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A b s t r a c t  

This paper presents a description and analysis 
of a task scheduling algorithm which is applicable 
to third generation computer systems. The analysis 
is carried out using a model of a computer system 
having several identical task processors and a 
fixed amount of memory. The algorithm schedules 
tasks having different processor-time and memory 
requirements. The goal of the algorithm is to 
produce a task schedule which is near optimal in 
terms of the time required to process all of the 
tasks. An upper bound on the length of this sched- 
ule is the result of deterministic analysis of the 
algorithm. Computer simulations demonstrate the 
applicability of the algorithm in actual systems, 
even when some of the basic assumptions are vio- 
lated. 

I. Introduction 

The algorithm which assigns competing tasks 
to available processors and memory is a critical 
component in third generation computer systems. 
Given a collection of tasks awaiting processing, 
this algorithm produces a schedule which assigns 
tasks (or pieces of tasks) to the available re- 
sources during the ensuing periods of time. One 
measure of the performance of this algorithm is 
the amount of time required to complete the pro- 
duced schedule. 

The algorithm presented in this paper is 
such a task-scheduling algorithm. This algorithm 
is constructed so as to have three important prop- 
erties: 

i. It is applicable in a realistic operat- 
ing environment, 

2. It produces "good" schedules, and 

3. Its behavior can be analyzed using 
deterministic methods. 

Furthermore, the algorithm produces its schedule 
in a reasonable (less than exponential) number of 
steps. The analysis which accompanies the descrip- 
tion of the algorithm provides three theorems 
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which g i v e  bounds  on t h e  l e n g t h  o f  t h e  s c h e d u l e  p r o -  
duced ,  g i v e n  a s e t  o f  t a s k s  and a s y s t e m  c o n f i g u r a -  
t i o n .  

Our basic model of a multiprogramming/multi- 
processing system contains n identical and inde- 
pendent processors (or perhaps virtual processors.) 
It has M units (pages) of memory used to hold 
tasks which have been assigned to a processor. Each 
task (Tj) requires a fixed amount of memory (mj 

units) and t. units of processor time. We shall 
J 

assume that all tasks are available for scheduling 
at the time the schedule is produced. An optimal 
schedule is defined to be a schedule which com- 
pletes all tasks in minimal time. This model is 
intended to correspond to a real system with H 
units of memory and which can support n degrees 
of multiprogramming. Each task would have differ- 
ent but fixed (and known) memory and processor time 
requirements. 

The basic system model with memory constraint 
is a departure from similar models which have ap- 
peared in the literature [1,2,3]. The model deals 
with memory as an absolute constraint and not in a 
memory management sense (cf. [4]). We also assume 
that tasks may be transferred in and out of memory 
with negligible delay (cf. [5]). 

The paper presents two versions of the algo- 
rithm; each version is analyzed and the bounds on 
the schedule-length provided. The first version 
is a simplified one in which all tasks require the 
same amount of processor time. The second version 
is the more general one, in which each task can 
have different time requirements. The applicabil- 
ity of the algorithm is demonstrated by using a 
simulation model of a computer system. The results 
of this simulation are compared with data gathered 
from an actual system (the CDC 6500 in use at the 
Purdue University Computing Center.) 

II. The Unit-Time Model 

As a first step toward the analysis of the 
computation model, we shall assume that all tasks 
have the same amount of processor time requirement. 
The following example shows that the scheduling 
strategy used may make a great difference in the 
resulting completion time 
Example i. Given a system with four processors and 
100 units of memory, and a list of tasks with 
memory requirements as shown below: 

(JI,J2 .... ,J16 ) = 

(5,5,5,5,9,9, I0,10,33, 33,35, $5,51,51,52,52] 
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A schedule of the tasks placed according to the 
order in the list is shown in Figure 1 
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Figure i. A bad schedule for Example I. 

Figure 1 could be considered as a two-dimensional 
Gantt chart. A vertical rectangle represents a 
single time slice, each with 100 units of memory 
and four processors available. The time required 
to complete the 16 tasks is eight units. If we 
place the tasks according to the following list, a 
shorter schedule results and is shown in Figure 2. 

Task List = 
(52,33,10,5,52,3S,i0,5,51,35,9,5,51,35,9,5) 
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Figure 2. An optimal schedule for Example I. 

The schedule shown in Figure 2 has the short- 
est completion time for the list of tasks since 
both the processors and memory are fully util- 
ized in each time slice. It is not difficult to 
find the optimal schedule in this case, and the 
optimal schedule is known to exist due to the 
finiteness of the problem. However, it is gener- 
ally accepted that the generation of an optimal 
schedule for an arbitrary environment requires 
an exhaustive process. Such method would be in- 
appropriate to apply to computer scheduling since 
it might take an exponential number of steps. 

The task list of Example i is interesting 
since it suggests a simple method to find a good 
schedule. Let us reorder the list of tasks ac- 
cording to descending memory requirement. The 
following list is obtained: 

(Ti,T2,...,Ti6) = 

(52,52,51,51,35,$5,33,SS,I0,i0,9,9,5,5,5,5) 

The optimal schedule of Figure 2 is relabeled and 
shown in Figure 3. 

Figure S shows that a good schedule can be 
obtained using a systematic method. Such a method 
starts by making an estimate of the number of 
time slices the final schedule may take. 
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Figure 5. Figure 2 relabeled. 

An optimistic starting point is the lower bound of 
the length of any schedule NL, where 

k 
NL = [max (k/n, ~ mj/M)l (I) 

j=l 

In Eq. (i), the system is assumed to have n pro- 
cessors and M units of memory, the task list has 

k tasks, and the memory requirement of the jth 

task is denoted by mj. Ix Irepresents the smallest 

integer greater than or equal to x. The placement 
strategy assigns the largest remaining task to the 
time slice with the maximum amount of available 
memory. This simple strategy enables the placement 

of all tasks in N L time slices in Figure 3, and we 

can see that an optimal schedule is obtained. If 

N L time slices are not sufficient to place all 

tasks, another guess must be made and the schedule 
reconstructed. The following is a formal descript- 
ion of the scheduling strategy. 

Algorithm i. 
The proposed algorithm assigns tasks from a 

task list ordered on memory requirement (mi),larg- 

est requirement first. There are k tasks to be 
assigned. The tasks are assigned across time 
slices denoted by the index i. Each time slice 
has two associated variables, n. - the number of 

i 
processors in use and c i - the amount of available 

memory. H is the total number of memory units at 
each time slice and n is the number of processors. 
N will denote the number of time slices used by a 
the algorithm to assign the given tasks. The final 
value of N is determined by iteratively attempting a 
to place all the tasks in an incremental number of 
time slices, k 

0) Set Na = [max (k/n, ~ mj/M)] 
j=l 

i) For i = 1,2 ..... N a perform the following 

steps: 

i.I) Assign the i th task to the i th time 
slice. 

1.2) Set n. = 1 and c. = M - m.. 
i i i 
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2) S e t  j = N + i a 
5) Set I = max (iJc i > c~ for all £, 

1 < Z < N a and n i # n) 

= + I 4) If c I < mj then set N a N a 

and go to step i. 

5) Assign the jth task to the I th time slice. 

6) Set n I = n I + i, c I = c I - mj, 

andj = j + 1 

7) If j > k then terminate, 

otherwise go to step 3. 

Step S of the algorithm deterministically selects 
the time slices with the identical amount of avail- 
able memory. If the time slice with the maximum 
amount of available memory can not accommodate the 
next task, Step 4 indicates that we can increase 
the original estimate by one time slice and try 
again. 

The amount of time required by Algorithm 1 
to produce a schedule is bounded by a second de- 
gree polynomial in k/n [6]. The formal descrip- 
tion permits the algorithm to be analyzed using 
deterministic methods. The results of this analy- 
sis can he used to reduce the number of itera- 
tions required by the algorithm. 

The following theorem, which is the result of 
deterministic analysis, provides an upper bound on 
the completion time for the schedule produced by 
this strategy. 

Theorem i. If the number of time slices required 
by Algorithm 1 is N and the number of time slices a 
required for an optimal schedule is N then 

op 

(~) N + i. (2) Na < op 

The proof of this theorem is very involved 
and is reported in [6]. We can demonstrate that 
this bound is approachable for a large set of 
tasks by considering a task list with two classes 
of tasks, those with memory requirements approxi- 
mately M/2 and those with requirements approxi- 
mately M/4. By proper adjustment of the memory 
requirements we can construct an optimal schedule 
which is the same length as the lower bound and 
an algorithmically produced schedule that 
approaches 4/5 of this length. The task sizes are 
chosen in such a manner that the optimal schedule 
would use 100% of the memory resource and the 
algorithmic schedule would be the maximum possible, 
i.e. a pair in each time slice. Consider an arbi- 
trary number of classes of time slices denoted by 
AI,A2,...,A r. The widths or number of time 

slices represented by each class will be denoted 
by Ni,N2,...,N r respectively. The optimal sched- 

ule would appear as follows (all time slices with- 
in a denoted class are identical): 

A I 

M/2+¢ 

M/2-S 

A 2 

M/2-4s 

M/4+2~ 

M/4+2E 

A S 

M/2-10a 

M/4+5~ 

M/4+5c 

A 4 At. 2 At- 1 

M/2-22c I M/2-b~ M/2-(2b+2)C 
I 

M/4+11C ... M/4+(b/2)~ M/4+(b+i)~ 

M/4+Iic M/4+(b/2)¢ - M/4+(b+l)c 

A E 

M/4 

M/4 

M/4 

M/4 

where E > 0 
r - S  

and b = 2 r-3 + ~ 2 q for r > 2 (3) 
q=l 

Note that the space requirement at each time 
slice is M. (i.e. all of memory.) 

r k 
= N i = Z mj/M (4) 

N°P i=~l j = I 

where m. is the memory requirement for each of the ] 
k individual tasks. 

We restrict e at this point by 

M/2 - (2b+2)s > M/4 + (b+l)~ (5) 

to guarantee the first tasks in At_ 1 are larger 

than the others 

or s < M/12Co+I) (6) 

This restriction is imposed so we can explicitly 
depict the algorithmic schedule. The final algo- 
rithmic schedule S, would be 

MI2+e I MI2-E MI2-4E I MI2-10~ M/2-bE I M12-(2b+2)£ 

M/4 M/4+2E M/4+5~ M/4+IIE "'" M/4+(b+i)c M/2-(2b+2)c 

By looking at the number of tasks associated 
with each subclass above we have: 

N a = N 1 + N 1 + N 2 + N S + ... 

+ Nr_2 + Nr_i/2 (7) 

In order to satisfy this exact schedule we must 
have the following relationships: 

N r = Ni/4 

N 2 = Ni/2 

N S = N2/2 = Ni/22 

N 4 = N3/2 = Ni/2 3 

Nr_ 1 ='Nr_2/2 = Nl/2r-2 

It then follows from (4) that 
r r-2 

N°P = !1i Ni = Nl(i~=0 (21-)i + ¼) 

and from (7) that 

r-S 
Na = Ni(2 + ~ (21)i + [~).l.r-S.) 

i=l 

(8) 

(9) 
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t h a t  

and 

Now let r ÷ ~; it follows from (8) and (9) 

Nop+ (9/4) N I 

Na +3" N 1 

+ ( 4 / 3 )  N . therefore N a op 

Ill. The Variable-Time Model 

Algorithm 1 of the previous section can be 
extended easily to cover cases when the tasks have 
different processor time requirements. The assump- 
tion to be made is that a task requiring t units 
of processor time may be broken into t sub-tasks, 
each requiring one time unit. This assumption is 
reasonable if the computer system being modeled has 
a preemptive-resume feature. Each sub-task is 
then assigned using the same strategy as the unit- 
time model, with the added constraint that no two 
sub-tasks of the same task may be placed in the 
same time slice. 

Algorithm 2. 

As in the previous algorithm, we have a list 
of tasks ordered on memory requirement (mi) , 

largest requirement first. There are k tasks to 
be assigned, each with t. time units. The sub- 

2 
tasks (of one time unit) are assigned across time 
slices denoted by the index i. Each time slice 
has two associated variables, n. - the number of 

1 
processes xn use and e. - the amount of available 

1 
memory. M is the total number of memory units 
at each time slice and n is the number of pro- 
cessors. The algorithm starts by estimating the 
length of the schedule (Na) to be the lower bound, 

and increments N iteratively until all tasks are a 

p l aced .  
k 

O) Se t  N a = [max ( ~ t j / n ,  
j = l  

k 
mjtj/M, max(tj))l 

j=l j 

1) ( F i r s t - r o u n d  ass ignment)  

For  j = 1 , 2 , . . . , b  where 

q q+l 
b = {ql ~ t. < N and ~ t. > N a} 

j=l j- a j'=l J 

perform the following steps (start with 
the first time slice): 

i.i) Assign the jth task to the next 
t. time slices. 
3 

1.2) Set n. = 1 and c. = M - m. for 
i i j 

each of the t. slices. 
J 

2) Set j = b + i. 

3) Set I = max {ilc i is the maximum of a set 

of Cd'S, where n a # n and no 

part of the jth Task has been 

assigned to the d th slice}. 

= + 1 and go to 4) If c I < mj then set N a N a 

Step I. 

5) Assign a unit of the jth task to the i th 

time slice. 

6) Set n I = n I + i, c I = c I - mj, 

and t. = t. - i. 
3 2 

7) If t. > 0, go to Step 3. 
J 

8) If j = k then terminate. 

9) Set j = j + 1 and go to Step 3. 

Steps 3 through 7 attempt to assign the jth task 
to the t. time slices that have the maximum amount 

J 
of memory available. If this is not possible, 
Step 4 indicates that we can increase the original 
estimate by one time slice and try again. Algo- 
rithm 2 produces a schedule in a finite number of 
steps due to the finiteness of the problem. The 
similarities between Algorithms 1 and 2 allow 
the analytical method used in the proof of 
Theorem 1 to be extended. The bound on the 
time required to produce a schedule mentioned in 
the discussion following Algorithm 1 also applies 
to Algorithm 2 [6]. 

Theorem 2. If the number of time slices required 
by Algorithm 2 is Na, and the number of time slices 

in the optimal schedule is Nop, then 

<(2 -2 N a ~)Nop + i. (I0) 

The proof of the theorem can be found in [6]. 

We can demonstrate that this bound is ap- 
proachable by scheduling the following set of tasks. 
Note that the requirement of a task is represented 
by the 2 - t u p l e  (m , t ) .  

Name Number 

Ji,J2 2 

Jm (n-2)Nop 

J f  1 

The v a r i a b l e s  

Requirement  
N 

M ~ 1) 
( ~ -  S, 2 - 

.2e-8 
+ 2 (..-~.7~-, 13 

(6 ,Nop) 

e and 6 are chosen so that 

M 2e-6.  .2e-6 .  
( ~ -  e) > n ( ~ _ 3 ;  and ( '-~i~) > 6 , and a l l  f r a c -  

t i o n a l  expressions yield integer values. The 
optimal schedule has N time slices and is shown 

op 
in Figure 4. Note that N N 

(n -2 )Nop  + 2 = (n-33 ("~"-z. - 13 + (n-1)(--~,-z. + 13. 
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Figure 4. The Optimal Schedule 

The next-to-final schedule CNa-i time slices) is 

shown in Figure 5. Note that two units of Jf can 

not be placed but one additional time slice in the 
schedule is adequate to assign all tasks by the 
a l g o r i t h m .  

M/2 

HOD-2 (2-21n) (NoD-I) 

al "12 h 
(n-2)Nop+2 tasks 

h Jr (partially placed) 

Figure 5. The schedule with (Na-i) time slices. 

It is evident from the figure that 

N - 1 = N - 2 + (n-2)N°P + 2 
a op n 

= (2 - ~)(Nop i) 

which approaches (10) when N is large. 
op 

The bound given by Theorem 2 is not very im- 
pressive. It indicates the possibility that the 
length of the schedule produced by Algorithm 2 
could be nearly twice as long as the optimal sched- 
ule. However, further analysis of the behavior of 
the algorithm shows that the situation of Figure S 
occurs only when there are many jobs with small 
memory requirements (Jm'S and Jf) and the small- 

est job (Jf) has extremely large time requirement. 

In the next-to-last iteration of the algorithm 
portions of the smallest job (Jr) can not be 

assigned because all time slices have either n 
task units assigned or parts of Jf assigned al- 

ready. This situation does not occur during simu- 
lation studies using benchmark jobs on the 
CDC 6500 and can be detected easily by the algo- 
rithm if it does occur. The following theorem 
seems to cover a large number of scheduling en- 
vironments. 

Theorem 3. In the iterative process of Algo- 
rithm 2, if there exists some time slice with less 
than n task units assigned but no task unit of 
the final task, then 

4 
< N + 1 Cll) Na ~ op 

The p r o o f  o f  t h e  t heo rem can be  found i n  [6 ] .  
The example used  t o  d e m o n s t r a t e  t he  a p p r o a c h -  

a b i l i t y  o f  Theorem 1 may be  u sed  f o r  Theorem 3, as 
i t  i s  a s p e c i a l  case  o f  t h e  v a r i a b l e - t i m e  model .  

Theorems 2 and 3 may be  used  t o  r e d u c e  t he  
i t e r a t i v e  a s p e c t  o f  A l g o r i t h m  2. For example ,  i n  
s i t u a t i o n s  where Theorem 3 a p p l i e s ,  S t ep  4 o f  Al -  
g o r i t h m  2 can be  m o d i f i e d  t o  change t he  e s t i m a t e d  
l e n g t h  o f  t h e  s c h e d u l e  i n  s t e p s .  Note t h a t  t h e  
lower  bound o f  t h e  l e n g t h  o f  t h e  s c h e d u l e  i s  com- 
p u t e d  i n  S t ep  0, and t h e  u p p e r  bound i s  e s t a b l i s h e d  
by Theorem 3. (This  i s  p o s s i b l e  s i n c e  t h e  p r o o f  o f  
Theorem 3 assumes N t o  be  t h a t  computed by S t ep  0 

op 
o f  A l g o r i t h m  2 . )  Thus u s i n g  a b i s e c t i o n  method we 
can b r i n g  t h e  l e n g t h  o f  t h e  s c h e d u l e  t o  a p p r o x i m a t e  
t h e  t r u e  r e s u l t  o f  A l g o r i t h m  2 w i t h  few i t e r a t i o n s .  

IV. Simulation Results 
The schedule completion times produced by Al- 

gorithm 2 (denoted Na) depend on certain assumption 

implicit in the computational model. The most ob- 
vious assumption is that tasks do not change their 
memory requirement during execution. Also, while 
Theorem 3 bounds the schedule-completion times pro- 
duced by the algorithm, it does not provide infor- 
mation about the typical completion times. 

In order to assure ourselves that the assump- 
tions are not unreasonable and that the expected 
performance was significantly better than the pre- 
dicted bound, we implemented a simulated system 
which used the job placement strategy of Algo- 
rithm 2. The job descriptions processed by the 
simulator were automatically produced by analyzing 
data gathered from the Purdue-MACH/CDC 6500 com- 
puter system in use at the Purdue University Com- 
puting Center [7]. The data allowed us to compute 
the dynamic memory and time requirements for all of 
the jobs processed by the system during periods of 
observation. Thus, we were able to use realistic 
data for our simulation study of the behavior of 
Algorithm 2. As the data were processed to produce 
the required job descriptions, the actual schedule 
completion times realized by the production system 
were recorded. Those actual times served as a 
basis for judging the performance of the algorithm. 

The data was gathered during two periods of 
production on the Purdue system and analyzed as a 
series of 50 second intervals. The results of the 
data analysis and the simulation runs using this 
data are presented in Table i. 

The Purdue-MACE system uses a priority-driven 
job scheduler with a preemptive-resume feature. 
Thus in Table i, the number of tasks observed dur- 
ing a 50-second interval is the number observed 
during some phase of execution, not necessarily 
the number of tasks completed or initiated. The 
entries labeled T are three schedule-completion 
times. TCLOWER) is the time equivalent of the 
initial value of N in Algorithm 2. This is a a 
lower bound on the schedule-completion time and 
serves as an approximation to Nop. T(ACTUAL) is 

the observed schedule-completion time (approximate- 
ly 50 seconds.) T(SIM) is the schedule-completion 
time produced by Algorithm 2 (really the time e- 
quivalent of the final value of N a of Algorithm 2.) 

M(HRROR) is an indication of the magnitude of 
the error in the memory actually used as compared 
to the approximation used by the simulator (and 
Algorithm 2.) The space-time integral for each 
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TEST TAPE NO. 1 

02/06/73. 13.30.00. 

INTERVAL NO.TASKS T(LOWER) T (ACTUAL) T(SIM) M(ERROR) 

1 30 44.10 50.00 44.10 .07 
2 29 48.90 50.00 49.35 .20 
3 23 52.77 49.99 52.89 .38 
4 22 49.95 49.95 49.95 .35 
5 25 48.00 50.00 48.15 .19 
6 25 49.20 49.61 49.20 .21 
7 19 48.75 49.41 48.75 .30 
8 20 47.10 49.59 47.10 .12 
9 21 43.80 41.69 43.95 .16 

TKST TAPE NO. 2 

03/20/73. 13.48.56. 

INTERVAL NO.TASKS T(LOWER) T(ACTUAL) T(SIM) M(ERROR) 

1 26 48.30 50.00 48.30 .08 
2 30 44.10 50.00 44.25 .06 
3 32 47.85 49.99 48.30 .19 
4 22 43.50 49.99 43.65 .03 
5 17 50.55 50.00 50.70 .22 

Table 1 

Comparison of Results Observed on System 

and Produced by Scheduling Algorithm 

task's memory-time requirement was computed as 
part of the data analysis. The approximation used 
by the simulator is the product of the initial 
memory requirement (at the onset of a 50 second 
interval) and the time-in-core for each task (see 
Figure 6.) The total memory error for each inter- 
val is the sum of the absolute differences bet 
tween the actual and approximate space-time inte- 
grals f o r  each  t a s k .  The p e r c e n t a g e s  in  t h e  M(ERROR) 
column o f  Tab l e  1 a r e  t h e  t o t a l  e r r o r s  as p e r -  
c e n t a g e s  o f  t h e  a c t u a l  v a l u e  o f  t h e  s p a c e - t i m e  
i n t e g r a l s  f o r  t h e  i n t e r v a l s .  

memory ÷ 

~~ ÷ error 

t line -~ 

Figure 6. Illustration of Memory Error for Single 
Task 

I t  can be  s e e n  t h a t  when t h e  e r r o r s  a r e  s m a l l ,  
t h e  s c h e d u l e  p r o d u c e d  by A l g o r i t h m  2 i s  b e t t e r  
( s h o r t e r )  t h a n  t h a t  p r o d u c e d  by  t h e  p r i o r i t y - d r i v e n  
s c h e d u l e r  o f  t h e  Purdue-MACE s y s t e m .  L a r g e r  e r r o r s  
c a u s e  t h e  s i m u l a t i o n  t o  d i s p l a y  c o m p l e t i o n  t i m e s  
which  a r e  w o r s e  t h a n  t h o s e  p r o d u c e d  by  t h e  s y s t e m .  
The o b v i o u s  cause  o f  w o r s e  p e r f o r m a n c e  in  t h e  e v e n t  
o f  l a r g e r  e r r o r s  i s  t h a t  s e v e r a l  t a s k s  may d e c r e a s e  

their memory requirement allowing more tasks to be 
fit into memory concurrently in the actual system 
than in the simulated system. Such a decrease is 
quite common in the Purdue-MACE system, since most 
jobs begin with a compilation step and end with an 
execution step, at a reduced memory requirement. 

The simulation results suggest that errors 
caused by changes in a task's memory requirement do 
not severely degrade the results of the strategy. 
They also suggest that the expected completion 
times are closer to the lower bound than the upper 
bound ((4/5)(50) + 1 = 67.7 seconds.) 

V. Remarks 

Theorem 3 and the simulation results demon- 
strate that our task scheduling algorithm (Algo- 
rithm 2) has the desired properties mentioned in 
the introduction. In particular, we have provided 
a lower bound and an upper bound on the length of 
the schedule produced by the algorithm (Step 0, Al- 
gorithm 2 and Equation (ii), Theorem 3.) It should 
be noted that the proofs of the theorems are all 
long and that no methodology which constructs such 
proofs has yet been developed. This leads us to 
believe that similar analysis of more complicated 
models would be very difficult. 

The simulation results presented in section IV 
suggest that the scheduling algorithm may be of 
practical interest because its performance, while 
not necessarily optimal, is bounded. In an actual 
implementation, the system would maintain a 
list of tasks with information about the esti- 
mated time and memory requirements. The scheduler 
would be called to produce a schedule (really a 
time-space map) for the list. The system would 
then activate and de-activate tasks, according to 
this schedule. The scheduler would be called to 
produce a new schedule whenever the actual state of 
the system deviates from the expected or predicted 
state, e.g. when a task terminates prematurely or 
changes its memory requirement. 

In spite of the promising results shown in the 
simulation study, it may not be desirable to imple- 
ment the proposed strategy. For example, the 
strategy requires that the system has an efficient 
preemptive-resume feature. The strategy also re- 
quires accurate estimates of the time and memory 
requirements for all of the tasks, and it does not 
handle tasks requesting operator intervention, 
such as the mounting of a magnetic tape. Although 
the scheduler requires only an algebraic number of 
steps, the cost of implementation and computation 
may still be high in some environments. The most 
serious shortcoming of the strategy is that it does 
not consider other scheduling goals, such as task 
turn-around time or task priority. 

Most schedulers in existing systems can be 
classified as demand schedulers. In particular, 
they produce a schedule for only the next one or 
two slices of time. Our algorithm represents a 
major departure from this existing approach in 
that it implements a "look-ahead" strategy. The 
simulation results show that when the memory-re- 
quirement errors are small, this look-ahead strat- 
egy can produce a noticeably improved schedule 
(e.g. a 5-10% reduction in schedule-completion 
times) when compared to the demand strategy in the 
Purdue system. This observation suggests that, as 
might be expected, look-ahead (perhaps they could 
be called two-dimensional), task schedulers may be 
a promising family of schedulers which deserve 
further examination. 
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