Check for
Updates

THE DESIGN OF AN OBJECT ORIENTED ARCHITECTURE

Yutaka ISHIKAWA and Mario TOKORO

Department of E. E., Keio University
3-14-1 Hiyoshi, Yokohama 223
JAPAN

ABSTRACT

This paper proposes a new object model, called the
distributed object model, wherein the model is unified
as a protection unit, as a method of data abstraction,
and as a computational unit, so as to realize reliable,
maintainable, and secure systems. An object oriented
architecture called ZOOM is designed based on this
object model. A software simulator and cross assem-
bler for this architecture have been implemented.
The feasibility and performance of the architecture
are discussed according to program sizes and
estimated hardware size and execution speed.

1. INTRODUCTION

Object oriented computation in the broad sense is
computation described as a sequence of requests to
objects through a single access method such as mes-
sage passing. Models of object oriented computation
have been widely investigated in the field of operating
systems as a powerful mechanism for controlling
access to shared data [Linden?6, Fabry74, Wulf75,
WulfB81, JonesB0, Intel8l, Kahn81], in the field of pro-
gramming languages as a mechanism for data
abstraction and/or as a computational unit [Jones786,
Liskov79a, DODBO, Wulf76, GoldbergB3], and in the field
of artificial intelligence as a mechanism for the modu-
lar representation of knowledge [Minsky75, Bobrow76,
BobrowB2, GoldsteinB0, Hewitt?3, TheriaultB2].

The unification of these object models is required
in order to realize reliable, maintainable, and secure
systems. One of the authors has proposed one such
model for objects [Tokoro82, Tokoro83]. The model
has made clear the meaning of a name and an object
in programming languages and has proposed a way [or
managing names and objects in a non-distributed
computing environment.

As an extension of this basic model, in this paper
we propose a new object model, called the distributed
object model, for a distributed computing environ-
ment. It unifies the model both as a passive protection
unit and as an active computation unit into one gen-
eral unit. We define an object as a self-contained pro-
tected active entity. Communication between objects
is performed by means of message passing. Thus, an
object is a concurrent computation unit in a distri-
buted environment.

0194-7111/84/0000/0178$01.00©1984 IEEE

178

An object oriented architecture, called ZOOM, has
been designed based on this object model. That is to
say, this architecture has been designed to show its
superiority especially when it is used for constructing
a distributed system. A software simulator has been
implemented which runs under the VAX/Unix? system.
Several programs have been written and simulated by
this simulator. A preliminary design of its hardware
implementation has been performed in order to esti-
mate the hardware size and execution speed.

2. RECENT OBJECT MODELS
In this section we describe two object models and
discuss several important issues in extending these

object models to represent computation in distributed
systems.

2.1. The Model of Objects as Encapsulated Data

This is a model for data protection. Abstract data
type languages such as CLU [Liskov79a], ALPHARD
[Wulf76], and Ada [DODB0] can be explained well by
this model. Also, Cm*/StarOS [JonesB0] and iAPX432
{IntelB1, KahnB1] can be envisaged as computing sys-
tems that are based on this model.

In this model, an object is a protected set of data,
or, more specifically, a protected region of a memory.
A procedure can manipulate the set of data if and only
if the procedure is defined by the type definition that
characterizes the object. Thus, the object can be seen
only through the defined procedures of the type. An
object is called cobcrete when the protected set of
data is being seen. It is called abstract when only the
defined procedures are being seen. Let us call the
entity of the set of the procedures of a type class. By
using the message passing form, relations between a
class and an object in this model can be characlerized
as follows:

(1) A class is an active entity, such as a process or a
monitor. It consists of the procedures that define
the operations of that class.

() A class creates an object of that class. An object
is a protecled set of passive data.

¥ Unix is a trademark of the Bell Laboratories.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800015.808181&domain=pdf&date_stamp=1984-01-01

(3) At the request of an operation, the operation
name and object names which are the parame-
ters for the operation are sent to the class (but
not to any of the parametric objects).

Each procedure of the class can manipulate the
internal data (or own) of any object which was
created by that class. It cannot manipulate the
internal data of an object which was not created
by that class. Instead, it sends a request for an
operation to the class which created the object.

Since the main purpose of this model is to encap-
sulate data, an object is passive data. On the other
hand, a class is an active entity. That is to say, an
object is abstract data outside its class and concrete
data inside its class.

For example, let us assume that class HATRIXZ2
defines a 2-dimensional matrix (Fig. 1). The variables
a, b, and ¢ are of type MATRIX2. 1f the following state-
ment is executed,

a:=b+c;

a message add: b, ¢ is sent to class MATRIXZ (Fig. 2)*.
When class MATRIXZ2 receives this message, the
cbjects denoted by & and ¢ are converted from its
abstract form to its concrete form. The class pro-
cedure add can then manipulate them because both
objects belong to class MATRIXZ2. A new object, which
is the result of adding the matrices, is created in the
concrete form, and is then converted to the abstract
form. Finally, its name is sent back to the caller as a
result of the operation. CLU provides cvl to change
from abstract to concrete and {rom concrete to
abstract.

4

The architecture designed along this model
employs the concepts of capability-based addressing
[Dennis6B, Fabry74] and seal/unseal [Morris73]
mechanisms. The capability based addressing
mechanism provides a method for identifying an
object with an authorized operation. The seal/unseal
mechanism provides for the conversion between
abstract and concrete data.

2.2. The Model of an Object as a Computational
Entity

This model is almost the same as that of a pro-
cess which does not have shared data. An object is an
active entity such as a process. A class has a template
for creating instance objects. Each created instance
object of a class is also an active entity. Programming
languages and computation models such as Simula
[Simula67], Smalltalk [GoldbergB3], LOOPS
[BobrowB2], and the ACTOR model [Hewitt73,
Theriault82)] belong to this object model. Relations
between a class and an object in this model are
characterized as follows:

(1) A class is an active entity. A class provides the
function of creating instance objects. It also pro-
vides shared resources which are used by its
instance objects (in the case of Smalltalk).

* In the figures in this paper, an arrow indicates that the vari-
able denotes the object. A boldface arrow indicates that the ob-
ject sends a message to an instance or a class. A dotted arrow
indicates that the object is created by the class.

179

program main is

a, b, e : MATRIX2;

class MATRIX2
own [
mll, mi2,
m21, m22
]
procedure ‘add(a, b : MATRIX2)
returns MATRIX2;

is

: real;

a:=b+ec;

end main; end MATRIXZ;
2-dimensional matrix

class MATRIX2

add{b, e)

Fig. 2 An object as encapsulated data

(2) An instance object of a class is an active entity
which is characterized by that class.
(3)

At the request of an operation which is other than
creation, the operation name and object names
which are the parameters for the operation are
sent to the instance object.

Let us consider the same example in order to
compare this model with the one described above. As
shown in Fig. 3, the main program sends a message
add: ¢ to the object denoted by b. When the object
receives it, the object, in cooperation with the object
denoted by ¢, creates a new object which is the result
ol adding matrices. Then the new object name is sent
back to the caller.

In this model, an object is an active entity. There-
fore the model has the potential for concurrent com-
putation {GoldbergB83, Theriault82].

class MATRIX2

create

Fig. 3 An object as a computational entity

2.3. Issues

In order to extend these object models to
describe distributed systems, issues including the fol-
lowing have to be considered:

(1) Low parallelism

In a distributed computation environment, it is
desirable that a programmer be able to write a pro-
gram as a natural mapping of the problem to the pro-
gram and that the execution system automatically
detects the parallelism of the problem and allocates
portions of the program to its processors. In the
model of objects as encapsulated data, instance
objects cannot run concurrently, while classes can.
This is because instances are protected passive data.
In order to make an instance active for running con-
currently with another, an additional concept for con-
current computation must be introduced. For
example, Ada supports task which is dynamically
created to run concurrently with other tasks, and the
guardian constructor is introduced to manage
processes and objects in CLU [Liskov79b].

In the model of an object as a computational unit,
one object can run concurrently with another. In the
ACTOR model, a synchronization mechanism can be
constructed with a memory cell using the feature that
a receiver takes messages in the order of their arrival
[Greif75]. Yonezawa proposed specification and
verification techniques for parallel computation
[YonezawaB0]. Further discussion on synchronization
and other implementation issues will be required to
realize the architecture of this model.

(2) Low protection capability

In the model of an object as a protected data, the
only access method to an object is specified by its
type. In the model of an object as a computational
unit, the acceptance of a request is determined by the
content of the request message. In a distributed com-
putation environment, the protection of an object
should be controlled with respect to each accessing
object by using the access list method rather than the
capability list method.

(3) Other issues

Extending these models in order to describe dis-
tributed systems, we must consider the mechanism
which decides where to create an object, the mechan-
ism for inter-object communication beyond a proces-
sor, the mechanism for the migration of objects, the
mechanism for controlling an object whose class is not
on the same processor, and so forth.

3. PROPOSAL OF THE DISTRIBUTED OBJECT MODEL

In this chapter, we propose a new object model
called the distributed object model as an extension of
the basic object model [TokoroB2, TokoroB3]. This
model provides the foundation for the design of distri-
buted systems.

3.1. Objeels

Objects are active entities which are sell-
contained and can execute concurrently with one
another. Resources which are maintained by one

180

object cannot be manipulated by other objects. When
an object wants to operate on resources, the object
has to send a request to the object that maintains
those resources. Since each object consists of disjoint
(non-shared) data and the procedures to manipulate
the data, each object can run concurrently with oth-
ers.

There are three kinds of objects: metaclass,
class, and instance. The metaclass is the system
defined object and is unique to the system. The meta-
class provides for the creation of classes. Thus, a
class is an instance of the metaclass.

A class is an object which consists of its class
operations, class variables, and a template of instance
variables and operations. The class operations include
the creation of an instance. A class does not provide
variables which are directly accessed by its instance
objects. An instance is an object which consists of
instance operations and its data.

3.2. Class and Instance Operation

The set of operations defined in a class consists of
the creation of an object and the abstraction of rela-
tions between objects which belong to the class. A set
of operations defined in an instance is the abstraction
of the instance. This signifies the following: an opera-
tion which creates an instance of the class is defined
as a class operation; an operation between two or
more instances which belong to the same class can be
defined as a class operation; and an operation which
deals with one or more instances of different classes
(or the same class) can be defined as an instance
operation.

3.3. Inter-Object Communication

Communication between objects is achieved by
sending /receiving a message. A message consists of
the name of the receiver, a request, the name of a
sender, and a list of object mames as operands. A
request and a list of object names in a message
specily the request to be carried out in the receiving
object.

3.4. Classes and Instances in a Distributed System

A class may reside in one or more processors.
That is to say, the metaclass may create more than
one clone of a class as different instances of the meta-
class to run on different processors. Thus, a clone is a
class object. A trivial example of such copies of a class
is the class for integer with integer addition, subtrac-
tion, and so forth. User defined classes can also reside
in more than one processor. It may be necessary for
clones of the same class to communicate with one
another.

A class {or a clone of a class) creates instances in
its residing processor. An instance may migrate from
one processor to another. In deciding Lhe object's
migration, processor failure, load balance, and the
cost of communication are considered. The object's
migration is realized as follows:

(1) A clone of the class of an object prepares the
object in a special form, called the frozen object,
which will be sent in a message.

(2) The clone sends the message to a clone of the
class in the destination processor.

(8) The receiving clone of the class regenerates the
object from the message.

3.5. Examples

Let us assume the following. As shown in Fig. 4,
both class clones C! and C2 reside in processor P1.
Both class CI and C3 reside in processor P2. Name a
in an instance of class C2 denotes instances of class
¢! and an instance of class C3 in processor Pl
Names b, ¢ and d in an instance of class C2 denote
instance of class C! in processor P2 Assume the
instance of class C2 sends the following message to
class C1.

requestl: a, c.

Class C1 resides in both processor P!l and P2 Thus
the message may be sent to the clone in either P1 or
P2. In this case we assume that the message is sent
to the clone on processor P1. This message requests
a class operation. Thus, the instances denoted by a
and c are seen passively by the class. Since instance ¢
does not exist on processor P1, a copy of the internal
data of the instance denoted by c is sent by C? in P2
to C! in P1. The instance may even migrate to P1. In
any case, the internal data of the instances denoted
by 2 and ¢ are now visible by class C! in PI and can be
manipulated by the class operation. The new instance
which is the result of the class operation is created by
C!. The name of the new object is sent back to the
caller by a message.

Next, assume the following message is sent to
instance d in processor P2.

requeste: b.

In this case, instances b and d exist in processor P2
Thus, these instances do nat migrate. The instance
denoted by d operates using the instance denoted by
b. A new instance (denoted by e) is created as the

result of the operation. The instance denoted by d
sends name e to the caller. The instance denoted by e
can migrate, if necessary.

4. THE DESIGN OF AN OBJECT ORIENTED ARCHITEC-
TURE

A new architecture, called ZOOM, has been
designed based on the distributed object model.

4.1. Names and Objects

The relations between names and objects in the
basic object model [TokoroB2, TokoroB3] are summar-
ized as follows (see Fig. 5): A name consists of its id,
scope, property and a pointer ~which denotes an
object. Scope consists of a list of objects which are
permitted to access the name according to the
specified access methods. Scope deflnes the domain
in which the object can be seen, i.e., the access list of
the name. Property defines the property that must
always be kept by the name, i.e., the invariant pro-
perty of values denoted by the name. It includes such
things as data type and assertion. Object consists of
attribute, representation, and bit sequence. Attri-
bute asserts the set of valid operations for the object.
It thus represents the class of the object. Representa-
tion represents the interpretation method for the bit
sequences. Bit sequence holds the internal state of
the object.

The architecture follows this basic structure of
names and objects and extends it as described in the
following:

(1) For the objects of architecture pre-defined
classes, such as integer, real, and character
string, the basic structure is used. Specifically,
such an object can be contained in the pointer
part of a name if the size of the object is small
enough. In such a case, the pointer part stores
attribute, representation, and bit sequence.

OPERAND OBJECT

ATTRIBUTE

Fig. 4 The distributed object model

SCoPE REPRESENTATION
PrOPERTY BiT Seeuence
[S——

Fig. 5 The basie structure
of names and objects

ATTRIBUTE
|| om varisae
* NAE TABLE
——]
r——_|
CONTEXT
ATTRIBUTE
lass H
= clas i otass objsat PORT INFORMATION
= olass name ; instance objeot

Fig. 6 The extended structure
of objects

() For the objects other than architecture pre-
defined classes, the extended structure shown in
Fig. 6 is used. It consists of the atiribute, pointer
to own variable name table, pointer to context
chain, and pointer to port information. There is
no representation part in this structure since the
structure of these objects is unique. The attri-
bute of a class object is CLASS. The attribute of
an instance object is the identifier of its class.
Own variable name table, contexts, and port
information together, which correspond to the
bit sequence of the basic structure, compose the
execution environment of the object. Own vari-
able name table contains the own variables of the
object. Conlext contains the status of execution,
i.e., executing code segment number, instruction
address, and the local name table. Port informa-
tion contains information about the object’s com-
munication ports which will be described in detail
in section 4.3.

(3) Two kinds of names, local name and global name
are defined in this architecture. A local name is
a name which is referenced within the context. A
local name consists of the local id within the con-
text, properly, and a link to an id for global name
to share an object with other contexts or a
pointer to a locally defined object.

(4) A global name is a name which is shared among
contexts. A global name consists of an id for glo-
balname, scope, properly, and a pointer to an
object.

Fig. 7 shows the Class Template Table {CTT) in
relation with the execution environment for instance
I1 and class C! on one processor. An entry of the
Class Template Table designates the codes and local
name tables of the class and instance operations, the
class own variable name table, the templates for the
instance own variable name table, the assertions, and
the local instance pool.

4.2. Unique IDs

A global name has two identifiers. One is the
unique ID within a processor called domestic UID and
the other is the unique 1D within connected networks
called global UID. A global UID is the concatenation of
the host id on which the object resides and the domes-
tic uid of the object.

As shown in Fig. 8, all the objects, which can be
accessed by any object within a processor, have their
domestic UlD's registered in the processor's domestic
name table (DNT). Any accessible object which does
not reside in the processor has its domestic UID with
its global UID in the processor's Unique 1D Mapping
Table (UMT). Any object which is accessed by any
object beyond the processor also has its domestic UID
with its global UlD in the processor's UMT.

4.3. The Realization of Inter-Object Communication
Our design goals for inter-object communication
are as follows:

(1) Inter-object communication should be used for
both remote invocation and inter-process com-
munication.

hash

CLASS VARIABLE
T NAME TABLE
el o—\
olass CURRENT CONTEXT
11 -~ [
._./
12 r
LOCAL PREVIOUS
PORT NAME TABLE
INFORMATION CONTEXT
INSTANCE VARIABLE
NAME TABLE
el
- CURRENT CONTEXT
o, .___/
“ | ——e
é
NAME TABLE
PREVIOUS
™ CONTEXT
fas_ CT
CLASS NAVE CLASS OP, | INSTANCE 0P, | CLASS OWN v, | INST.OWN V. | INST.OBJ.POOL{ ASSERTION
| I A al L .
/ N\ INST, OBJECT POOL
e ur NAVE_TABLE
NAME TABLE
e | W
e LOCAL 4
NAE TABLE
COE LOCAL
NAE TABLE

Fig. 7 The class template table
and execution environment

(UMT) (UNT)
01 {p2| IDS Ips__|P L 104

{ONT) [0]ip)

i1
=
il 106

102
103

13

Fig. 8 Domestic and global UIDs for global names

() A peer object may be chosen dynamically at run
time rather than statically at compile time.

(3) A powerful mechanism should be provided to pro-
tect an object from illegal and malicious access.

These goals are achieved as follows: Inter-object
communication is realized by using reliable datagram,
which provides reliable message packet transport, and
virlual circuil, which provides reliable message
slream transport. Reliable datagram is used [for
remote invocation and signal {or exceplion handling.
Virtual circuit is used for delivering an ordered
sequence of messages between objects. Both of Lhese
provide blocking send/receive and nonblocking
send/receive,

An object possesses ports. From the
programmer’s viewpoint, a port is a window which pro-
vides unidirectional’ message transport between
objects. From the implementation viewpoint, a port is
a protected message bufler. An object can send a
message through one of its ports to the destination
port of the destination object, and receive a message
from a source port of a source object through one of
its ports. Each input port of an object can correspond
to a request to that object.

In addition to assigning scope to an object, we
have decided to assign scope to each port of an object.
The scope of a port consists of a list telling who is per-
mitted to communicate with that port, i.e., the access
control list of the port. More accurately speaking, the
name of an object contains the names of the ports of
the object, and each port name has its scope (Fig. 9).
The scope of a port is defined when the port is opened
(for reliable datagram) or connected (for virtual cir-
cuit) and is valid until the port is closed. Thus, access
Lo an object is managed by the object itself, not by the
accessing object. There are five methods for specify-
ing the scope: specific, instanceof, any, oneof, and
excepl. Instanceof permits communication with any
instances of the specified class. Any permits com-
munication with any object/port. Oneof permits com-
munication with one of the object/port narnes in the
list. Except permits communication with an
object/port if it is not found in the list. Providing a
scope list for each port realizes powerful access con-
trol for a port by architecture, and this reinforces the
protection of objects.

A message is created when a send instruction is
executed. A message consists of a sender object
name, sender port name, receiver object name,
receiver port name, the number of parametric
objects, and a list of the names of the parametric
objects.

4.4. The Inslruclion Sel

Three basic operations, assoc, link, and eval,
were defined for names and objects in [TokoroB82,
TokoroB3). Assoc associates an object to a name.
Link associates one name with another name. Eval
evaluates an object with one of the defined requests
and operand object names. The instructions sup-
ported by this architecture can be classified into
three categories: name instructions which correspond
to assoc and link, send/receive instructions which
correspond to eval, and other instructions. All the
instructions with necessary/possible parameters are
listed in Table 1.

RAME.

al

HAME

a2

183

O0BJECT

PoRT INFORMATION
Al, A3

al, A2

opl

or2

Fig. 9 The protection mechanism

4.4.1. Name lnstructions

The name instructions deal with the relation
between a name and object. There are ten instructions
in this category: assoe, assocg, link, linkg, unlink,
unlinkg, reggnt, equal, setscope, and reselscope
instructions. Assoc lets the ultimate local name
linked by NAMER point to the first global name pointed
to by local name NAME1. Assocg lets the ultimate glo-
bal name linked by NAMEZ2 point to the object denoted
by local name NAME1. link lets local name NAME!
peint to local name NAMER. Linkg lets the first global
name linked by local name NAME1 point to the first
global name linked by local name NAMEZ. Unlink
deletes the link from local name NAME. Thus, the
local name NAME hereafter points te no name or

Table 1 The instruction set

OPERATOR OPERAND

assoc¢ NAMEl, NAME2

assocg NAME1l, NAME2

link NAMELl, NAME2

linkg NAMEL, NAME2

unlink NAME

unlinkg NAME

reggnt NAMEl, NAME2

equal NAMEl, NAME2, BOOLEAN

setscope NAME, SCOPE

resetscope NAMEl, NAME2

openport L-PORT, SCOPELIST, MODE, PORT

closeport PORT

brdgsend PEER-PORT, PEER-OBJECT, N~ARG, ARG-LIST, PORT

brdgrec PORT, R-ARG, ARG-LIST

nbrdgsend PEER-PORT, PEER-OBJECT, ENTRY-POINT,
N-ARG, ARG-LIST, PORT

nbrdgrec PORT, ENTRY-POINT, N-ARG, ARG-LIST

connectport L-PORT, SCOPELIST, MODE, CONN

disconnectport | CONN

bvesend CONN, N-ARG, ARG-LIST

bvcrec CONN, N-ARG, ARG-LIST

nbvcsend CONN, ENTRY-POINT, N-ARG, ARG-LIST

nbvcrec CONN, ENTRY-POINT, N-ARG, ARG-LIST

notify N~ENT, PORT, PROC-NAME, ...

createinst NAME, SCOPE

freeze NAMEl, NAME2

unfreeze NAME1l, NAME2

self NAME

exit

object and becomes undefined. Unlinkg deletes the
link from the first global name linked by local name
NAME. Thus, the global name hereafter points to no
name or object and becomes undefined. Reggnt
creates a global name, lets the global name denote
the object denoted by local name NAME1, and lets the
ultimate local name linked by NAMER point to the glo-
bal name. Lqual checks whether NAME1 and NAME2
denote the same object or not. If they denote the
same object, BOOLEAN is set to true; otherwise it is
set to false. Setscope adds a scope for the name of an
accessing object to the scope of the first global name
linked by NAME. Resetscope deletes a scope for the
name of an accessing object designated by NAMEZ2
from the scope of the first global name linked by
NAME1.

4.4.2. Send/receive Instructions

There are thirteen instructions in this category.
The first six instructions are for the reliable datagram
communication. Openport opens the port designated
by L-PORT with scope SCOPELIST. A port incarnation
number is returned to PORT. The opened port can
send/receive messages to/from a peer port of a peer
object if and only if the peer port of the peer object is
included in the scope of the opened port. Closeport
closes the port designated by PORT. Brdgsend sends a
message which consists of the number of arguments
(N-ARG) and the list of arguments (ARG-LIST) from
PORT to PEER-PORT of PEER-OBJECT. The execution is
suspended until the message is received by PEER-
OBJECT. Brdgrec receives a message from PORT and
associates each of the arguments te formal parame-
ters designated by ARG-LIST. The execution is
suspended until a message arrives at PORT.
Nbrdgsend sends a message in the same manner as
brdgsend. The execution, however, proceeds, and
when the message is received by PEER-OBIECT, the
execution moves to the program designated by
ENTRY-POINT. After the end of the execution of the
program, the execution resumes. Nbrdgrec receives a
message in the same manner as brdgrec. The execu-
tion proceeds, and when a message arrives at PORT,
the execution moves to the program designated by
ENTRY-POINT. After the end of the execution of the
program, the execution resumes.

The next six instructions are for the virtual cir-
cuit communication. Two connect instructions exe-
cuted in different objects establish a connection
between their L-PORTs if and only if i) one is with
MODE send and the other with MODE receive and ii)
their SCOPELISTs contain the other's object/port.
When it is established, a connection incarnation
number is returned to CONN. While connected, these
ports communicate only with one another. Discon-
nect disconnects CONN. After a port is disconnected,
the port may be connected with another object/port.
Bvesend and bvcrec are the blocking send and receive
instructions through connection CONN. Nbvesend and
nbvcrec are the non-blocking send and receive
instructions through connection CONN.

The last instruction in this category is notify,
which is used for both the datagram and virtual cir-
cuit communications. Notify takes a list of the pairs

184

of either PORT or CONN and PROC-NAME. When a mes-
sage arrives at PORT or CONN, its corresponding
PROC-NAME is executed.

4.4.3. Other Instructions

There are five instructions in this category:
crealeinst, freeze, wunfreeze, self, and exit.
Createinsl, freeze, and unfreeze are instruclions
which are used exclusively in a class. Createinst
creates the skeleton of an instance of the class and
associates it with NAME. Freeze freezes the object
denoted by NAME1l and associates the frozen object
with NAMER. Unfreeze unfreezes the frozen object
denoted by NAME1 and associates it with NAMER. Self
makes a link from local name NAME to the global
name of the object that execute this instruction. Exit
exits from the current context.

4.5. Addressing

There are five addressing modes for each operand
of an instruction: global name (gn), local name (In),
own variable name (on), local instance pool (ip), and
immediate {im). Global name mode is used for sys-
tem defined names which are globally accessible.
Local name mode is used for accessing a local name
table of the context. Own variable name mode is used
for accessing the object's own variable name table.
Local instance pool mode is used to access literal con-
stants within the object. lmmediate mode is used to
interpret the operand as an immediate literal con-
stant.

4.6. Architecture Predefined Objects

The architecture provides the following four facil-
ities: the METACLASS, basic classes, file system and
user interface. The METACLASS generates user
defined classes. Basic classes are the integer, real,
character, string, and jogical classes. File system and
user interface is being designed for this architecture.

5. EVALUATION

This section describes the evaluation of the archi-
tecture through program execution on a software
simulator and the estimation of hardware cost and
speed using the preliminary hardware design.

5.1. The Simulator and Program Execution

A software simulator and a cross assembler for
the ZOOM architecture have been implemented, both
of which run under the VAX/Unix operating system.
The program size of the simulator is about 7000 lines,
and the program size of the ZOOM assembler is about
3000 lines in the C programming language.

Various programs have been written in the ZOOM
assembly language and simulated by the simulator.
The purpose of program execution on the simulator is
twofold. One is to check the validity and to measure
the efficiency of the ZOOM architecture. The other is
to produce application and system programs in
advance of the expected VLSI implementation of the
architecture.

As an example of the ZOOM assembly language

programs, Fig. 10 shows a part of class MA/LBOX for a
simple mail system (called the ZOOM mail system
hereafter). An instance mailbox manages mail by the
use of the list of instances of class MA/LLIST, Each
user has one instance of MA/LBOX in order to receive
mail. A mail is an instance of class MAIL and contains
a mail text. Table 2 shows the class and instance
operations of these classes and instances.

The following steps are taken to send mail from
one user to another: A user sends message CREATE to
class MAIL in order to create instance mail. The user
sends the name of the instance to the RECEIVE port of
instance mailbox of the receiving user. The receiving
user sends message TAKE Lo his/her mailboz, and the
mail at the head of maillist is returned. The receiving
user then sends message FKEAD-MAIL to mail, and the
text of mail is returned.

In order to compare the descriptivity and
efficiency of programs on the ZOOM architecture, a
similar mail system has been programmed in the C
programming language to run under Unix 4.1BSD

#
: Thas is mailbox class

MAILBOX:class
classown {
) createp, owner, answer: port

instanceown {
receivep, countp,
sendersp, takep,
mailp, mlp, mlstp,
be, bp, up, answer,
truep, falsep,

whilet, whilef: port
owner: name
head, tail, tlist: MAILLIST
meount, tcount: int
temp: MAIL
myself: self
mail: 1link MAIL

) maillist: link MAILLIST

+

1op {
zero: int = 0
one: int = 1

}

+

The following methods are class operations.

L

#

(0) initialize & main
init: cproc

loop.

openport CREATE, scope(any, anyport),
mode(receive), createplon]
notify from(createp{on]), then(create)
closeport createplon]
exit
end
#
(1) external port.
create: cproc
Int{
sender, gnam: name
sendp: pid
inst: own
}
brdgrec from(createpfon]),
mesg(sender{1n], sendp{ln], owner[on])
openport RET, scope(specific, sender{ln],
sendp[1n]), mode(send), answer(on]
createinst inst(1n)
assoc zero[ip), inst.moount(1n]
reggnt inst(1n)
brdgsend to(sendp[1n]), in(sender[1ln]),
mesg(gnam{1n]), from{answer[on])
closeport answer[on]

exit
end

Fig. 10 Programs for a simple mail system

185

Table 2 Class and instance operations

MAILBOX MAILLIST MAIL
class CREATE CREATE CREATE
operation
instance RECEIVE! SET_SUC! READ_MAIL?
operation COUNT? SET_PRE! SUBJECT?
SENDERS? DELETE! SENDER?
TAKE? NEXT?
GET_MAIL?

(called the C mail system hereafter). The C mail sys-
tem is composed of two programs, MAILBOX and MAIL.
A mail text exists as a file. Each user has one spool
directory to hold their mail texts. The MA/L program
receives mail from a user and places it in a file under
the receiver's spool directory. The MA/LBEOX program
manages files under the receiver's spool directory.
The C mail system does not support the protection or
the mail delivery beyond a processor supported by the
ZOOM mail system.

Table 3 and 4 show the usage frequency of
instructions and program sizes for the ZOOM mail sys-
tem, respectively. Table 5 and 6 show those for the C
mail system. The number of source lines of the ZOOM
mail system is almost the same as that of the C mail
system. The object program size of the ZOOM mail
system is twice as large as that of the C mail system.
The size of the executable program of the C mail sys-
tem, however, is eight times larger than that of the
ZOOM mail system. This is because the executable
program of the C mail system includes various library
programs. Such library programs correspond to the
metaclass and system defined objects of the ZOOM
architecture. In the Z00OM mail system, only the func-
tion of instance creation provided by the metaclass is
used. In addition, the C mail system would have been
much larger if it had supported protection and mail
delivery functions similar to the ZOOM mail system.
Thus,. the object program size of the ZOOM mail sys-
tem is considered reasonably small.

In previous programming languages and systems,
an executable program is stored in a file and is copied
into the main memory to be executed. When the exe-
cution terminates, the program is removed from the
main memory. When they want to preserve the inter-
nal state of the execution afterward, the program
must explicitly be written to create a file and store
the internal state in the file, and the file name or the
directory name of the files must be predefined for the
programs which use that internal state. Mereover, in
cases where multiple programs exchange data asyn-
chronously, when programs are executing con-
currently they communicate with each other by using
inter-process communication primitives; otherwise
they communicate through files. Thus, the program-
mer pays most attention to describing data exchange
among programs and protection rather than describ-
ing the functions of the objective system.

On the other hand, in object oriented systems,
once objects are created, they remain extant. They
accept requests and respond in terms of messages.
The information preserved in an object cannot be
accessed directly. Thus, the method for communica-
tion among objects is unique and does not vary

according to the state of the receiving object. Thus,
the distinction between an object and the objects that

Table 5 Usage frequency of the
instruction set for the C mail

use the object becomes clear. Therefore, the pro- OPERATION MAILEOR MALL
grammer can concentrate on describing the functions 5
of the objective system and the described programs ‘1:.113 i 0
become easy to maintain. sub12 1 0
subl3 24 6
tstb 6]
Table 3 Usage frequency of the instruction set tstl 7 1
for the ZOOM mail cmpl 4 ¢
g movl 4 1
MAILBOX MAILLIST MAIL movab 2 1
class instance class instance class instance pushl 74 24
ib 23 3
openport 2 26 2 8 7 9 geél 14 1
closeport 2 26 2 8 7 9 jneq 4 0
brdgsend 1 28 1 4 11 4 calls 38 17
brdgrec 1 24 1 5 8 5 ret 4 1
notify 1 6 1 1 3 1 cvtbl 1 0
createinst 1 0 1 0 1 0
assoc 1 4 2 2 3 0 tot 208 55
reggnt 1 0 1 0 1 0 otal
exit 2 15 2 6 4 6
Table 6 Sizes of the programs for the C mail
total 12 129 13 34 45 34 (Byte)
MAILBOX MAIL
Table 4§ Sizes of the objects for the ZOOM mail” - (Byte) relocatable text 920 300
code data 384 3152
MAILBOX MAILLIST MAIL bss 0 0
class instance class instance class instance total 1304 452
object code 70 962 61 228 316 230 executable text 6144 5120
code data 1024 1024
own variable bss 1908 1564
name table 24 200 8 80 88 48 total 9076 7708
total of local
name tables 32 80 48 72 56 72 Table 7 Memory cycles
local instance for some instructions
pool 12 0 97
INSTRUCTION MEMORY CYCLES
total size 1380 497 907 send 18
receive 16
openport 11
. L. i closeport 8
5.2. The Preliminary Hardware Design reggnt 5
. . . link 4
The following assumptions are made in the prel- assoc 4
iminary hardware design for the ZOOM architecture: add 6

(1) the size of the unique id’s are 48 bits;
(2) the width of the memories and busses is 32 bits;

(3) there are three interleaved memories: the
instruction memory, global name table memory,
and object memory;

there is no cache mechanism in this design;

input/output, memory management, and floating
point arithmetic functions are excluded in this
design; and

there is no consideration of the load factors on
the gates.

(4)
(5)

(6)

The result of the preliminary hardware design
shows that the architecture requires about 6000 ran-
dom logic gates, 30 registers (about 1500 bits total),
and ROMs for microprograms which have not, at the
moment of this writing, been estimated. Although
such estimated hardware sizes may largely change
with progress in the stages of the development, we
consider the sizes shown to be well within state of the
art of VL3I technology which can be implemented on a
chip.

Table 7 shows the required memory cycles for
some instructions. The memory cycles for
send, receive, and open vary according to the number
of arguments and the content of scope definition.
Assoc requires memory cycles for executing an asser-

186

tion procedure if one is specified. The memory cycles
shown in the table are those when send and receive
have three arguments, open has a scope with one
entry, and assoc. associates an object to a name
without an assertion. Add is one of the architecture
provided integer class operation. One context change
requires 18 memory cycles.

The result of the estimated execution speeds of
the instructions suggests that this architecture exe-
cutes programs very fast. For example, when we
assume that one memory cycle is 500 nsec, send and
receive instructions take less than 10 usec. One con-
text change takes just B usec. By introducing caches
and optimizing hardware especially for architecture
provided operations, we expect this architecture to
execute programs much faster.

This architecture can compose a distributed sys;
tem as a natural extension and the same programs
can run in the distributed systermn. In such a distri-
buted environment, the advantages of this architec-
ture are more than just faster execution speed.

6. CONCLUSION

In this paper, we proposed a new object model,
called the distributed object model, that is suitable
for distributed computing. In this object model, an
object is active and self-contained.

We then designed a new object oriented architec-
ture called ZOOM based on this model. In the ZOOM
architecture, scope provides a powerful protection
mechanism which is more reliable and versatile than
the capability-based mechanism. Inter-object com-
munication and object migration mechanisms provide
efficient and versatile functions for the realization of
distributed systems.

We have implemented a software simulator and-a
cross assembler for this architecture. The results of
evaluating the architecture through writing and exe-
cuting ZOOM programs on the simulator and the prel-
iminary hardware design show the feasibility of the
architecture and the high potential for being one
pramising candidate for the next generation comput-
ing systems.

Thorough evaluation of the architecture is being
performed to improve the architecture. The develop-
ment of various application and system programs are
also being performed by using the simulator. The
detailed hardware design for the VLSI implementation
of this architecture will commence sometime this
year.

The design of an object oriented language called
ORIENT is also being carried out. This language will be
used to implement the operating system, program-
ming environment, and various application systems
which run on this architecture.

ACKNOWLEDGEMENT

The authors are grateful to the members of the
Object Oriented Programming/Processing Systems
(OOPS!) project for their valuable comments. This
research has been supported in part by the Ministry of
Education, Science, and Culture under Grant-in-Aid
for Scientific Research No. 57550222.

REFERENCES

[Bobrow 78] Bobrow, D.G. and Winograd, T., "An Over-
view of KRL, a Knowledge Representation
Language,” CSL-76-4, Xerox PARC, July 1976.

[Bobrow 82] Bobrow, D.G., "The LOOPS Manual," Palo
éltci SRel%%aérch Center Xerox PARC, KB-VLSI-
1-13,

[Dennis 66] Dennis, J.B. and Van Horn, E.C., "Program-
ming Semantics for Multi-programmed Com-
[fgégtions." Comm. ACM, Vol. 9, No. 3, March

{DOD B80] "Reference Manual for the Ada Pro%ramrpingt
ment o

Language,” United States Depar
Defense, 1980.
{Fabry 742:Fabry. R.S., "Capability-Based Addressing,”
ommunications of ACM, Vol. 19, No. 7, 1974,
[Goldberg 83] Goldberg, A. and Robson, D., "Smalltalk-
80: The Language and its Implementation,”
Addison wesley, 1983.
[Goldstein 80] Goldstein, LP. and Bobrow, D.G.,
"Extending Object Oriented Programming in

Smalltalk,” Proc. of the Lisp conference,
Stanford, Ca, August, 1980.

187

[Greif 75] Greif, 1., Hewitt, C., "Actor Semantics of
PLANNER-73,”” Proc. ACM SIGPLAN-SIGACT
Conf. Palo Alto, CA,, 1975.

[Hewitt 73] Hewitt, C., et al., "A Universal Modular
Actor Formalism for Artificial Intelligence,"
Proc. of 1JCAI, pp. 235-245, 1973.

[Intel B81]"Intel iAPX432 General Data Processor Archi-
tecture Reference Mannual,” Intel, Aloha,
Oregon, 1981.

[Jones 76] Jones, A., et al.,, "A Language Extension for
ontroling Access to ared Data,” IEEE
Trans. on Soflware Eng., Vol. SE-2, No. 4, pp.

277-285, Dec. 1976.

[Jones 80] Jones, A., et al., "The Cm* Multiprocessor

Projecl: A research Review,” CMU-CS-80-131,
Degartment of Computer Science, CMU, July,
190.

[Kahn B81] Kahn, K.C., et al., "iMAX: A Multiprocessor
OperaLin; System for an Object-Based Com-
puter,” Proc. of the Eighth ym{x on Princi-
ples of Operating Systems, Dec. 1981.

[Linden 76] Linden, T.A., "Operating System Struc-
tures to Support Security "and Reliable
Software," omputing Surveys B(4),
December, 1976.

[Liskov 79a] Liskov, B., et al., "CLU Reference Manual,"
TR-225, Laboratory for Computer Science,
MIT, Oct. 1979.

[Liskov 79b] Liskov, B., "Primitives for Distributed
Computing,” Proc. of the 7th Symp. on
Operating Systems Principes, pp. 33-42, 1979

[Minskey 75] Minsky, M., "A framework for represent-

ing knowledge.,” In P. Winston(Ed.), The

sychology of computer vision. NEW York,
cGraw-Hill, 1973.

[Morris 73] Morris Jr.J.H.,, "Protection in Program-
min% Languages,” Comm. of the ACM, Vol. 16,
No. 1, pp. 15-21, 1973.

[Simula 67]'The SIMULA 87 Common Base Languages''
Publication S-22, Norwegian Computing
Center, Oslo, 1970.

[Theriault 82] Theriault, D., "A Primer for the Act-1
Language,” A.I. Memo No.672, April, 1982.

[Tokoro 82] Tokoro, M and Takizuka, T., "On the

Semantic Structure of Information --- A Pro-

osal of the Abstract Storage Architecture,”

roc. of the Sth Int'l Symp. on Computer
Architecture, pp. 211-217, April 1982.

[Tokoro B3] Tokoro, M., "Toward the Design and Imple-
mentation of Object Oriented Architecture,"”
RIMS Symp. on Software Science and Eng. in
the series of Lecture Notes in Computer Sci-
ence, No. 147, Springer-Verlag, 1983.

[Wulf 75] Wulf, WA., et al., "Overview of the Hydra
Operating System."” Proc. of the 5th Sympo-
sium on Operating System Principles, pp.
122-131, Nov. 1975.

(Wulf 76] Wulf, W., et al., "An Introduction to the Con-
struction and Verification of Alphard Pro-
rams,” IEEE Trans. on Software Eng., Vol.

E-2, No.4, pp. 253-265, 1976,

[Wulf 81] Wulf, W.A., Levin, R., and Harbison, S.P,
"HYDRA/C.mmp: An Experimental Computer
System," McGraw-Hill, New York, 1981

[Yonezawa B0] Yonezawa, A., "“Speciffying Software
Systems with High Internal Concurrenc
Based on Actor Formalism,” Journal of Inf.
Proc., Vol.2, No. 4, 1980.

