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I. INTRODUCTION 

Multisorted algebras were first intr~ 
duced by Birkhoff and Lipson [I] as a 
generalization of the concept of universal 
algebra to more than one sort. 

An important problem for a free mul- 
tisorted algebra F with a set of equations 
E is the word problem, i.e. the problem 
of determining, for any terms t and u in 
F if t and u fall in the same congruence 
class under E. 

Knuth and Bendix [7] present a method 
of solving the word problem for certain 
classes of equations by transforming the 
equations into reduction rules. This is 
done by considering one side o of an equa- 
tion (e)~ = p to be "simpler" than ~. 
Knuth and Bendix define a well ordering > 
on the set of terms of the algebra and 
interpret "simpler" to mean that ~ > 
Such a reduction is written ~ ÷ 

A term t reduces in one step to a 
term tl if there is a reduction rule (r) 

÷ p and an address u in the domain of 
the term t such that the subterm of t at 
address u is an instance of ~ and t I is 
the term obtained from t by replacing 
the subterm at address u by the correspon- 
ding instance of p . We write tr~,tl,~ or 
t ÷ tl for such a reduction• 

A term t reduces to a term t n if 
there is a sequence t O ÷ t I ÷ t 2 ÷ ... 

+ ° 
tn_ 1 t n such that for all ~, 0<~n-1, 

t i reduces in one step to t:+l. We--w~ite 
t O ÷ t n for the multiple step reductlon. 

In order to solve the word problem, 
Knuth and Bendix [7] require that the sys- 
tem of reductions be confluent i.e. for 
all pairs of reductions t2÷ t I ÷t~ there 
is a term t 4 such that t 2 ÷t4÷ t 3. 

A sufficient condition for a system 
of reductions to be confluent is for the 
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system to be confluent for all critical 
pairs• A critical pair is a pair< ll,12 > 
where (I) 1 ÷ r I and (2) 12 ÷ r 2 are re- 
ductions an~ Z.I has an address u such that 
the subterm of Ii at address u is non- 
trivial (i.e. it is not a variable) and 
it is f-unifiable with l 2. We say that 
two terms t I and t 2 are ~-unifiable if 
there are substitutions s and s I such 
that S(tl) = s l(t2). 

For all critical pairs <Zl,12 > the 
pair of reductions 11 [u ÷ r?] ~-?u£f--~1 
must be confluent By ~[~ ÷~] Q e ~  

• £Z 2 
the term obtained from 1 by replacing its 
subterm at address by r 2. 

Based on the fact that a system of 
reductions is confluent if it is confluent 
for the set of critical pairs, Knuth and 
Bendix [7] give an algorithm for genera- 
ting a complete set of reductions• 

This is done by defining a well 
ordering on the set of ground terms of 
the algebra F. This well ordering trans- 
form the equations in E into reductions• 
By imposing the condition that the cri- 
tical pairs of these reductions are con- 
fluent we obtain new reductions• If 
these reductions cannot be obtained from 
the existing set of reductions they are 
added to the set. 

The algorithm stops when all reduc- 
tions generated by the critical pairs are 
already in the set. 

Our approach extends Knuth and 
Bendix's work in several ways. We start 
with a finite set of axioms A O over a free 
algebra F. Unlike Knuth and Bendix [7] we 
do allow conditional equations• 

Let L 0 be the set of ground terms in 
F. Our object is to construct a repre- 
sentative function Rep:L0÷ L 0 such that 
tl=A0t2 if and only if Rep(~l) = Rep(t2). 

We differ from Knuth and Bendix since 
we do not require that Rep deal with all 
axioms in the same step. We define Rep 
as a composition of steps SI.S 2" ... .S n. 
Each S i takes as input a pair (Li_l,Ai_l) 
where li_ 1 is a set of terms from L 0 and 
Ai_ 1 is a set of conditional equations• 
S i selects some set of (conditional) equa- 
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tions that it wants to eliminate. These 
equations can be axioms from Ai_ 1 or 
theorems obtained from the axioms in Ai_ I. 
Once we select the equations to be elimin 
ated we must find a well ordering on the 
set of terms in Li_ I which transforms the 
conditional equatlons into meta-reduc- 
tions. This i~ done by defining a func- 
t-i-~i:L~ ~N i where k i is some natural 
number. ~n~N ki we define a well ordering 
>. Knuth and Bendix [7] require that k=2 
and the relation t:)t9 holds if either t~ 
has weight greater±thSn t 2 or the weight~ 
are equal and t 2 precedes t I in the 
lexiographical ordering introduced by the 
symbols of the free algebra. 

They define the weight of a term as 
the sum of the weights of the symbols in 
the term, each symbol having a fixed 
weight. 

The o n l y  r e q u i r e m e n t s  t h a t  we i m p o s e  
o n f  a r e  t h a t ~  i s  r e c u r s i v e ,  f h a s  t h e  s u b -  
t e r m  p r o p e r t y  i . e .  i f  t 1 i s  a s u b t e r m  o--f- 
t 2 t h e n . f ( t 2 )  > ~ ( t l )  a n d  t h e  w e l l  o r d e r i n g  
> o n  N K~ i s  r e c u r s i v e .  

We call ~i a complexity function for 
Li_ 1 over (N~ f @. We say t~at a complex- 
ity function {strongly suits an equation 
£ = r if for all ground substitutions s, 
~s(£)) > {(s(r)) or for all ground sub- 
stitutions s, ~s(r)) > ~(s(~). A com- 
plexity function ~,str~ngly suits a con- 
ditional equation el,~,...,4n ÷e if 
strongly suits e and for all equations £i, 
l<i<n, for all ground substitutions s, 
~Vs-(~)>~ (s(£i)). The complexity of an 
instance of an equation s(£) = s(r) is de- 
fined as max { {(s~)), ~ (s(r)) }. 

A weaker version of the suitability 
concept which is useful in treating con- 
ditional axioms is the concept of weak 
suitability defined below. 

A complexity function ~ weakly suits 
an equation £=r if for all ground substi-" 
tutions S, ~(s(£))=~(s(r)) implies that 
s(£)=s(r), that is, s(£) and s(r) are 
identical. 

Both strong and weak suitability are 
used to generate meta-reductions. A meta- 
reduction has the form (C)---~£ ÷r, where 
C is a recursive predicate in a meta- 
language which contains names for the well 
order (Nki,>), the complexity functions 
and£ and r are terms in L~ i. For all 
such meta-reductions, ~ (s~£~)> ~(s(r)) if 
the condition C evaluates to true. 

Once we h a v e  s e l e c t e d  t h e  s e t  o f  
e q u a t i o n s  E i a n d  we f o u n d  a c o m p l e x i t y  
f u n c t i o n  t h a t  s u i t s  e a c h  e q u a t i o n  i n  E. we 

• 1 

d e f i n e  S i t o  b e  t h e  t o p - d o w n  r e d u c t i o n  
e x t e n s i o n  o f  t h e  s e t  R i o f  r e d u c t i o n s  g e n -  
e r a t e d  b y  E i a n d  ~ .  

The t o p - d o w n  r e d u c t i o n  e x t e n s i o n  ~ o f  

a set of meta rules R i is defined as 
follows: 

For every term t in L~I , we have 
the following cases: 

(1) If for a meta-rule (C)~£+r and a 
ground substitution s, s(£)~ and 
C evaluates to true, then a (t) = 
~ ( s ( r ) ) .  

(2) If case 1 does not apply and t 
has the form g(tl,...,tn) , then 
cgmpute recursively ~(tl) .... , 
~Jtn). If for any i, l<isn, 
a(ti) ~ t i then ~(t) = ~(g(a (tl), 
. . . ,  a ( t n ) ) ) .  

(3) If neither of the above cases 
applies, then ~(t) = t. 
In case 3, t is called an atom. 
We define L i to be the range of 

S i and A i to be the system of axioms 
obtained by applying S i to the axioms in 
Ai- 1 • 

If the set E_- is well chosen some 
axioms from Ai_ 1 ~ecome identities in 
Ai_ 1 and thus are eliminated. If this 
is not possible a proper choice for E i 
will give a simpler form for L i or for 
the axioms in A i. This way we can see 
S~ as a function from (Li_l,Ai_l) onto 
(~i,Ai). The last step ±unctlon is 
Rn:(Ln_l,An_l)÷(Ln,¢), L n being the set 
of normal forms. Thus Rep can be seen 
as the composition of the function given 
by the sequence: 

I< L1 Sn (4) < L 0,A~ S 'AI> + .... ÷ < Ln,*> . 

We say that a top-down reduction 
extension S.:<L i I,A: I> ÷ <Li,A.> has 

1 - ± - ~  . 1 

the a-property far L i_l if for every 
operNtor ~ ot rank n and for every n 
terms t.,t~,..,t in L i I, for every j, 
l < _ j < n ,  I f  ~ ( t l ,  n . , t n ) ¢ -  L.- 1 t h e n  
S i  ( 7 ( t  1 . . . .  , t ~  . . . .  , t n ) )  = ~ ; ~ f ( t l , . . . ,  
S i ( t i ) , . . . , t n J ) .  I t  c a n  b e  s h o w n  t h a t  
i f  t h e  c o m p o s i t i o n  S 1 . S ) ' . . . S  n h a s  t h e  

- p r o p e r t y ,  t h e n  i t  N a s ' t h e  r e p r e s e n t a -  
t i o n  p r o p e r t y  f o r  <L 0,A0> . 

We will give criteria for obtaining 
"useful" theorems in E i. There are 
basically two methods. 

The first method is to force conflu- 
ence in the set of rules associated with 
%1_I,A._I> using the method of critical 
palrs o3 Knuth and Bendix [7]. However, 
the resulting equation is not transformed 
into a rewrite rule but added to E i. 

The second method is to use condit- 
ional meta-rules. The complexity func- 
tions guarantee that the reductions in R. 
terminate, i 

Using conditional meta-rules allows 
us to deal with system rules in which 
rules which increase the complexity are 
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allowed, provided that the number of appl~ 
cations of such rules is finite• 

We list below some of the advantages 
of our method over the Knuth-Bendix [7] 
approach• 

1) The method is a stepwise 
refinement technique and, 
at each step, the complexity 
functions may be different• 

2) The method allows one to 
characterize both the normal 
forms and the intermediate 
forms. 

3) A problem can be reduced to 
an already solved problem. 

For example, if one wants to compute 
the prenex conjunctive normal form of a 
first-order sentence, one can proceed as 
follows: 

(i) Relabel variables which 
appear more than once. 

(2) Push negations all the way 
inward. 

(3) Push quantifiers in front. 
(4) Distribute over 
(5) Eliminate duplicates and 

order the conjuncts. 

If one attempted to perform these 5 
steps in a single transformation, it 
would be very complicated. Also, if one 
already knows how to compute the conjunc- 
tive normal form for propositional logic, 
after step 3, the problem is reduced to 
one whose solution is known. 

The complexity functions serve a 
double role. They can be used as the 
"control part" of the algorithm for com- 
puting normal forms, and they can be used 
to prove termination. Since the complex- 
ity functions that suit an equation are 
not unique we have flexibility in choosing 
the desired normal form. 

2. THE FORMALISM 

We will follow the notation and def- 
initions found in Huet and Oppen [6]. 
Given a finite signature (S, z,~), the 
initial algebra T z is defined in the 
usual way ([6]). Terms in ~ will be 
represented in prefix form. Then, the 
set T~ of terms of sort s is a determin- 
istic~context free language. 

Given an S-sorted set of variables V, 
the free algebra over V is denoted as ~ (D 
and consists of terms with variables. 

A z-equation of sort s is a pair 
<M,N> of terms in Tz(V)S , and will also be 
denoted as M = N. K conditional equation 
is an expression of the form el,e2,... , 
e n~£ , where el,e2,...,en,e are equations. 

A presentation is a triple 
P= • ~V,E>, where ~ is a finite signature, 
V an ~-indexed set-of variables and E a 
finite set of conditional equations. Sub- 
stitutions and E-unification are defined 
as in Huet and Oppen [6]. The concept of 
complexity function was defined in Intro- 
duction and will not be repeated here. 

Given a complexity function h, for 
an operator f such that • (f) = s I X sl 2 X.. 
X s_ ÷ s, we say that h is monotone in f 
if ~or every i, I< i < n, and all terms 
t I ~ T~I .... , tn ¢ T~n, the following con- 
dition~holds: 

(I) ~ (t~) > h Q t l )  implies 

(~I,-. ,Pi;""" ,tn)) 
> h(~ (tl,... ,ti,... ,tn) ) 

We say that a complexity function is mono- 
tone if it is monotone for every operator 
in ~. 

The notions of strong and weak suit- 
ability were introduce--d--~t~-e-ln--~duc- 
tion and are not repeated here. A com- 
plexity function h strongly (weakly) suits 
a set of (conditional) equations if it 
strongly (weakly) suits every (conditiona~ 
equation in the set. Given a set of (con- 
ditional) equations E and a complexity 
function h which suits E (weakly or stron~ 
ly we define the set of rules associated 
with E under h, denoted as R(E,h), or for 
short R, as follows: 

(2) If R= r ~ E and h strongly 
suits £= r then 
(i) If for all s, h((£)) 

> h(s(r)), then £÷r 
is in R(E,h) 

(ii) otherwise r ÷£ is in 
R ( E , h )  

(3)  I f  £ = r ¢ E a n d  h w e a k l y  
s u i t s  l =  r t h e n  b o t h  
m e t a r e d u c t i o n s  i h ( l )  > h ( r ) )  
~l+ r and (h(r) > he))----> 
r÷£ are in R(E,h) 

(4) If e:el .... ,en÷ £ = r ¢ E 
and h gtrongly suits e then 
( a ( l l )  = a ( r l ) A  

m(Z n) = m ( r . ) ) ~ l  ÷ r 
is in R(E,h) Yf h(s(£))> 
h(~(r)) for all ground sub- 
stitutions ~, or (~ (£i) = 
~(r I) ... ~(£~=~(rn))~r ÷ £ 
¢ R[E,h) otherwlse. We as- 
sume that the equations £i 
have the form £i = ri- 

(5) If e:e I .... ,e_->£ = r~E and 
h weakly suit~ e then both 
meta rules (h (£) > h(r))A> 

~I~ = ~ (r~)~ ...A~(1 ): :(r n) 
l÷ and (h~)> h(/)A ~(~ )=~(ra ) 

. . .Am (/n) =~ {rn]=>r÷ I are in R(E,h) 

We say that R(E,h) is functional if for 
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all terms t c T v and pairs of meta-rules (CI) 
l- ~r. and (C~ ~ l~÷ r~ in R(E,h), if theft 
e~ist~ substitutions s~ and s~ such that 

= s.,(/~) and Cl~t)=(2(~)=true, then Sl(/~) 
s, (~i) = ~12(f2) 

The set R~E,h) is linear if for any 
meta-rule (C) 1 ÷ r, every variable 
occurs at most once in 1. The top-down 
reduction extension~ of R(E,h) has been 
defined in the Introduction. 

3 .  T E C H N I C A L  R E S U L T S  

In Lemmes 1-7, E is assumed to be a 
finite set of z-equations, h is a com- 
plexity function that weakly suits E, R 
is the set of meta-rules associated with 
E under h, and B is the top-down reduction 
extension of R to T Z 

Lemma 1 
If h is monotone then 8 is a recur- 
sive relation from ~ t o  T z . 

Lemma 2 
If h is monotone and R is functional 
then B is a recursive function from 

to T E 

Lemma 3 
If h is monotone then for all terms 
t in T , B (B(t)) = B (t). 

Z 

Lemma 4 
If h is monotone then for all terms 
t in T~ , h(t) = h(B(t)) if and only 
if t i~ an atom. 

Lemma 5 
If h is monotone, f is an operator 
of type ~(f)=s~_X s~X X s ÷sl, if 

f ± z "'" . n (v I ..... ~) and £ are not unzflable for 
any variables v,,...,v (with each v. of 
sort s.) and m~ta-rul~ (C) 1 ÷ r,Zthen 
B(f(t~.,tn)) = f(B(tl,...,B(tn)). 

~f the number of variables of each 
sort is unbounded, the unification con- 
dition can be r4placed by: 

f(v,,...,v~) and 1 are not 
unifiable ~or an n-tuple 
of distinct variables 

,...,Vn, each v i of sort 
s i • 

A set R of meta-reductions is 
said to be ~ if it does not 
contain conditional meta-rules 
and h strongly suits E. 

Lemma 6 
Let R be pure and linear, h be mono- 
tone and L a subset of TZ such that 
8(L) is a subset of L. If L is 
accepted by a (deterministic) bottom- 
up finite tre automaton then B(L) is 
also accepted by a (deterministic) 
bottom-up finite tree automaton. 

Lemma 7 
If the terms of the language L in 

lemma 6 are represented in prefix notation 
then B(L) is accepted by a deterministic 
push down automaton. 

The proofs of lemmas 1-7 can be 
found in Pelin and Gallier [9]. 

If R is not linear or contains con- 
ditional equations, B(L) is not necessari- 
ly deterministic or even context-free. 

Lemma 8 
Let h be monotone. The top-down 

reduction extension B is a function with 
the s-property if and only if R is local- 
ly confluent. 

Next, we present examples illustra- 
ting the above techniques and results. 

Example 1 (Stacks of natural numbers 
with errors) 
The set of sorts is S~nat,stack }, 
Z=~pop, push, top, 0, succ,A, 
e,E }, and the typing funct ion is: 

T (o) = ~(e) = ÷ nat 
(A) = ~(E) = + stack 

T (push) = stack x nat ÷ stack 
(pop) = sack ÷ stack 

T (top) = stack ÷ nat 
T (succ) = nat ÷ nat 

Variables of sort nat will be de- 
noted as n k and variables of sort stack as 
s.. The axioms for the data type stack of 
n~tural numbers are: 

9. 
i0. 

II. 

push E n = E 
push s e = E 
pop E = E 
pop A = E 
top A = E 
topE= e 
pop push so = s 
pop push sn = g-> pop 
push s succ n = s 

top push n = n 
top push s n = n, top 
push sm = m-->top push 
s n m =  m 

SUCC e = e. 

The symbol A stands for the empty 
stack, E for the error stack, o is the na- 
tural number zero, succ is the successor 
function, e is the error natural number, 
push is the push function, pop pops the 
top of the stack and top returns the top 
of the stack (without altering the stack). 
Axioms 1,2,3,6 and II state that once an 
error occurred any subsequent operation 
will yield an error as result. Axioms 4 
and 5 state that poping or retrieving the 
top of the empty stack yields an error. 
Axioms 7 and 8 are weaker versions of pop 
push sn = which is not valid for stacks 
with errors. Axioms 9 and I0 are weaker 
versions of top push sn = n which holds 
for s ~ E. However, s # E ->top push 
sn = n is not accepted by our formalism 
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which requires that all formulas be either 
equations or implications el,..,en--> e 
where el,...,en,e are equations. 

It can be verified that the complex- 
ity function length (length of a string) 
strongly suits (A). It can also be veri- 
fied that the set of reductions obtained 
from (A) is functional. Hence, by 
Lemma 2, the top down reduction 8 is re- 
cursive. In order to determine the range 
of 8, Lemma 9 can be proved. 

Lemma 9 
For all stacks s and natural numbers 
n: 

8(pop push s n)~ 8(s)=-> ~n) = e 
B(top push s n)~8(n)==~ ~s) = E 

length (8(pop s)) < length (pop s)A 
length (8(top s)) < length (top s) 

Lemma l0 
The range of B is a context-free 
language. 

Lemma ii 
8has the representation property 
for <L0,A> where L n is the lang- 
uage generated by the context free 
grammar given below: 

s ÷ A I E l P u s h  SN I PoP  S 
N ÷ e I ° I t o p  S I s u c c  N 

Example 2 (Free commutative semi- 
group with an infinite 
number of generators) 

The set sorts is S = { N}, 
Z = {g,I, + } , and the typing 
function is: 

T (g) = ÷ N 
~(I)= N + N 
T (+)= N x N ÷ N 

The set L~ of terms in prefix 
form in t~e initial algebra 
TZ is given by the following 
context-free grammar: 

SI+ G I S 
G ÷ gl IG 
S + + SS 

The set of axioms (C) is given 
below: 

i. + xy = + yx 
2. + x + y~ = + + xy~ 

First, we pick 

• El -- •~ + x -- y~ = ++ xy~ }. We 
can check that the complexity 
function hl: L~ ÷ N defined below 
strongly sults ~1"  

h I (g) = 1 
h± (Ix) = I 
h I(+ xy) = 1 + h l(x) + 2~(y) 

The complexity function h I trans- 
forms E 1 into the reduction 

- { + x + yz + ++ xyz~ . Let 81 
be theRtop_downl - reduction extension of R I. 

A = 8~(A~) has the form 
{81(+xY~ = ~i~:Y x) I for all ground terms 
x ~nd y in 

In order to eliminate the set of 
axioms A2, we use reductions obtained by 
forcing confluence on the set of rules ob- 
tained by orienting the axioms of A from 
left to right. 

Since + x + yz =>++ xyz, + x + yz *~> 
+ x + ~y~=~++ x~y, we use the equation 
++ xyz = ++ xzy. Let us call the terms of 
the form g or Ing literals. We choose 
E 2 = {++ xy~ = ++ xzyl for all literals 
Y'Z L } U {L: ~ ~Y: I f°r all literals 
y,~ L~}. t yz :+L N be 

~)(+ n + I 
= 1 + 2h2(x) + h2(y). 

We can show that h 2 weakly suits E 2 The 
system of meta-rules obtained from h2 is 
R~ = { (h~(y) > h2(~)=~ ++ xyz ÷ ++ xzy, 
(~2(y) > ~(z))~>+ yz ÷ + zy }. Let 8~ be 
the top-down reduction extension of R2Zto 
L I. We can show that 82(8~(+xy)) = 
82(81(+yx)) for all x,y c £n. Hence, 
A 2 =~8~(AI) = ~. We can al~o show that 
81 " B~ h~s the ~ property. Thus 8 I " 8 
h~s th@ representation property for~<L0,C>. 

More examples can be found in Pelin 
and Gallier [9]. 

4. CONCLUSIONS 

Complexity functions play an importa~ 
role in computing normal forms. Various 
authors such as Book [2], Gallier and 
Book [4], Huet [5], Lankford and Ballantym 
[8], Knuth and Bendix [V] and others have 
used complexity functions for generating 
reductions. Dershowitz [3] and Plaisted 
[I0] use particular complexity functions 
to prove termination of rewriting systems. 
In our approach, complexity functions 
serve both to prove termination and gener- 
ate reductions. 

The definition of a complexity func- 
tion as presented in this paper is very 
general and it would be useful to identify 
which classes of complexity functions 
suit particular types of axioms. For ex- 
ample, we have shown that linear functions 
(functions of the form (ft ...... t )) = 
C^ + C- (t-) + + C (t J) can Be used 

. . . .  "'" n n . . . 

fur as~oc1~tlvzty and commutatlvlty axloms. 

However, the distributivity axiom 
, x + yz = + * xy , xz require a quadratic 
function to obtain the reduction rule 
• x + y~ ÷ + * xy * x~. The following 
function does the job: 
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h(* xy )  = 2 h ( x ) h ( y )  
h(+ xy)  = 1 + h (x)  + h ( y )  

Also, some axioms, such as the commutativity 
axiom for a groupoid with an infinite number 
of generators, require complexity functions 
over N k, for k > I. 

Another area of research is to inves- 
tigate classes of axioms for which the set 
of normal forms can be characterized by 
context free languages. 
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