
A TASK-SCHEDULING ALGORITHM FOR A
MULTIPROGRAMMING COMPUTER SYSTEM

K. L. Krause*, V. Y. Shen, and H. D. Schwetman
Purdue University

West Lafayette, Indiana 47907

A b s t r a c t

This paper presents a description and analysis
of a task scheduling algorithm which is applicable
to third generation computer systems. The analysis
is carried out using a model of a computer system
having several identical task processors and a
fixed amount of memory. The algorithm schedules
tasks having different processor-time and memory
requirements. The goal of the algorithm is to
produce a task schedule which is near optimal in
terms of the time required to process all of the
tasks. An upper bound on the length of this sched-
ule is the result of deterministic analysis of the
algorithm. Computer simulations demonstrate the
applicability of the algorithm in actual systems,
even when some of the basic assumptions are vio-
lated.

I. Introduction

The algorithm which assigns competing tasks
to available processors and memory is a critical
component in third generation computer systems.
Given a collection of tasks awaiting processing,
this algorithm produces a schedule which assigns
tasks (or pieces of tasks) to the available re-
sources during the ensuing periods of time. One
measure of the performance of this algorithm is
the amount of time required to complete the pro-
duced schedule.

The algorithm presented in this paper is
such a task-scheduling algorithm. This algorithm
is constructed so as to have three important prop-
erties:

i. It is applicable in a realistic operat-
ing environment,

2. It produces "good" schedules, and

3. Its behavior can be analyzed using
deterministic methods.

Furthermore, the algorithm produces its schedule
in a reasonable (less than exponential) number of
steps. The analysis which accompanies the descrip-
tion of the algorithm provides three theorems

* Current address: Air Force Weapons Laboratory,
Kirtland AFB, Albuquerque, NM 87117

which g i v e bounds on t h e l e n g t h o f t h e s c h e d u l e p r o -
duced , g i v e n a s e t o f t a s k s and a s y s t e m c o n f i g u r a -
t i o n .

Our basic model of a multiprogramming/multi-
processing system contains n identical and inde-
pendent processors (or perhaps virtual processors.)
It has M units (pages) of memory used to hold
tasks which have been assigned to a processor. Each
task (Tj) requires a fixed amount of memory (mj

units) and t. units of processor time. We shall
J

assume that all tasks are available for scheduling
at the time the schedule is produced. An optimal
schedule is defined to be a schedule which com-
pletes all tasks in minimal time. This model is
intended to correspond to a real system with H
units of memory and which can support n degrees
of multiprogramming. Each task would have differ-
ent but fixed (and known) memory and processor time
requirements.

The basic system model with memory constraint
is a departure from similar models which have ap-
peared in the literature [1,2,3]. The model deals
with memory as an absolute constraint and not in a
memory management sense (cf. [4]). We also assume
that tasks may be transferred in and out of memory
with negligible delay (cf. [5]).

The paper presents two versions of the algo-
rithm; each version is analyzed and the bounds on
the schedule-length provided. The first version
is a simplified one in which all tasks require the
same amount of processor time. The second version
is the more general one, in which each task can
have different time requirements. The applicabil-
ity of the algorithm is demonstrated by using a
simulation model of a computer system. The results
of this simulation are compared with data gathered
from an actual system (the CDC 6500 in use at the
Purdue University Computing Center.)

II. The Unit-Time Model

As a first step toward the analysis of the
computation model, we shall assume that all tasks
have the same amount of processor time requirement.
The following example shows that the scheduling
strategy used may make a great difference in the
resulting completion time
Example i. Given a system with four processors and
100 units of memory, and a list of tasks with
memory requirements as shown below:

(JI,J2 ,J16) =

(5,5,5,5,9,9, I0,10,33, 33,35, $5,51,51,52,52]

112

http://crossmark.crossref.org/dialog/?doi=10.1145%2F957195.808058&domain=pdf&date_stamp=1973-01-01

A schedule of the tasks placed according to the
order in the list is shown in Figure 1

MEMORY J Ji J, J l *

,F ~ " J~ Oz* O f , O,~ Ols
oo

Oz. O*2 -- --.

100
TIME

Figure i. A bad schedule for Example I.

Figure 1 could be considered as a two-dimensional
Gantt chart. A vertical rectangle represents a
single time slice, each with 100 units of memory
and four processors available. The time required
to complete the 16 tasks is eight units. If we
place the tasks according to the following list, a
shorter schedule results and is shown in Figure 2.

Task List =
(52,33,10,5,52,3S,i0,5,51,35,9,5,51,35,9,5)

Memory

+

O,

50

O,s

Jg

J,6 Jxs J,~

J,o J,, J,2

J7 J8 J: J~
1 0 0 - - -

~J* •J2 ~J ~J 3

Time ÷

Figure 2. An optimal schedule for Example I.

The schedule shown in Figure 2 has the short-
est completion time for the list of tasks since
both the processors and memory are fully util-
ized in each time slice. It is not difficult to
find the optimal schedule in this case, and the
optimal schedule is known to exist due to the
finiteness of the problem. However, it is gener-
ally accepted that the generation of an optimal
schedule for an arbitrary environment requires
an exhaustive process. Such method would be in-
appropriate to apply to computer scheduling since
it might take an exponential number of steps.

The task list of Example i is interesting
since it suggests a simple method to find a good
schedule. Let us reorder the list of tasks ac-
cording to descending memory requirement. The
following list is obtained:

(Ti,T2,...,Ti6) =

(52,52,51,51,35,$5,33,SS,I0,i0,9,9,5,5,5,5)

The optimal schedule of Figure 2 is relabeled and
shown in Figure 3.

Figure S shows that a good schedule can be
obtained using a systematic method. Such a method
starts by making an estimate of the number of
time slices the final schedule may take.

50

100

T,

T8

T9
!

T~ T3 T~

T7 T6 Ts

T,o T l l T,2

L L T L T Tls *~ *3

Figure 5. Figure 2 relabeled.

An optimistic starting point is the lower bound of
the length of any schedule NL, where

k
NL = [max (k/n, ~ mj/M)l (I)

j=l

In Eq. (i), the system is assumed to have n pro-
cessors and M units of memory, the task list has

k tasks, and the memory requirement of the jth

task is denoted by mj. Ix Irepresents the smallest

integer greater than or equal to x. The placement
strategy assigns the largest remaining task to the
time slice with the maximum amount of available
memory. This simple strategy enables the placement

of all tasks in N L time slices in Figure 3, and we

can see that an optimal schedule is obtained. If

N L time slices are not sufficient to place all

tasks, another guess must be made and the schedule
reconstructed. The following is a formal descript-
ion of the scheduling strategy.

Algorithm i.
The proposed algorithm assigns tasks from a

task list ordered on memory requirement (mi),larg-

est requirement first. There are k tasks to be
assigned. The tasks are assigned across time
slices denoted by the index i. Each time slice
has two associated variables, n. - the number of

i
processors in use and c i - the amount of available

memory. H is the total number of memory units at
each time slice and n is the number of processors.
N will denote the number of time slices used by a
the algorithm to assign the given tasks. The final
value of N is determined by iteratively attempting a
to place all the tasks in an incremental number of
time slices, k

0) Set Na = [max (k/n, ~ mj/M)]
j=l

i) For i = 1,2 N a perform the following

steps:

i.I) Assign the i th task to the i th time
slice.

1.2) Set n. = 1 and c. = M - m..
i i i

113

2) S e t j = N + i a
5) Set I = max (iJc i > c~ for all £,

1 < Z < N a and n i # n)

= + I 4) If c I < mj then set N a N a

and go to step i.

5) Assign the jth task to the I th time slice.

6) Set n I = n I + i, c I = c I - mj,

andj = j + 1

7) If j > k then terminate,

otherwise go to step 3.

Step S of the algorithm deterministically selects
the time slices with the identical amount of avail-
able memory. If the time slice with the maximum
amount of available memory can not accommodate the
next task, Step 4 indicates that we can increase
the original estimate by one time slice and try
again.

The amount of time required by Algorithm 1
to produce a schedule is bounded by a second de-
gree polynomial in k/n [6]. The formal descrip-
tion permits the algorithm to be analyzed using
deterministic methods. The results of this analy-
sis can he used to reduce the number of itera-
tions required by the algorithm.

The following theorem, which is the result of
deterministic analysis, provides an upper bound on
the completion time for the schedule produced by
this strategy.

Theorem i. If the number of time slices required
by Algorithm 1 is N and the number of time slices a
required for an optimal schedule is N then

op

(~) N + i. (2) Na < op

The proof of this theorem is very involved
and is reported in [6]. We can demonstrate that
this bound is approachable for a large set of
tasks by considering a task list with two classes
of tasks, those with memory requirements approxi-
mately M/2 and those with requirements approxi-
mately M/4. By proper adjustment of the memory
requirements we can construct an optimal schedule
which is the same length as the lower bound and
an algorithmically produced schedule that
approaches 4/5 of this length. The task sizes are
chosen in such a manner that the optimal schedule
would use 100% of the memory resource and the
algorithmic schedule would be the maximum possible,
i.e. a pair in each time slice. Consider an arbi-
trary number of classes of time slices denoted by
AI,A2,...,A r. The widths or number of time

slices represented by each class will be denoted
by Ni,N2,...,N r respectively. The optimal sched-

ule would appear as follows (all time slices with-
in a denoted class are identical):

A I

M/2+¢

M/2-S

A 2

M/2-4s

M/4+2~

M/4+2E

A S

M/2-10a

M/4+5~

M/4+5c

A 4 At. 2 At- 1

M/2-22c I M/2-b~ M/2-(2b+2)C
I

M/4+11C ... M/4+(b/2)~ M/4+(b+i)~

M/4+Iic M/4+(b/2)¢ - M/4+(b+l)c

A E

M/4

M/4

M/4

M/4

where E > 0
r - S

and b = 2 r-3 + ~ 2 q for r > 2 (3)
q=l

Note that the space requirement at each time
slice is M. (i.e. all of memory.)

r k
= N i = Z mj/M (4)

N°P i=~l j = I

where m. is the memory requirement for each of the]
k individual tasks.

We restrict e at this point by

M/2 - (2b+2)s > M/4 + (b+l)~ (5)

to guarantee the first tasks in At_ 1 are larger

than the others

or s < M/12Co+I) (6)

This restriction is imposed so we can explicitly
depict the algorithmic schedule. The final algo-
rithmic schedule S, would be

MI2+e I MI2-E MI2-4E I MI2-10~ M/2-bE I M12-(2b+2)£

M/4 M/4+2E M/4+5~ M/4+IIE "'" M/4+(b+i)c M/2-(2b+2)c

By looking at the number of tasks associated
with each subclass above we have:

N a = N 1 + N 1 + N 2 + N S + ...

+ Nr_2 + Nr_i/2 (7)

In order to satisfy this exact schedule we must
have the following relationships:

N r = Ni/4

N 2 = Ni/2

N S = N2/2 = Ni/22

N 4 = N3/2 = Ni/2 3

Nr_ 1 ='Nr_2/2 = Nl/2r-2

It then follows from (4) that
r r-2

N°P = !1i Ni = Nl(i~=0 (21-)i + ¼)

and from (7) that

r-S
Na = Ni(2 + ~ (21)i + [~).l.r-S.)

i=l

(8)

(9)

114

t h a t

and

Now let r ÷ ~; it follows from (8) and (9)

Nop+ (9/4) N I

Na +3" N 1

+ (4 / 3) N . therefore N a op

Ill. The Variable-Time Model

Algorithm 1 of the previous section can be
extended easily to cover cases when the tasks have
different processor time requirements. The assump-
tion to be made is that a task requiring t units
of processor time may be broken into t sub-tasks,
each requiring one time unit. This assumption is
reasonable if the computer system being modeled has
a preemptive-resume feature. Each sub-task is
then assigned using the same strategy as the unit-
time model, with the added constraint that no two
sub-tasks of the same task may be placed in the
same time slice.

Algorithm 2.

As in the previous algorithm, we have a list
of tasks ordered on memory requirement (mi) ,

largest requirement first. There are k tasks to
be assigned, each with t. time units. The sub-

2
tasks (of one time unit) are assigned across time
slices denoted by the index i. Each time slice
has two associated variables, n. - the number of

1
processes xn use and e. - the amount of available

1
memory. M is the total number of memory units
at each time slice and n is the number of pro-
cessors. The algorithm starts by estimating the
length of the schedule (Na) to be the lower bound,

and increments N iteratively until all tasks are a

p l aced .
k

O) Se t N a = [max (~ t j / n ,
j = l

k
mjtj/M, max(tj))l

j=l j

1) (F i r s t - r o u n d ass ignment)

For j = 1 , 2 , . . . , b where

q q+l
b = {ql ~ t. < N and ~ t. > N a}

j=l j- a j'=l J

perform the following steps (start with
the first time slice):

i.i) Assign the jth task to the next
t. time slices.
3

1.2) Set n. = 1 and c. = M - m. for
i i j

each of the t. slices.
J

2) Set j = b + i.

3) Set I = max {ilc i is the maximum of a set

of Cd'S, where n a # n and no

part of the jth Task has been

assigned to the d th slice}.

= + 1 and go to 4) If c I < mj then set N a N a

Step I.

5) Assign a unit of the jth task to the i th

time slice.

6) Set n I = n I + i, c I = c I - mj,

and t. = t. - i.
3 2

7) If t. > 0, go to Step 3.
J

8) If j = k then terminate.

9) Set j = j + 1 and go to Step 3.

Steps 3 through 7 attempt to assign the jth task
to the t. time slices that have the maximum amount

J
of memory available. If this is not possible,
Step 4 indicates that we can increase the original
estimate by one time slice and try again. Algo-
rithm 2 produces a schedule in a finite number of
steps due to the finiteness of the problem. The
similarities between Algorithms 1 and 2 allow
the analytical method used in the proof of
Theorem 1 to be extended. The bound on the
time required to produce a schedule mentioned in
the discussion following Algorithm 1 also applies
to Algorithm 2 [6].

Theorem 2. If the number of time slices required
by Algorithm 2 is Na, and the number of time slices

in the optimal schedule is Nop, then

<(2 -2 N a ~)Nop + i. (I0)

The proof of the theorem can be found in [6].

We can demonstrate that this bound is ap-
proachable by scheduling the following set of tasks.
Note that the requirement of a task is represented
by the 2 - t u p l e (m , t) .

Name Number

Ji,J2 2

Jm (n-2)Nop

J f 1

The v a r i a b l e s

Requirement
N

M ~ 1)
(~ - S, 2 -

.2e-8
+ 2 (..-~.7~-, 13

(6 ,Nop)

e and 6 are chosen so that

M 2e-6. .2e-6 .
(~ - e) > n (~ _ 3 ; and ('-~i~) > 6 , and a l l f r a c -

t i o n a l expressions yield integer values. The
optimal schedule has N time slices and is shown

op
in Figure 4. Note that N N

(n -2)Nop + 2 = (n-33 ("~"-z. - 13 + (n-1)(--~,-z. + 13.

115

H/2

0

r2-
O 2

Hop/2 Nop
l i

,

Cn'3)CN°pl2"l) ~! : I
tasks ,;: ' " ' " Jr 11 i i/Jr M

Figure 4. The Optimal Schedule

The next-to-final schedule CNa-i time slices) is

shown in Figure 5. Note that two units of Jf can

not be placed but one additional time slice in the
schedule is adequate to assign all tasks by the
a l g o r i t h m .

M/2

HOD-2 (2-21n) (NoD-I)

al "12 h
(n-2)Nop+2 tasks

h Jr (partially placed)

Figure 5. The schedule with (Na-i) time slices.

It is evident from the figure that

N - 1 = N - 2 + (n-2)N°P + 2
a op n

= (2 - ~)(Nop i)

which approaches (10) when N is large.
op

The bound given by Theorem 2 is not very im-
pressive. It indicates the possibility that the
length of the schedule produced by Algorithm 2
could be nearly twice as long as the optimal sched-
ule. However, further analysis of the behavior of
the algorithm shows that the situation of Figure S
occurs only when there are many jobs with small
memory requirements (Jm'S and Jf) and the small-

est job (Jf) has extremely large time requirement.

In the next-to-last iteration of the algorithm
portions of the smallest job (Jr) can not be

assigned because all time slices have either n
task units assigned or parts of Jf assigned al-

ready. This situation does not occur during simu-
lation studies using benchmark jobs on the
CDC 6500 and can be detected easily by the algo-
rithm if it does occur. The following theorem
seems to cover a large number of scheduling en-
vironments.

Theorem 3. In the iterative process of Algo-
rithm 2, if there exists some time slice with less
than n task units assigned but no task unit of
the final task, then

4
< N + 1 Cll) Na ~ op

The p r o o f o f t h e t heo rem can be found i n [6] .
The example used t o d e m o n s t r a t e t he a p p r o a c h -

a b i l i t y o f Theorem 1 may be u sed f o r Theorem 3, as
i t i s a s p e c i a l case o f t h e v a r i a b l e - t i m e model .

Theorems 2 and 3 may be used t o r e d u c e t he
i t e r a t i v e a s p e c t o f A l g o r i t h m 2. For example , i n
s i t u a t i o n s where Theorem 3 a p p l i e s , S t ep 4 o f Al -
g o r i t h m 2 can be m o d i f i e d t o change t he e s t i m a t e d
l e n g t h o f t h e s c h e d u l e i n s t e p s . Note t h a t t h e
lower bound o f t h e l e n g t h o f t h e s c h e d u l e i s com-
p u t e d i n S t ep 0, and t h e u p p e r bound i s e s t a b l i s h e d
by Theorem 3. (This i s p o s s i b l e s i n c e t h e p r o o f o f
Theorem 3 assumes N t o be t h a t computed by S t ep 0

op
o f A l g o r i t h m 2 .) Thus u s i n g a b i s e c t i o n method we
can b r i n g t h e l e n g t h o f t h e s c h e d u l e t o a p p r o x i m a t e
t h e t r u e r e s u l t o f A l g o r i t h m 2 w i t h few i t e r a t i o n s .

IV. Simulation Results
The schedule completion times produced by Al-

gorithm 2 (denoted Na) depend on certain assumption

implicit in the computational model. The most ob-
vious assumption is that tasks do not change their
memory requirement during execution. Also, while
Theorem 3 bounds the schedule-completion times pro-
duced by the algorithm, it does not provide infor-
mation about the typical completion times.

In order to assure ourselves that the assump-
tions are not unreasonable and that the expected
performance was significantly better than the pre-
dicted bound, we implemented a simulated system
which used the job placement strategy of Algo-
rithm 2. The job descriptions processed by the
simulator were automatically produced by analyzing
data gathered from the Purdue-MACH/CDC 6500 com-
puter system in use at the Purdue University Com-
puting Center [7]. The data allowed us to compute
the dynamic memory and time requirements for all of
the jobs processed by the system during periods of
observation. Thus, we were able to use realistic
data for our simulation study of the behavior of
Algorithm 2. As the data were processed to produce
the required job descriptions, the actual schedule
completion times realized by the production system
were recorded. Those actual times served as a
basis for judging the performance of the algorithm.

The data was gathered during two periods of
production on the Purdue system and analyzed as a
series of 50 second intervals. The results of the
data analysis and the simulation runs using this
data are presented in Table i.

The Purdue-MACE system uses a priority-driven
job scheduler with a preemptive-resume feature.
Thus in Table i, the number of tasks observed dur-
ing a 50-second interval is the number observed
during some phase of execution, not necessarily
the number of tasks completed or initiated. The
entries labeled T are three schedule-completion
times. TCLOWER) is the time equivalent of the
initial value of N in Algorithm 2. This is a a
lower bound on the schedule-completion time and
serves as an approximation to Nop. T(ACTUAL) is

the observed schedule-completion time (approximate-
ly 50 seconds.) T(SIM) is the schedule-completion
time produced by Algorithm 2 (really the time e-
quivalent of the final value of N a of Algorithm 2.)

M(HRROR) is an indication of the magnitude of
the error in the memory actually used as compared
to the approximation used by the simulator (and
Algorithm 2.) The space-time integral for each

116

TEST TAPE NO. 1

02/06/73. 13.30.00.

INTERVAL NO.TASKS T(LOWER) T (ACTUAL) T(SIM) M(ERROR)

1 30 44.10 50.00 44.10 .07
2 29 48.90 50.00 49.35 .20
3 23 52.77 49.99 52.89 .38
4 22 49.95 49.95 49.95 .35
5 25 48.00 50.00 48.15 .19
6 25 49.20 49.61 49.20 .21
7 19 48.75 49.41 48.75 .30
8 20 47.10 49.59 47.10 .12
9 21 43.80 41.69 43.95 .16

TKST TAPE NO. 2

03/20/73. 13.48.56.

INTERVAL NO.TASKS T(LOWER) T(ACTUAL) T(SIM) M(ERROR)

1 26 48.30 50.00 48.30 .08
2 30 44.10 50.00 44.25 .06
3 32 47.85 49.99 48.30 .19
4 22 43.50 49.99 43.65 .03
5 17 50.55 50.00 50.70 .22

Table 1

Comparison of Results Observed on System

and Produced by Scheduling Algorithm

task's memory-time requirement was computed as
part of the data analysis. The approximation used
by the simulator is the product of the initial
memory requirement (at the onset of a 50 second
interval) and the time-in-core for each task (see
Figure 6.) The total memory error for each inter-
val is the sum of the absolute differences bet
tween the actual and approximate space-time inte-
grals f o r each t a s k . The p e r c e n t a g e s in t h e M(ERROR)
column o f Tab l e 1 a r e t h e t o t a l e r r o r s as p e r -
c e n t a g e s o f t h e a c t u a l v a l u e o f t h e s p a c e - t i m e
i n t e g r a l s f o r t h e i n t e r v a l s .

memory ÷

~~ ÷ error

t line -~

Figure 6. Illustration of Memory Error for Single
Task

I t can be s e e n t h a t when t h e e r r o r s a r e s m a l l ,
t h e s c h e d u l e p r o d u c e d by A l g o r i t h m 2 i s b e t t e r
(s h o r t e r) t h a n t h a t p r o d u c e d by t h e p r i o r i t y - d r i v e n
s c h e d u l e r o f t h e Purdue-MACE s y s t e m . L a r g e r e r r o r s
c a u s e t h e s i m u l a t i o n t o d i s p l a y c o m p l e t i o n t i m e s
which a r e w o r s e t h a n t h o s e p r o d u c e d by t h e s y s t e m .
The o b v i o u s cause o f w o r s e p e r f o r m a n c e in t h e e v e n t
o f l a r g e r e r r o r s i s t h a t s e v e r a l t a s k s may d e c r e a s e

their memory requirement allowing more tasks to be
fit into memory concurrently in the actual system
than in the simulated system. Such a decrease is
quite common in the Purdue-MACE system, since most
jobs begin with a compilation step and end with an
execution step, at a reduced memory requirement.

The simulation results suggest that errors
caused by changes in a task's memory requirement do
not severely degrade the results of the strategy.
They also suggest that the expected completion
times are closer to the lower bound than the upper
bound ((4/5)(50) + 1 = 67.7 seconds.)

V. Remarks

Theorem 3 and the simulation results demon-
strate that our task scheduling algorithm (Algo-
rithm 2) has the desired properties mentioned in
the introduction. In particular, we have provided
a lower bound and an upper bound on the length of
the schedule produced by the algorithm (Step 0, Al-
gorithm 2 and Equation (ii), Theorem 3.) It should
be noted that the proofs of the theorems are all
long and that no methodology which constructs such
proofs has yet been developed. This leads us to
believe that similar analysis of more complicated
models would be very difficult.

The simulation results presented in section IV
suggest that the scheduling algorithm may be of
practical interest because its performance, while
not necessarily optimal, is bounded. In an actual
implementation, the system would maintain a
list of tasks with information about the esti-
mated time and memory requirements. The scheduler
would be called to produce a schedule (really a
time-space map) for the list. The system would
then activate and de-activate tasks, according to
this schedule. The scheduler would be called to
produce a new schedule whenever the actual state of
the system deviates from the expected or predicted
state, e.g. when a task terminates prematurely or
changes its memory requirement.

In spite of the promising results shown in the
simulation study, it may not be desirable to imple-
ment the proposed strategy. For example, the
strategy requires that the system has an efficient
preemptive-resume feature. The strategy also re-
quires accurate estimates of the time and memory
requirements for all of the tasks, and it does not
handle tasks requesting operator intervention,
such as the mounting of a magnetic tape. Although
the scheduler requires only an algebraic number of
steps, the cost of implementation and computation
may still be high in some environments. The most
serious shortcoming of the strategy is that it does
not consider other scheduling goals, such as task
turn-around time or task priority.

Most schedulers in existing systems can be
classified as demand schedulers. In particular,
they produce a schedule for only the next one or
two slices of time. Our algorithm represents a
major departure from this existing approach in
that it implements a "look-ahead" strategy. The
simulation results show that when the memory-re-
quirement errors are small, this look-ahead strat-
egy can produce a noticeably improved schedule
(e.g. a 5-10% reduction in schedule-completion
times) when compared to the demand strategy in the
Purdue system. This observation suggests that, as
might be expected, look-ahead (perhaps they could
be called two-dimensional), task schedulers may be
a promising family of schedulers which deserve
further examination.

117

i.

2.

3.

4.

5.

6.

7.

REFERENCES

Graham, R. L. "Bounds on Multiprocessing
Timing Anomalies," SIAM J. on Applied Ma£h.
(17,2) Mar. 1969, (416-429).

Kleinrock, L. "A Continuum of Time-Sharing
Scheduling Algorithms," Proceedings SJCC C36)
1970, (453-458).

Muntz, R. R., Coffman, E. G., Jr. "Preemptive
Scheduling of Real Time Tasks on Multipro -
cessor Systems," JACM (17,2) Apr. 1970,
C324-338).

Denning, P. J. "The Working Set Model for
Program Behavior," CACM (11,5) May, 1968,
(323-333).

Chen, Y. E., Epley, D. L. "Memory Requirements
in a Multiprocessing Environment," JACM (19,1)
Jan. 1972, (57-69).

Krause, K. L. "Analysis of Computer
Scheduling with Memory Constraints," Ph.D.
Dissertation, Computer Sciences Dept~,
Purdue University, July, 1975.

Abell, V. A., S. Rosen, and R.'E. Wagner,
"Scheduling in a General Purpose Operating
System," Proceedings FJCC (37) 1970, (89-96).

118

