
USING COMPLEXITY FUNCTIONS TO GENERATE NORMAL
FO~4S FOR FREE ALGEBRA TERMS

ALEXANDRU PELIN
COMPUTER AND INFOrmATION SCIENCES

TEMPLE UNIVERSITY

I. INTRODUCTION

Multisorted algebras were first intr~
duced by Birkhoff and Lipson [I] as a
generalization of the concept of universal
algebra to more than one sort.

An important problem for a free mul-
tisorted algebra F with a set of equations
E is the word problem, i.e. the problem
of determining, for any terms t and u in
F if t and u fall in the same congruence
class under E.

Knuth and Bendix [7] present a method
of solving the word problem for certain
classes of equations by transforming the
equations into reduction rules. This is
done by considering one side o of an equa-
tion (e)~ = p to be "simpler" than ~.
Knuth and Bendix define a well ordering >
on the set of terms of the algebra and
interpret "simpler" to mean that ~ >
Such a reduction is written ~ ÷

A term t reduces in one step to a
term tl if there is a reduction rule (r)

÷ p and an address u in the domain of
the term t such that the subterm of t at
address u is an instance of ~ and t I is
the term obtained from t by replacing
the subterm at address u by the correspon-
ding instance of p . We write tr~,tl,~ or
t ÷ tl for such a reduction•

A term t reduces to a term t n if
there is a sequence t O ÷ t I ÷ t 2 ÷ ...

+ °
tn_ 1 t n such that for all ~, 0<~n-1,

t i reduces in one step to t:+l. We--w~ite
t O ÷ t n for the multiple step reductlon.

In order to solve the word problem,
Knuth and Bendix [7] require that the sys-
tem of reductions be confluent i.e. for
all pairs of reductions t2÷ t I ÷t~ there
is a term t 4 such that t 2 ÷t4÷ t 3.

A sufficient condition for a system
of reductions to be confluent is for the

Permission ~ ~ p y without fee all or pa~ ~ this m~edal is granted
pmvid~ th~ the ~pies am n ~ m ~ e or distdbut~ ~ r direct ~ m -
memial advantage, the ACM ~pydght n ~ i ~ and the title ~ the
public.ion and its d~e ap~ar, and n ~ i ~ is given th~ ~pying is
~rmission ~ the Ass~iation ~ r Computing Machine~. To ~ p y
otherwise, or to republish, r~uims a fee and~r specific ~rmission.

© 1984 ACM 0-89791-127-X/84 /0200 /0159500.75

system to be confluent for all critical
pairs• A critical pair is a pair< ll,12 >
where (I) 1 ÷ r I and (2) 12 ÷ r 2 are re-
ductions an~ Z.I has an address u such that
the subterm of Ii at address u is non-
trivial (i.e. it is not a variable) and
it is f-unifiable with l 2. We say that
two terms t I and t 2 are ~-unifiable if
there are substitutions s and s I such
that S(tl) = s l(t2).

For all critical pairs <Zl,12 > the
pair of reductions 11 [u ÷ r?] ~-?u£f--~1
must be confluent By ~[~ ÷~] Q e ~

• £Z 2
the term obtained from 1 by replacing its
subterm at address by r 2.

Based on the fact that a system of
reductions is confluent if it is confluent
for the set of critical pairs, Knuth and
Bendix [7] give an algorithm for genera-
ting a complete set of reductions•

This is done by defining a well
ordering on the set of ground terms of
the algebra F. This well ordering trans-
form the equations in E into reductions•
By imposing the condition that the cri-
tical pairs of these reductions are con-
fluent we obtain new reductions• If
these reductions cannot be obtained from
the existing set of reductions they are
added to the set.

The algorithm stops when all reduc-
tions generated by the critical pairs are
already in the set.

Our approach extends Knuth and
Bendix's work in several ways. We start
with a finite set of axioms A O over a free
algebra F. Unlike Knuth and Bendix [7] we
do allow conditional equations•

Let L 0 be the set of ground terms in
F. Our object is to construct a repre-
sentative function Rep:L0÷ L 0 such that
tl=A0t2 if and only if Rep(~l) = Rep(t2).

We differ from Knuth and Bendix since
we do not require that Rep deal with all
axioms in the same step. We define Rep
as a composition of steps SI.S 2"S n.
Each S i takes as input a pair (Li_l,Ai_l)
where li_ 1 is a set of terms from L 0 and
Ai_ 1 is a set of conditional equations•
S i selects some set of (conditional) equa-

159

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800014.808158&domain=pdf&date_stamp=1984-01-01

tions that it wants to eliminate. These
equations can be axioms from Ai_ 1 or
theorems obtained from the axioms in Ai_ I.
Once we select the equations to be elimin
ated we must find a well ordering on the
set of terms in Li_ I which transforms the
conditional equatlons into meta-reduc-
tions. This i~ done by defining a func-
t-i-~i:L~ ~N i where k i is some natural
number. ~n~N ki we define a well ordering
>. Knuth and Bendix [7] require that k=2
and the relation t:)t9 holds if either t~
has weight greater±thSn t 2 or the weight~
are equal and t 2 precedes t I in the
lexiographical ordering introduced by the
symbols of the free algebra.

They define the weight of a term as
the sum of the weights of the symbols in
the term, each symbol having a fixed
weight.

The o n l y r e q u i r e m e n t s t h a t we i m p o s e
o n f a r e t h a t ~ i s r e c u r s i v e , f h a s t h e s u b -
t e r m p r o p e r t y i . e . i f t 1 i s a s u b t e r m o--f-
t 2 t h e n . f (t 2) > ~ (t l) a n d t h e w e l l o r d e r i n g
> o n N K~ i s r e c u r s i v e .

We call ~i a complexity function for
Li_ 1 over (N~ f @. We say t~at a complex-
ity function {strongly suits an equation
£ = r if for all ground substitutions s,
~s(£)) > {(s(r)) or for all ground sub-
stitutions s, ~s(r)) > ~(s(~). A com-
plexity function ~,str~ngly suits a con-
ditional equation el,~,...,4n ÷e if
strongly suits e and for all equations £i,
l<i<n, for all ground substitutions s,
~Vs-(~)>~ (s(£i)). The complexity of an
instance of an equation s(£) = s(r) is de-
fined as max { {(s~)), ~ (s(r)) }.

A weaker version of the suitability
concept which is useful in treating con-
ditional axioms is the concept of weak
suitability defined below.

A complexity function ~ weakly suits
an equation £=r if for all ground substi-"
tutions S, ~(s(£))=~(s(r)) implies that
s(£)=s(r), that is, s(£) and s(r) are
identical.

Both strong and weak suitability are
used to generate meta-reductions. A meta-
reduction has the form (C)---~£ ÷r, where
C is a recursive predicate in a meta-
language which contains names for the well
order (Nki,>), the complexity functions
and£ and r are terms in L~ i. For all
such meta-reductions, ~ (s~£~)> ~(s(r)) if
the condition C evaluates to true.

Once we h a v e s e l e c t e d t h e s e t o f
e q u a t i o n s E i a n d we f o u n d a c o m p l e x i t y
f u n c t i o n t h a t s u i t s e a c h e q u a t i o n i n E. we

• 1

d e f i n e S i t o b e t h e t o p - d o w n r e d u c t i o n
e x t e n s i o n o f t h e s e t R i o f r e d u c t i o n s g e n -
e r a t e d b y E i a n d ~ .

The t o p - d o w n r e d u c t i o n e x t e n s i o n ~ o f

a set of meta rules R i is defined as
follows:

For every term t in L~I , we have
the following cases:

(1) If for a meta-rule (C)~£+r and a
ground substitution s, s(£)~ and
C evaluates to true, then a (t) =
~ (s (r)) .

(2) If case 1 does not apply and t
has the form g(tl,...,tn) , then
cgmpute recursively ~(tl) ,
~Jtn). If for any i, l<isn,
a(ti) ~ t i then ~(t) = ~(g(a (tl),
. . . , a (t n))) .

(3) If neither of the above cases
applies, then ~(t) = t.
In case 3, t is called an atom.
We define L i to be the range of

S i and A i to be the system of axioms
obtained by applying S i to the axioms in
Ai- 1 •

If the set E_- is well chosen some
axioms from Ai_ 1 ~ecome identities in
Ai_ 1 and thus are eliminated. If this
is not possible a proper choice for E i
will give a simpler form for L i or for
the axioms in A i. This way we can see
S~ as a function from (Li_l,Ai_l) onto
(~i,Ai). The last step ±unctlon is
Rn:(Ln_l,An_l)÷(Ln,¢), L n being the set
of normal forms. Thus Rep can be seen
as the composition of the function given
by the sequence:

I< L1 Sn (4) < L 0,A~ S 'AI> + ÷ < Ln,*> .

We say that a top-down reduction
extension S.:<L i I,A: I> ÷ <Li,A.> has

1 - ± - ~ . 1

the a-property far L i_l if for every
operNtor ~ ot rank n and for every n
terms t.,t~,..,t in L i I, for every j,
l < _ j < n , I f ~ (t l , n . , t n) ¢ - L.- 1 t h e n
S i (7 (t 1 , t ~ , t n)) = ~ ; ~ f (t l , . . . ,
S i (t i) , . . . , t n J) . I t c a n b e s h o w n t h a t
i f t h e c o m p o s i t i o n S 1 . S) ' . . . S n h a s t h e

- p r o p e r t y , t h e n i t N a s ' t h e r e p r e s e n t a -
t i o n p r o p e r t y f o r <L 0,A0> .

We will give criteria for obtaining
"useful" theorems in E i. There are
basically two methods.

The first method is to force conflu-
ence in the set of rules associated with
%1_I,A._I> using the method of critical
palrs o3 Knuth and Bendix [7]. However,
the resulting equation is not transformed
into a rewrite rule but added to E i.

The second method is to use condit-
ional meta-rules. The complexity func-
tions guarantee that the reductions in R.
terminate, i

Using conditional meta-rules allows
us to deal with system rules in which
rules which increase the complexity are

Im

allowed, provided that the number of appl~
cations of such rules is finite•

We list below some of the advantages
of our method over the Knuth-Bendix [7]
approach•

1) The method is a stepwise
refinement technique and,
at each step, the complexity
functions may be different•

2) The method allows one to
characterize both the normal
forms and the intermediate
forms.

3) A problem can be reduced to
an already solved problem.

For example, if one wants to compute
the prenex conjunctive normal form of a
first-order sentence, one can proceed as
follows:

(i) Relabel variables which
appear more than once.

(2) Push negations all the way
inward.

(3) Push quantifiers in front.
(4) Distribute over
(5) Eliminate duplicates and

order the conjuncts.

If one attempted to perform these 5
steps in a single transformation, it
would be very complicated. Also, if one
already knows how to compute the conjunc-
tive normal form for propositional logic,
after step 3, the problem is reduced to
one whose solution is known.

The complexity functions serve a
double role. They can be used as the
"control part" of the algorithm for com-
puting normal forms, and they can be used
to prove termination. Since the complex-
ity functions that suit an equation are
not unique we have flexibility in choosing
the desired normal form.

2. THE FORMALISM

We will follow the notation and def-
initions found in Huet and Oppen [6].
Given a finite signature (S, z,~), the
initial algebra T z is defined in the
usual way ([6]). Terms in ~ will be
represented in prefix form. Then, the
set T~ of terms of sort s is a determin-
istic~context free language.

Given an S-sorted set of variables V,
the free algebra over V is denoted as ~ (D
and consists of terms with variables.

A z-equation of sort s is a pair
<M,N> of terms in Tz(V)S , and will also be
denoted as M = N. K conditional equation
is an expression of the form el,e2,... ,
e n~£ , where el,e2,...,en,e are equations.

A presentation is a triple
P= • ~V,E>, where ~ is a finite signature,
V an ~-indexed set-of variables and E a
finite set of conditional equations. Sub-
stitutions and E-unification are defined
as in Huet and Oppen [6]. The concept of
complexity function was defined in Intro-
duction and will not be repeated here.

Given a complexity function h, for
an operator f such that • (f) = s I X sl 2 X..
X s_ ÷ s, we say that h is monotone in f
if ~or every i, I< i < n, and all terms
t I ~ T~I , tn ¢ T~n, the following con-
dition~holds:

(I) ~ (t~) > h Q t l) implies

(~I,-. ,Pi;""" ,tn))
> h(~ (tl,... ,ti,... ,tn))

We say that a complexity function is mono-
tone if it is monotone for every operator
in ~.

The notions of strong and weak suit-
ability were introduce--d--~t~-e-ln--~duc-
tion and are not repeated here. A com-
plexity function h strongly (weakly) suits
a set of (conditional) equations if it
strongly (weakly) suits every (conditiona~
equation in the set. Given a set of (con-
ditional) equations E and a complexity
function h which suits E (weakly or stron~
ly we define the set of rules associated
with E under h, denoted as R(E,h), or for
short R, as follows:

(2) If R= r ~ E and h strongly
suits £= r then
(i) If for all s, h((£))

> h(s(r)), then £÷r
is in R(E,h)

(ii) otherwise r ÷£ is in
R (E , h)

(3) I f £ = r ¢ E a n d h w e a k l y
s u i t s l = r t h e n b o t h
m e t a r e d u c t i o n s i h (l) > h (r))
~l+ r and (h(r) > he))---->
r÷£ are in R(E,h)

(4) If e:el ,en÷ £ = r ¢ E
and h gtrongly suits e then
(a (l l) = a (r l) A

m(Z n) = m (r .)) ~ l ÷ r
is in R(E,h) Yf h(s(£))>
h(~(r)) for all ground sub-
stitutions ~, or (~ (£i) =
~(r I) ... ~(£~=~(rn))~r ÷ £
¢ R[E,h) otherwlse. We as-
sume that the equations £i
have the form £i = ri-

(5) If e:e I ,e_->£ = r~E and
h weakly suit~ e then both
meta rules (h (£) > h(r))A>

~I~ = ~ (r~)~ ...A~(1): :(r n)
l÷ and (h~)> h(/)A ~(~)=~(ra)

. . .Am (/n) =~ {rn]=>r÷ I are in R(E,h)

We say that R(E,h) is functional if for

161

all terms t c T v and pairs of meta-rules (CI)
l- ~r. and (C~ ~ l~÷ r~ in R(E,h), if theft
e~ist~ substitutions s~ and s~ such that

= s.,(/~) and Cl~t)=(2(~)=true, then Sl(/~)
s, (~i) = ~12(f2)

The set R~E,h) is linear if for any
meta-rule (C) 1 ÷ r, every variable
occurs at most once in 1. The top-down
reduction extension~ of R(E,h) has been
defined in the Introduction.

3 . T E C H N I C A L R E S U L T S

In Lemmes 1-7, E is assumed to be a
finite set of z-equations, h is a com-
plexity function that weakly suits E, R
is the set of meta-rules associated with
E under h, and B is the top-down reduction
extension of R to T Z

Lemma 1
If h is monotone then 8 is a recur-
sive relation from ~ t o T z .

Lemma 2
If h is monotone and R is functional
then B is a recursive function from

to T E

Lemma 3
If h is monotone then for all terms
t in T , B (B(t)) = B (t).

Z

Lemma 4
If h is monotone then for all terms
t in T~ , h(t) = h(B(t)) if and only
if t i~ an atom.

Lemma 5
If h is monotone, f is an operator
of type ~(f)=s~_X s~X X s ÷sl, if

f ± z "'" . n (v I ~) and £ are not unzflable for
any variables v,,...,v (with each v. of
sort s.) and m~ta-rul~ (C) 1 ÷ r,Zthen
B(f(t~.,tn)) = f(B(tl,...,B(tn)).

~f the number of variables of each
sort is unbounded, the unification con-
dition can be r4placed by:

f(v,,...,v~) and 1 are not
unifiable ~or an n-tuple
of distinct variables

,...,Vn, each v i of sort
s i •

A set R of meta-reductions is
said to be ~ if it does not
contain conditional meta-rules
and h strongly suits E.

Lemma 6
Let R be pure and linear, h be mono-
tone and L a subset of TZ such that
8(L) is a subset of L. If L is
accepted by a (deterministic) bottom-
up finite tre automaton then B(L) is
also accepted by a (deterministic)
bottom-up finite tree automaton.

Lemma 7
If the terms of the language L in

lemma 6 are represented in prefix notation
then B(L) is accepted by a deterministic
push down automaton.

The proofs of lemmas 1-7 can be
found in Pelin and Gallier [9].

If R is not linear or contains con-
ditional equations, B(L) is not necessari-
ly deterministic or even context-free.

Lemma 8
Let h be monotone. The top-down

reduction extension B is a function with
the s-property if and only if R is local-
ly confluent.

Next, we present examples illustra-
ting the above techniques and results.

Example 1 (Stacks of natural numbers
with errors)
The set of sorts is S~nat,stack },
Z=~pop, push, top, 0, succ,A,
e,E }, and the typing funct ion is:

T (o) = ~(e) = ÷ nat
(A) = ~(E) = + stack

T (push) = stack x nat ÷ stack
(pop) = sack ÷ stack

T (top) = stack ÷ nat
T (succ) = nat ÷ nat

Variables of sort nat will be de-
noted as n k and variables of sort stack as
s.. The axioms for the data type stack of
n~tural numbers are:

9.
i0.

II.

push E n = E
push s e = E
pop E = E
pop A = E
top A = E
topE= e
pop push so = s
pop push sn = g-> pop
push s succ n = s

top push n = n
top push s n = n, top
push sm = m-->top push
s n m = m

SUCC e = e.

The symbol A stands for the empty
stack, E for the error stack, o is the na-
tural number zero, succ is the successor
function, e is the error natural number,
push is the push function, pop pops the
top of the stack and top returns the top
of the stack (without altering the stack).
Axioms 1,2,3,6 and II state that once an
error occurred any subsequent operation
will yield an error as result. Axioms 4
and 5 state that poping or retrieving the
top of the empty stack yields an error.
Axioms 7 and 8 are weaker versions of pop
push sn = which is not valid for stacks
with errors. Axioms 9 and I0 are weaker
versions of top push sn = n which holds
for s ~ E. However, s # E ->top push
sn = n is not accepted by our formalism

162

which requires that all formulas be either
equations or implications el,..,en--> e
where el,...,en,e are equations.

It can be verified that the complex-
ity function length (length of a string)
strongly suits (A). It can also be veri-
fied that the set of reductions obtained
from (A) is functional. Hence, by
Lemma 2, the top down reduction 8 is re-
cursive. In order to determine the range
of 8, Lemma 9 can be proved.

Lemma 9
For all stacks s and natural numbers
n:

8(pop push s n)~ 8(s)=-> ~n) = e
B(top push s n)~8(n)==~ ~s) = E

length (8(pop s)) < length (pop s)A
length (8(top s)) < length (top s)

Lemma l0
The range of B is a context-free
language.

Lemma ii
8has the representation property
for <L0,A> where L n is the lang-
uage generated by the context free
grammar given below:

s ÷ A I E l P u s h SN I PoP S
N ÷ e I ° I t o p S I s u c c N

Example 2 (Free commutative semi-
group with an infinite
number of generators)

The set sorts is S = { N},
Z = {g,I, + } , and the typing
function is:

T (g) = ÷ N
~(I)= N + N
T (+)= N x N ÷ N

The set L~ of terms in prefix
form in t~e initial algebra
TZ is given by the following
context-free grammar:

SI+ G I S
G ÷ gl IG
S + + SS

The set of axioms (C) is given
below:

i. + xy = + yx
2. + x + y~ = + + xy~

First, we pick

• El -- •~ + x -- y~ = ++ xy~ }. We
can check that the complexity
function hl: L~ ÷ N defined below
strongly sults ~1"

h I (g) = 1
h± (Ix) = I
h I(+ xy) = 1 + h l(x) + 2~(y)

The complexity function h I trans-
forms E 1 into the reduction

- { + x + yz + ++ xyz~ . Let 81
be theRtop_downl - reduction extension of R I.

A = 8~(A~) has the form
{81(+xY~ = ~i~:Y x) I for all ground terms
x ~nd y in

In order to eliminate the set of
axioms A2, we use reductions obtained by
forcing confluence on the set of rules ob-
tained by orienting the axioms of A from
left to right.

Since + x + yz =>++ xyz, + x + yz *~>
+ x + ~y~=~++ x~y, we use the equation
++ xyz = ++ xzy. Let us call the terms of
the form g or Ing literals. We choose
E 2 = {++ xy~ = ++ xzyl for all literals
Y'Z L } U {L: ~ ~Y: I f°r all literals
y,~ L~}. t yz :+L N be

~)(+ n + I
= 1 + 2h2(x) + h2(y).

We can show that h 2 weakly suits E 2 The
system of meta-rules obtained from h2 is
R~ = { (h~(y) > h2(~)=~ ++ xyz ÷ ++ xzy,
(~2(y) > ~(z))~>+ yz ÷ + zy }. Let 8~ be
the top-down reduction extension of R2Zto
L I. We can show that 82(8~(+xy)) =
82(81(+yx)) for all x,y c £n. Hence,
A 2 =~8~(AI) = ~. We can al~o show that
81 " B~ h~s the ~ property. Thus 8 I " 8
h~s th@ representation property for~<L0,C>.

More examples can be found in Pelin
and Gallier [9].

4. CONCLUSIONS

Complexity functions play an importa~
role in computing normal forms. Various
authors such as Book [2], Gallier and
Book [4], Huet [5], Lankford and Ballantym
[8], Knuth and Bendix [V] and others have
used complexity functions for generating
reductions. Dershowitz [3] and Plaisted
[I0] use particular complexity functions
to prove termination of rewriting systems.
In our approach, complexity functions
serve both to prove termination and gener-
ate reductions.

The definition of a complexity func-
tion as presented in this paper is very
general and it would be useful to identify
which classes of complexity functions
suit particular types of axioms. For ex-
ample, we have shown that linear functions
(functions of the form (ft t)) =
C^ + C- (t-) + + C (t J) can Be used

. . . . "'" n n . . .

fur as~oc1~tlvzty and commutatlvlty axloms.

However, the distributivity axiom
, x + yz = + * xy , xz require a quadratic
function to obtain the reduction rule
• x + y~ ÷ + * xy * x~. The following
function does the job:

163

h(* xy) = 2 h (x) h (y)
h(+ xy) = 1 + h (x) + h (y)

Also, some axioms, such as the commutativity
axiom for a groupoid with an infinite number
of generators, require complexity functions
over N k, for k > I.

Another area of research is to inves-
tigate classes of axioms for which the set
of normal forms can be characterized by
context free languages.

5. BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[s]

[6]

[7]

[8]

[9]

[10]

Birkhoff, G. and Lipson, J.D.,
Heterogeneous Algebras, Journal of
Combinatorial Theory 8 (1970), 115-
133.

Book, R., Confluent and Other Types
of True Systems, JACM 29 (1982),
171-182.

Deshowitz, N., Orderings for Term-
Rewriting Systems, Theoretical
Computer Science 17 (1982), 279-301.

Gallier, J. H. and Book, R., Re-
ductions in Tree-Rewriting Systems,
submitted for publication to
Theoretical Computer Science (1983).

Huet, G., Confluent Reductions:
Abstract Properties and Applications
to Term Rewriting Systems, JACM
27 (4) (1980).

Huet, G. and Oppen, D., Equations
and Rewrite Rules, in Formal
Languages: Perspective an---~ Open
Problems, R. V. Book Ed., Academic
Press (1980), 349-405.

Knuth, D. and Bendix, P., Simple
Word Problems in Universal Algebras,
in Computational Problems in
Abstract Algebra, Leach, J., Ed.,
Pergamon Press (1970), 263-297.

Lankford, D. S. and Ballantyne,
A. M., Decision Procedures for
Simple Equational Theories with
Permutative Reductions, Report
ATP-37, Department of Mathematics
and Computer Science, University of
Texas, Austin (1977).

Pelin, A. and Gallier, J. H., Com-
puting Normal Forms ~sing Complex-
ity Functions over N ~, in prepara-
tion.

Plaisted, D., Well-Founded Order-
ings for Proving Termination of
Systems of Rewrite Rules, Report
R-78-932, Department of Computer
Science, University of Illinois,
Urbana, IL (1978).

164

