examine its queues, choose a new nath to run and

_ 145



then pass control to that path. Contrel is passed from a nath to the
CI path by executing a primitive function CIA - (control-internreter-
apply). CIA takes two arguments - the first is the name of a nrocedure
to be executed in the CI environment, the second is the arqument to
that procedure. The internretation is as follows: contral is to be
passed from the current path to the CI path (as soon as the CI nath is
free - i.e. no control resides in the C! nath) and the function is
applied to its argument in the environment of the CI.

The following variables are declared in the C environment:
LASTRUN (an ARPTR} is the path which has passed control to
the CI.
WRUND (a STRUCT(FIRST:ARPTR,LAST:ARPTR)} is a aueue of those
paths which would be running if there were enough processors.

lthen control is passed to the CI for a CIA call, the CI anplies
the function to its argument and then checks the value of LASTRUN. If
it is NIL then the CI chooses a new path to run from the YRUND (see
example 2), if it is not NIL then the CI nasses control to the path
specified by LASTRUN - which may be a different path from the one which
executed the CIA call (see examnle 1),

4, Primitive Functions

Four primitive contrsal functions have been described in the nrevious
sections: GET, PAP, PAPQ and CIA. There exist three more functions
which are primitive in the system: :

1) RETFROM (FNAME,VALUE)} - return from the most recent call to

the function FNAME with VALUE as result,

2) DELETE (P) - indicate that the path P is no longer eligible

for running (i.e. an error occurs if a path attempts to pass
control to P),

3) MYPATH () - returns an ARPTR to the activation record of this

path.

5. Example 1: Tree Walks Using Coroutines

Consider the following nroblem: given two binary trees x and y,
where x and y have the same number of nodes but not necessarily the
same structure, walk each tree in prefix order and assign to each node
of y two times the node value of the corresponding node of x.

e.g.

X y new y

106



The date structure definitians arel:

TREE+TREE: :PTR("NODE" ) 3
NODE«NODE : : STRUCT (LS : "TREE" ,RS: "TREE" ,NODE\VAL : INT);

To solve this problem we will define a procedure TREENDOUBLE which
will create two new paths px and ny - making a total of 3 paths, including
the nath in which TREENDOUBLE is called (which we will refer to as ng)
po will call uvon px and py as coroutines. When called, nx (ny) will
return a pointer to the next node in the prefix walk of the tree x (tree v).
Note that since px and py are separate paths they retain their internal
state upon returning the next node to Dy»

TREENDOUBLE is defined as follows:

TREENDOUBLE«EXPR(X: TREE, Y : TREE ; TREE )
BEGIN
DECL PX,PY:ARPTR;
DECL NX,NY:TREE;

[1] PX+COCALL(WALK(X)):
[2] PY<COCALL(WALK(Y});

[3] LOOP: NX«RESUME(PX,NIL);
[4] NY+-RESUME(PY,NIL);

5] NX=NIL =»[) DELETE{PX);
3E%§TE(PY);

[6] VAL (NY).NODE VAL«2*VAL(NX).NODE VAL;
[7] GoTO LOOP
END;

[1] COCALL creates a new path to be called as a coroutine. The
new path (when started) will annly the nrocedure WALK on
tree X.

[2] same as [1] for tree Y.

£3] Resume coroutine PX. Control leaves this path and PX is

restarted. \hen PX resumes this path it will nass back (as

the "result" of the procedure RESUME) a nointer to the next

. hode of tree X which will be assigned to NX.

[4] same as [3] for tree Y.

{5] If PX returns NIL then the entire tree has been walked. Delete

_ paths PX and PY and return from TREE\NDOUBLE with Y as result.

[6] make the node of Y be two times the node of X,

[7] Loop.

1 Terminal nodes are reoresented by NIL LS and RS links
_ 107 _



COCALL is defined as follows:

COCALL+E§ER§Z :FORM UNEVAL ;ARPTR)
DECL P:ARPTR;
[1] P«GET(1);
[2] P.ANC<MYPATH():
[3] PAP(Z P);
[4] P
END;

[1] Create a path P,

[2] The STRUCT definition of ACTRC contains a field ANC (ancestor)
which is an ARPTR. Store in P the fact thay my pnath created
iE.K Note that using ANC avoids passing an extra arqument to
HALK.

[3] PAP into path P a call to the procedure (i.e. WALK(X) or WALK(Y)).
[4] Return P as result.

RESUME is defined as follows':

RESUME<EXPR(PATH:ARPTR, VAL :ANY ; ANY )
BEGIN
[1] PAPQ(RETFROM("RESUME",VAL),PATH);
[2] CIA("SWITCH\PATHS",PATH)
END;

[1] Apply the procedure RETFROM in the path to be resumed. The
procedure to be returned from is RESUME and the result that
the call on RESUME should return is VAL.

T The definition of RESUME which was actually used when these
functions were run in ECL differs slightly from the definition of
RESUME given above. Currently PAP just sets up an evaluation of the
form which is its first argument in the environment of the path which
is its second argument. Thus it is necessary to bind VAL to VALUE
(a global variable) to correctly nass the next node of the tree to the
path to be resumed:

RESUME<EXPR(PATH:ARPTR,VAL : ANY ; ANY)
BEGIN
VALUE«VAL;
PAPG{RETFROM("RESUME" ,VALUE),PATH);
CIA("SWITCH\PATHS" ,PATH)
END;

1038



[2] €all upon the CI to nass control from this path to the path
to be resumed. When control passes to the resumed nath it
will execute the RETFROM from the call to RESUME in its en-
vironment and return VAL as result of the call. Note that
this path is left in a state such that when another nath tries
to resume it the current call to RESUME is the one which will
be returned from. Also note that the first time PX and PY are
resumed there are no calls to RESUME in their environments to
return from. This presents no nroblem since RETFROM has no
effect (returns NOTHING) if no call to the function is found
in the function call environment. In this case, control
simply "falls through" to the call on the procedure WALK.

SWITCH\PATHS+EXPR(Q:ARPTR;NONE)
BEGIN
DECL LASTRUN:ARPTR BYREF LASTRUN;
LASTRUN<Q
END;

SWITCH\PATHS merely modifies LASTRUN to be the path to be resumed.

WALK<EXPR(T : TREE ;NONE )
BEGIN
[1] WALKI(T);
[2] RESUME(MYPATH().ANC,HIL)

END;

WALKT+EXPR(T:TREE; NONE)
BEGIN
1] T=NIL => NOTHING;
[2] RESUME(MYPATH().ANC,T);
[3] WALKI(T.LS);
[4] WALK1(T.RS)
END;

WALK [1] €all upon the auxilliary procedure UALK1 to nerform the
actual prefix walk,
[2] When WALK1 returns, the tree walk is complete. Resume
ne with NIL to indicate completion (see TREENDOUBLE [51).

WALK] [1] T=NIL implies that we have tried to walk from a terminal
node - thus return NOTHING,
{2] Resume p, passing it a nointer to the node,
[3] Call wALRT recursively on the LS link,
[4] Call WALK1 recursively on the RS link.

109



6. EXAMPLE 2 - SEMAPHORES

Semaphores [3] and their associated operations P and V are useful
for mutual synchronization of nrocesses. P and V can be defined easily
in ECL as shown below.

The data structures are:
ARQPTR+ARQPTR::STRUCT(FIRST:ARTPR,LAST:ARPTR);

SEM\ELT+SEM\ELT = : STRUCT (COUNT : INT ,WLIST:ARQPTR)

SEM“PTR(SEM\ELT);
The P operation is defined as follows:

P<EXPR{X:SEM;NONE)
BEGIN
DECL Y:SEMNELT BYREF VAL(X):
] MYPATH() # PCIAR => CIA("P",X);
] Y.COUNT«Y.COUNT-1;
J Y.COUNT GE @ => NIL;
] ENTERL (LASTRUN,Y.WLIST);
] LASTRUN«HIL
END;

N
[2
[3
[4
[5

[1] If my path is not the CI path {PCIAR is a global variable which
p?i?ts to the CI's ACTRC) then call unon the CI to execute
P(X).

[2] Subtract one from the semaphore's count.

[3] If the count 1is greater than or equal to zero then no work has
to be done. }

[4] If the count is less than zero then enter the nath which
executed the CIA onto the queue of naths associated with
the semaphore.

[5] Set LASTRUN to NIL to indicate to the CI that this path can
no longer run. The CI will choose some other nath to run,

The V operation is defined as follows:

V«<EXPR(X:SEM;NONE )
BEGIN
DECL Y:SEM\ELT BYREF VAL(X);
DECL Z:ARPTR;
[1] MYPATH() # PCIAR => CIA("V",X);
[2] Y.COUNT+Y,COUNT+1;
[3] Y.COUNT GT @ => NIL;
[4] 2¢Y.WLIST,FIRST;
[5] Y.WLIST.FIRST«Y WLIST.FIRST.NEXT;
(6] Y.WLIST.FIRST=NIL+Y.WLIST.LAST<NIL;
[7] ENTERL{Z,WRUNQ)
END;

114



1 If my path is not the CI then call the CI to execute V(X).
] Increment the semaphore count by 1.
1 If the count is greater than zero than there is no work to
be done,
4] Z is bound to the first path waiting unon the semanhore
51 [6] Remove Z from the HLIST (ACTRCs are linked through a
a field NEXT: ARPTR).
[7] Put Z on the queue of naths which may be run,

L
[
L
[
[

7. OTHER FEATURES

The above sections give a brief descrintion of the control structure
facilities available in ECL., The system also contains a number of
facilities which are beyond the scone of this paner. These include:
handiing of external interrupts, monitoring of variables, and the ability
of a path to gain an explicit handle on its environment.

111



REFERENCES

[1] Wegbreit, 3. "An Overview of the ECL System,” Proc. of the
International Symposium on Extensible Languages, SIGPLAN Notices,
Volume 6, Number 12, (December, 1971).

[2] Weqgbreit, B., "Studies in Extensible Programminag Languages," ESD-
TR-70-297, Harvard University, Cambridge, Massachusetts, May 1970.

[3] Oijkstra, E.W., "Cooperating Sequential Processes,” in Programming
Languages, ed. by Genuys, Academic Press, New York, 1968.

112



