
EXTENSIBLE LANGUAGES: 
A POTENTIAL USER'S POINT OF VIEW 

J.J. Duby 
IB~ France 

(Ask not what you can do for extensible languages, 
ask what extensible languages can do for you.) 

The purpose of this paper is to describe a computer user's 
concern about what extensible languages will do for him, and how 
they will do it. It may in some respects sound a little 
demagogic, by considering users requirements as priority 
requirements. However, as Lenin said, "facts are stubborn", and 
if users have been used to certain performance characteristics of 
usual programming languages, they will want to get at least the 
same performance from extensible languages, and in fact much more 
- otherwise why switch? 

Semantic range: 

The semantic range of the majority of the extensible 
languages implemented to-day stretches more upwards than 
downwards. This is very unfortunate, since one of the most 
interesting capabilities of extensible languages would be to 
enable the user to support new devices as well as new data types, 
and such a capability requires downward extensibility[2] giving 
access to machine language and system functions. 

For instance, users no~! want to be able to have access to 
assembly language through high level languages, and several 
extensions of ALGOL 60 and PL/I have been defined and implemented 
to fulfil this need. Very naturally they will expect that 
extensible languages do the same. Will indeed the semantic range 
of extensible languages encompass that of assembly language? 

PL/I was extended from its original definition to support 
teleprocessing by the addition of one file attribute and one 
condition, providing a link to the QTAM Message Control Program 
of the Operating System: this extension required a new version of 
the compiler, but achieving the same result by mere language 
extension techniques would be a significant mark for an 
extensible language. Another target would be to design 
extensions to run in a paged environment, enabling, for instance, 
to force object modules to be loaded in the same page, or to 
block a page in real memory during some portion of the execution. 

DOwnward extensibility however raises a fundamental 
contradiction in the concent of an extensible language: if the 
base language or the extension mechanism contains machine 
dependent features, the language is not universal; if neither 
does, it is not downwards extensible. The only solution to this 
contradiction would be the long awaited, but yet to come, 
universal semantics description language. 

_ 1 5 7  

http://crossmark.crossref.org/dialog/?doi=10.1145%2F942582.807996&domain=pdf&date_stamp=1971-09-01


Obsolete programming languages such as FORTRAN and COBOL are 
still widely used. Amonq the most commonly mentionned reasons, 
one hears: precise syntax diagnostics, efficient object code, 
possibility to link separately compiled modules. It is not 
obvious that the extensible languages will have the same popular 
characteristics. 

Syntax diagnostics: 

It is unfortunately recursively unsolvable to determine 
whether an arbitrary context free grammar is ambiguous when the 
terminal alphabet contains more than one symbol [4]. Besides, the 
syntactic definition method by successive and possibly 
independent extensions makes it difficult for the extension 
designers to check for possible ambiguities without knowing the 
previous extensions. 

For instance, the designers of the macro extensions MOD and 
NORM defined below following Schuman and Jorrand's notation [6] 
and using PL/I terminology, had better not ignore one another: 

macro MOD --+ ' IPRI~I ' means 'sum(abs(PRIM))' 
macro NOP31 ~ 'IIPRI>iII' means 'sqrt(sum(PRIM*PRIM)) ' 

However, this difficulty can be overcome by using parallel 
parsers for the derived language, or by restricting its syntax. 

Object code efficiency: 

The question of optimised object code may possibly be left 
aside for experimental programming languages. However, when one 
approaches the limits of the power of computers, or when one 
designs a language and a compiler to be used in a production 
environment, optimisation is a must. The importance of this user 
requirement is best exemplified by the poor acceptance of early 
PL/I compilers by FORTRAN and COBOL users. Unfortunately, the 
known techniques of program optimisation do not seem to be all 
readily applicable to extensible languages. 

One can classify the different optimising techniques now in 
use in three large families: 

i. Local optimisation of the code generated and 
register assignment, tahing into account the context in which 
the code is being produced. 

ii. Global optimisation, 
assignment and deleting, 
instructions taking into account 
program. 

operating on register 
displacing and replacing 
the control flow of the 

iii. Syntax directed 
account the pattern of 
syntactic tree of the 
computations. 

optimisation, 
occurrence of 
program to 

?~ich takes into 
operators in the 

avoid unnecessary 

138 



Local optimisation can be easily performed in the case of 
extensible languages [2]. 

The elementary operations performed by global optimisation 
(instruction displacement ant substitution) can also be easily 
adapted to extensible languages since they are performed at some 
intermediate language level; however, the flow analysis [i] which 
governs those operations will be impacted by the introduction of 
extended control structures, and strength reduction of 
instructions operating on induction variables [5] will be 
affected by the introduction o9 extended data types: 
communication of information by the extension designer to the 
optimiser would probably be useful in these two areas. 

It will be not only useful, but absolutely necessary, if one 
wants to perform syntax-directed optimisation. Furthermore, the 
relative importance of syntax-directed optimisation with respect 
to other optimising techniques increases with the semantic 
density of the language: the more powerful the operators are, the 
more necessary syntax-directed optimisation is. As an example, 
suppose one introduces APL operators into ALGOL 68 [7]; then if 
A and B are two 10x10 matrices, the elaboration of 

(I 2 1 2) ~ Ao.xB 

will lead to the computation of a 10xl0xl0xl0 array. Only syntax- 
directed optimisation can detect, by top down scanning of the 
syntax tree, that only 100 components of the outer product out of 
i0,000 are necessary. This kind of optimising information must be 
transmitted by the extension designer, in a suitable language 
[3]. Furthermore, a good syntax-directed optimisation requires 
that all combinations of all operators be considered as 
candidates for special casing, which is impossible if the 
extensions are defined independently from one another. 

Linkage of separately compiled programs: 

The problem of linking two separately compiled programs 
written in an extensible language is not made trivial by the mere 
fact that all extensions are translated into the same derived 
language: representations of data structures must also be 
compatible. And it is not obvious that a same data structure 
introduced in two different extensions will have two identical 
representations. To take one simple example, 

j j=l,p 
(a) 

i i=l,n 
can be defined as 

j j=l,p j j=l,p 
((a) ) as well as ((a) ) 

i i=l,n i i=l,n 

This kind of phenomenon explains why FORTRAN and PL/I 
programs could not be linked together, even though compilers 
obeyed the same linkage conventions. Obviously, the facility to 

159 



introduce new data structures in extensible languages will make 
the problem frequently arise. Storing data structure 
representation information in the object code, and using this 
information to automatically generate at linkage edition time 
mapping procedures will probably be difficult, and the object 
time efficiency will probably suffer, however clever the solution 
is. 

Conclusion: 

The problems that were raised in this paper have to do with 
every area of extensible languages: 

- Specification of the base language and extension mechanism: 
is it possible to combine accessibility to machine code and 
transferability? 

- Formulation of syntactic extensions: is it possible to 
define a new extension ignoring all the previous ones? 

- Formulation of semantic extensions: is it possible to 
define semantic extensions that will produce good object 
code? 

- Specification of the object language: is it possible to 
insure compatibility of separately defined data structures? 

More research will probably be necessary to solve those 
problems. ~¢ay extensible language designers be convinced that 
solutions to those problems are of utmost importance for the 
crowd of computer users. 

BIBLIOGRAPHY : 

[i] ALLEN, F.E., Control flow analysis, SIGPLAN Notices, July 
1970. 

[2] DICKMAN, B.N., ETC : An extensible macro based compiler, SJCC 
1971. 

[3] ELSON, M., and RAKE, S., Code Generation for large language 
compilers, IBH Systems Journal, Vol. 9, Nr. 3, 1970. 

[4] FLOYD, R.W., On ambiguity in phrase structure languages, 
Communications of the ACM, October 1962. 

[5] LOWRY, E.S. and 14EDLOCK, C.W., Object code optimisation, 
Communications of the ACT~, January 1969. 

[6] SCHUMAN, S.A., and JOR~AND, P., Definition mechanism in 
extensible programming languages, FJCC 1970. 

[7] van WIJNGAARDEN, A., Private communication. 

140 


