
D A T A B R O A D C A S T I N G IN L I N E A R L Y
S C H E D U L E D A R R A Y P R O C E S S O R S *

J. A. B. Fortes** and D. I. Moldovan
Dept. of Electrical Engineering-Systems

University of Southern California
Los Angeles, CA 90089

A B S T R A C T

A major problem in executing algorithms in array
processors is the implementation of broadcasts without
unnecessary speed-up factor degradation. We discuss
when and how broadcasts can be eliminated or reduced
to easily implementable sequences of reduced local
broadcasts. Algorithms are modelled as a structured set
of indexed computations which operate on variables
associated with a referencing or indexing function. The
discussion is restricted to variables with linear indexing
functions and to algorithms linearly scheduled for execu-
tion in array processors..Linear indexing functions are
represented as affine matricial functions of the index set
of the algorithm. The linear part of such representation
is a coefficient matrix denoted the indexing matrix.
Linear schedules are defined as linear time-space alloca-
tion functions mapping the computations of an algo-
rithm into time and processors. We discuss necessary
and sufficient conditions for the occurrence of broadcasts
in a linearly scheduled algorithm. Necessary and
sufficient conditions and constructive criteria are given
for selecting linear schedules for which all broadcasts are
eliminated or reduced to sequences of small local broad-
casts.

1. I n t r o d u c t i o n

Several parallel computers have been designed and
built around the concept of array architecture. Exam-
ples include the early ILLIAC IV computer [1], Mas-
sively Parallel Processor (MPP) [2], systolic arrays [9],
the Wavefront Array Processor (WAP [10], the
Configurable Highly Parallel (CHiP) computer [17], and
many others. In array architectures every processor is
directly connected to a small subset of the processors
and the interconnection pattern is often the same for all
processors. This restrictive interconnection structure
may not be able to support fast communication of data
from one to many processors. Such type of data com-
munication is called a broadcast and is necessary when
several processors need the same data in order to
proceed with their scheduled computations. If broad-
casts cannot be made, computations must be
rescheduled, thus slowed down if correct results are to
be obtained. For this and other reasons (e.g., parallel-
ism exploitation, data routing, etc.), scheduling and allo-
cation of computations to array processors is a difficult
problem. Linear schedules (to be defined soon) can be
and have been used successfully for many algorithms
executed on array processors. Examples include the
* This research was supported by NSF Grant ECS-8307258 and
JSEP Contract No. F49620-81-C0070.
** J. A. B. Fortes is presently with the Department of Electrical
Engineering, Purdue University

solution of PDE's on the ILLIAC IV [11], most algo-
rithms executed in VLSI arrays, on the WAP, on the
CHiP [3,9,10,13,14,17], and others (see, for example, [8]}.

The problem of broadcasting variables in array pro-
cessors has received considerable attention in the past.
In some cases (most SIMD arrays) a central control unit
has the capability to broadcast a single variable to all
processors in the array (see, for example, [6]). However,
the control unit becomes a serious bottleneck if many
broadcasts have to be implemented at a given step of
the algorithm. Skewed storage schemes and associative
memories [61 have been proposed to reduce the need for
broadcasts. In general, these schemes cannot eliminate
the need for all broadcasts and are dependent on the
algorithm being executed. Memory redundancy can also
be used to avoid broadcasts. Examples include renam-
ing and expansion of scalar variables used in optimizing
compilers [6l. In [161 the interconnection network of the
array processor is used to simulate a multi-stage net-
work in which any broadcast can be implemented. The
main disadvantage of this approach is that such simula-
tion may be highly time consuming in algorithms requir-
ing a moderate number of broadcasts. A more appealing
solution has been proposed in [8]. In this reference,
some algorithms are scheduled so that broadcasts over-
lap by pipelining variables through the array intercon-
nection network. However, no general procedure was
given for arbitrary algorithms. Our approach is based
on the same idea. However, the techniques for broad-
cast presented in this paper can be applied to a large
class of algorithms. Also, designers of VLSI architec-
tures have long recognized the need for algorithm
reseheduling in order to avoid broadcasts [12]. Any sys-
tematic procedure for designing VLSI algorithms must
be able to obtain broadcast free or broadcast reduced
schedules. Our results apply directly to the VLSI design
techniques proposed in [3,4,13-15].

This paper discusses how and whether data broad-
casts in an array processor with a given interconnection
structure can either be eliminated or reduced by choos-
ing an adequate linear schedule. In Section II we
describe the models used to represent algorithms and
array processors throughout the paper. Next, we define
linear schedule as a time-space allocation of computa-
tions described by a linear function. Often, the need for
broadcasts can be detected from the manner in which
variables are referenced in the algorithm. Also, in Sec-
tion II, we describe the variable referencing mechanism
considered in this paper. Section 111 starts by stating
sufficient and necessary conditions for the occurrence of
broadcasts in the execution of an algorithm. Theorem
3.1 gives necessary and sufficient conditions for the
existence of time schedules that avoid broadcasts.
Theorem 3.2 gives the conditions that a space schedule

0194-7111/84/0000/0224501.00© 1984 IEEE
224

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800015.808186&domain=pdf&date_stamp=1984-01-01

must satisfy to support the broadcast elimination pro-
vided by a given time schedule. Section IV considers the
problem of implementing broadcasts in architectures
with limited broadcasting capabilities. Theorem 4.1
gives sufficient conditions for the existence of time
schedules that allow the implementation of a broadcast
as a sequence of reduced broadcasts. Theorem 4.2 gives
the conditions that a space schedule must satisfy in
order to support a sequence of small broadcasts. Section
V contains some conclusions and points out possible
extensions to this research.

H. M O D E L L I N G A L G O R I T H M S , A R R A Y P R O -
C E S S O R S , L I N E A R S C H E D U L E S , A N D V A R I -
A B L E R E F E R E N C E S

We see an algorithm as a structured set of compu-
tations which operate on input variables and/or vari-
ables generated by other operations and produce a set of
output variables. In order to represent an algorithm, we
use a simplified version of the algorithm model intro-
duced in [3]. The simplified concepts introduced next
are good enough for the purposes of this paper and no
previous knowledge of [3] is assumed.

Definition 2.I
An algorithm is a 5-tuple A = (jn, C, D, X ,Y)

where

jn is the index set of A,] n c z n *
C is the set of computations (indexed by jn)
D is the set of dependencies
X is the set of input variables
Y is the set of output variables

In this definition, by dependency we mean a vector
difference between the index of a computation where a
variable is used and the index of the computation where
that variable is generated. The set of output variables is
a subset of the union of the set of generated variables
and the set of input variables. To every variable it is
_associated an indexing function, i.e., a fu_nction
F:J n --* Z m such that if the variable has index F (j) then
t_his variable is involved in the computation indexed by
j. In this paper we assume that all variables have linear
indexing functions, i.e., functions that satisfy the follow-
ing definition.

Definition 2.~
A variable indexing function ~:jn _. Z m is a linear

indexing function if and only if

1V(j -) = G 0 -I- C j (2.1)

where
T 0 ~ Z (re×l) is the index displacement
C ~ Z (re×n) is the indexing matrix.

Example g.1
The variable a (Jl - J2, J2 -b J3 - 1, J3 - Jl) has a

linear indexing function where

C = To =
0

End of example.

• The symbols Z, I, I + denote the sets of integers, nonnegative in-
tegers and positive integers, respectively. Given a set S, S n
denotes the nth cartesian power of S.

The next definition introduces a simple model for
array processors.

Definition 2.3
An array processor is a tuple (Lm,p) where

(i) L m is the index set of the array processor,
L m c z m

(ii) P is the matrix of intereonnection primitives
P - [Pl Pr] e zm×r, where rEI is the number of
interconnection primitives

In this definition of array processor, every point ~ in L m
represents an element of the array. We assume that all
processors are identical and that the interconnections are
regular and uniform. The matrix of interconnection

primitives P is such that, if ~EP then ~EL m is connected
to ~ - - ~ + ~ if ~ E L m and ~ is connected to an

input /output port if ~l ~L m.

Example 2. 2
Consider the N x N array configuration as shown in

Figure 2.1 (for N--4), which is used in WAP [10] and
other array processors. The structure of these arrays
can be described by (L2,p) where

L 2 = {(91, 92): 0 _< 91, 92 _< N-1 }

and
, 10 o 01

End of Example.
In this paper, a schedule is a time-space allocation

function T:J~. --* J~ where J~, is the n-dimensional index
set of the original algorithm A and J~ is the index set of
a transformed algorithm B that is input-output
equivalent to A. In this paper we assume that the origi-
nal algorithm is such that J ~ C I n. For more details on
equivalence preserving algorithm transformations the
reader is referred to [3,4]. In J~, n - r coordinates are
associated with time and r coordinates are associated
with space. In this paper we assume that the first coor-
dinate j]~ is associated with time (i.e., r = n - 1) and that

Figure 2.1. Interconnection structure of the ar-
ray processor of example 2.2 (N=4)

225

the remaining coordinates map Via the identity function
into the index set of the array processor. If the array
processor is small then the algorithm can be partitioned
and the identity mapping can be used for every partition
~?'TnThen a schedule consists of a tim~schedule

]~A "-* S~ and a space schedule S : J~ --~ The
dimensionality of the index set of the array processor
equals the dimensionality of index set of the algorithm
minus one.

Definition 2.4
A linear schedule T : J~ ~ J~ is such that T is a

linear bijeetion function, i.e.,

T = [~] ~re Z (Ixn), S~ Z ((n-1)xn)

and T is nonsingular.
The above definition could be generalized to include

schedules described by unions of integer affine functions;
however, in this paper we restrict our discussion only to
linear schedules. If a linear schedule is used for
executing an algorithm in an array processor then we
say that the array is linearly scheduled.

m . O N T H E E L I M I N A T I O N O F B R O A D -
C A S T S

During the execution of an algorithm a variable
needs to be broadcasted if and only if the following con-
ditions are both satisfied:
(1) at least two computations use the variable and
(2) such computations are scheduled for execution at

the same instant of time

Notice that the first condition is independent of the
ordering of computations while the second depends on
the time schedule. We start by discussing how the first
condition can be checked. Clearly, a variable with
indexing function 1V is used by computations indexed by
j ' and j " if and only if

F(j') : F (j ") (3.1)

i.e.
F(r) = 0 (3.2)

where r - j l _ j l t . From (2.1), condition (3.2) can be
rewritten as

CP ---- 0 (3.3)

From elementary facts of linear algebra we can conclude
the following:

Lemma 3.1
A variable with indexing matrix C is used in more

than one computation if and only if rank(C) < n, where
n is the dimensionality of the algorithm index set.

In general, we can rewrite C (assuming
rank(C)-k, 1 < k < n) as

[|

C I - ICIIc2 - R r C
h d

where
R r - is a row rearranging matrix, i.e., an (m×m)
matrix such that its (i,j)th entry is a "1" if row j in

I ¢¢0" C becomes row i in C and is a otherwise.

C 1 - is a (kxn) matrix such that its columns can
always be rearranged to obtain a matrix

C I' = [B N] = C I R c

where
B - a nonsingular (kxk) matrix
N - a (kx(n-k)) matrix (for n -k > O)
R c is a column rearranging matrix, i.e., an
(nxn) matrix such that its (i,j)th entry is a
"1" if column i in C l becomes column j in CI I
and is a "0" otherwise.

C 2 - is a ((m-k)xn) matrix {for m-k > 0)

Hence, we have

C2 (3.3a)

and we will assume hereon that for any C we know Rr,
B, N, R c and C 2. Now consider the following equation

C! F - 0 (3.4)

Clearly, (3.3) and (3.4) have the same set of solutions.
Also, (3.4) can be rewritten as

C, Re R w P = 0 (3.5)

or, letting R_ w r = r S I and using the definition of C' 1
Cl IF ' = 0 (3.6)

i.e.,
[B N] [rB' rN' iT - - 0 (3.7)

The solution to (3.7) satisfies the relation
PB' = - B - I N rN'

or, equivalently
[1

Finally, from (3.5) and (3.8) we obtain the following
relation that all solutions of (3.3) must satisfy

[

= Rc FB' = I-Bi 1N r N ' (3.g)

At this point we can discuss how the second condition
for the necessity of a broadcast can be tested. Recalling
the definition of linear time schedule, broadcasting is
required for a linear schedule r 0 if and only if there are
at least two distinct computations wit_h indices y , j " ,
such that ~3.3) is satisfied and ~r0j' = ~roj" , i.e.,

r = -P') = o (3.1o)

The solutions to (3.3) are given by (3.9). Replacing P in
(3.10) by the right-hand side of (3.9) yields

Iv] ~r0Rc FN' = 0 (3.11)

The next lemma relates the existence of nontrivial solu-
tions of (3.11) to the need for broadcasting a variable.
The proof follows easily from the considerations made so
far and it is omitted.

Lemma Z
Consider an algorithm with a set of variables with a

(mxn) indexing matrix C as in (3.3a) and
1 _< rank(C)=k < n. Broadcasting is required during the
execution of the algorithm if and only if there is at least
one nontrivial solution FN ~ to the equation

226

I i] [000] - 1 2 0 B ~N
~oR~ B ~N r N' = 0 (3.12) B-I 2 1 R c

where r N' is a ((n-k)xl) vector and lr o is the linear time
schedule used to execute the algorithm.

The next theorem shows that there is a large class
of indexing functions for which data broadcasts can
never be avoided no matter what linear time schedule is
used (besides strictly sequential execution). For index-
ing functions outside such class, a simple test is provided
to decide if a given linear time schedule requires data
broadcasts.

If l r = [tlt2t3t4] and t I -t-t 2 - 0 broadcasting is
required. To illustrate this fact, let lr I = [01 11],
lr 2 = [- 1 1 0 0] and consider the variable a (-1, 1, 1, 1)
used at p - (2 3 1 1) t and p i - - (4 5 1 1). N_o broa_d-
casting is required for ~rÁ because it schedules j' and j,~
for distinct instants of time (i.e.,
lrl(j I) - 5 ~ lq(j") = 7). Broadcasting is required for Ir 2
because 7r2(j '):~'2(j r') : +1.

Theorem 3.1
For an algorithm with an arbitrarily large index set

and a set of variables with an (mxn) indexing matrix C
as in (3.3a),

(i) there exist linear time schedules for which no
broadcasts are necessary if and only if
n- 1 <_ rank(C) < n

(ii) if rank(C)= n-1 then a time schedule 7r 0
requires broadcasting if and only if

%R c [-B;IN} = 0 (3.13)

Proof
We start by proving (ii). Clearly, if (3.13) is

satisfied, (3.12) has non trivial solutions and, from
lemma 2, broadcasts are required. Conversely, if some
variable needs to be broadcasted, there are nontrivial

solutions to (3.12). Noticing that %R c I N is a

scalar (for r a n k (C) = n - l) it follows that (3.13) must
also be satisfied. To prove (i), from lemma 1 and from
(ii), if n-1 _< rank(C) < n there exist schedules for which
broadcasts are not required. To prove the "only if '
part, let

and rewrite (3.12) as ~r FN' = 0. Noticing that Z is a
((n-k)xl) vector it follows that there are always non-
trivial solutions to (3.12) whenever rank(C) = k < n-1.
Hence, broadcasts will always be necessary, ind'epen-
dently of the time schedule % used. Q.E.D.

Ezample 3.1
Let n - 4 and consider the variables

a (j l- j2, j2-Jl , J3, 2*j4-J3).
We have

Io1
-1 o ol
1 0 0 | =

C = 0 I0 l
0 -I 2J

II llx°°ll 1 0 0 -1 0 0 1 0
looo11 o 1 o o OOOl NIRT]

= |1OOOl 0 - 1 2 0 1 0 0 0 [B
|010 0| --- = RT
LOOlO, L "7":1o"0 j c2]

rank(C) = 3 = n-1

Ezample 3.~
Let n=4 and consider the variables a (Jl, J2,J3,J4),

b (Jl-J2 -t-J3, 2*j2-Jl ÷ 1, Js, 2*j4-J3} and
c (j l - J2 , J2 -J l +J4, J2+Ja+J4 , 2*J4-J3). The rank of
the indexing function of each variable is n. Hence, for
any linear time schedule, no broadcasting is required.

Ezample 3.3
Let n=4 and consider the variables a (Jl), b (Jl-J2,

J2-Jl), c (Jl-J2,J2-Jl , 2*ja-J4, J4-2*js): These vari-
ables have indexing functions with rank less than n-1.
For any linear time schedule broadcasts will be required.

The meaning of part (ii) of theorem 3.1 can be
explained as follows: if rank(C)--n-1 then there is a
schedule % such that a single copy of each variable is
needed for the execution of the algorithm; in other
words, the time schedule allows the propagation of each.
variable to the processors which execute the computa-
tions using that variable. Clearly, this is possible only i f
the space schedule S is such that the available processor
interconnections support such data communication. For
this reason, we proceed to discuss what conditions mus_t
be sa_tisfied by S in order to avoid broadcasts. Let j,
and j " denote two points where computations use the
same variable. The interval of time between such com-
putations is

r =] ~ l _] ~ t) [= I fr~] (3.14)

Hence, S must be such that
SF = P W (3.15)

where W is an (rxl) vector with non-negative entries
F

Wi, i -- 1,2 r and 0< ~ W i< r and r is the number
i=l

of columns of P.

Equation (3.15) means that the propagation of the
variable from the processor executing the first computa-
tion to the processor executing the second computation
can be made in an interval of time less than or equal to
r thru a path resulting from composing the interconnec-
tion primitives of the array processor. We assume that
a single computation and propagation of a result over a
single interconnection primitive takes one unit of time.
From (3.9), theorem 3.1 and (3.14) it follows that the
minimum (scalar) value of r is

where L is the smallest positive integer that makes

L R c I an integer vector.

The next theorem gives the necessary conditions
that a space schedule S must satisfy so that, for a given

227

It, broadcasts are not required and the array intercon°
nections support the necessary data communication.

Theorem 3.2
Consider an array processor (L"-I,P}, P ~ Z (("-l)×r)

and an algorithm with index set jn and a set of variables
with indexing matrix C as in (3.3a) and rank(C) = n-1.
Let ~r denote a time schedule such that Ymin ~ 0, where
rmi . is as in (3.16). Let S denote a space schedule such

r 1

that T = 1~] is nonsingular and

r

where W E I {rxl) and 0 < ~ W i <~ Tmin (3.18)
i=1

The execution of the algorithm on the array linearly
scheduled by T does not require broadcasts.

Proof
Theorem 3.1 proves that if rmi n # 0 then no broad-

casts are required. The discussion preceding this
theorem shows that if (3.17) holds then the necessary
data communication can be done using the interconnec-
tion primitives of the array. It remains to show that
such communication takes less time than the interval of
time between any two consecutive usage of the same
variable. This interval of time is at least rmi n and if
(3.18) holds for rmh then it will also hold for longer
intervals. From the assumption that one interconnec-
tion primitive can be used in one unit of time if follows
that data communication can be done. Q.E.D.

Example 3.~
Let n=3, assume that P is as in example 2.2, and

consider the variables a (Jl + 2'j2 + Js, 3*jl + J2 + 2*j3,
2*j l -J2+J3)- We have

C = - = , rank(C) =2 =n-I

IC, J

21] l H B -1 = ~- , ~rL i =

Let L = 5, Ir = [1 0 0]. Then S [- 3 - 1 5] r

- 10 _ 0] , w - t , o000],
is nonsingallar. Notice that other solutions for S T

may ~xlst. For illustration l~urposes consider a(6, 12, 6)
used at]~ = (3 1 1) x and j " = (0 0 6) r. Communi-
cation between processor S ~l = (-1 6) x and
S ~-i i = l0 6)T can be done in less than
~r~ - ~ - 7"mi n -" 3 units of time by using primitive
(1 0) 1.

4, On R e duc ing L a r g e B r o a d c a s t s t o S m a l l
B r o a d c a s t s

In an array architecture, every processor can broad-
cast a variable to all processors directly connected to it.
In this section we discuss how linear schedules can
explore this limited broadcasting capability to imple-
ment large broadcasts. We show that if there is an
unique solution to a linear program involving the index

set of the algorithm and there is a certain relation
between the rank of the matrix of interconnection primi-
tives, the rank of the indexing matrix of the variable to
be broadcasted and the dimensionality of the array then
there is a class of linear schedules for which broadcasting
is possible.

Before deriving this result in a formal manner, we
proceed to discuss informally what conditions must be
checked for. First, the linear time schedule must b e
such that the first use of any given variable during the
execution of the algorithm must occur for a single com-
putation. In other words, in this section we preclude the
possibility of inputing several copies of the same vari-
able. This would correspond to a change in the rank of
the indexing matrix in the sense that additional index-
ing information would be required in order to distinguish
such copies. It also means that the original variable can
only be replicated locally by each processor at a rate
that depends on the interconnections available. Then,
the second condition that we must check is that the rate
of increase in the number of computations using the
same variable is not larger than the rate at which the
array is able to replicate that variable. Finally the third
and last condition is that t h e space schedule must be
such that communication can take place using the inter-
connection primitives of the array in the interval of time
separating consecutive usages of the variable.

In order to discuss the first condition mentioned
above, we recall (from (3.10) and (3.11)) that if the same
variable is used at the same time by computations with
indices ~o and j* then"

Irr = ~0_~-.) = IrRe r'N = 0 14.1)

where
= RTI: -0 -*~ _ r ' N ¢ UN--JNI ~N --JN'

We want to select Ir such that there exists a point
~o that is the index of the unique computation where the
variable is used for the first time during the execution of
the algorithm. This is equivalent to saying that, for a
given algorithm with index set J~, for a linear time
schedule rr and for an indexing matrix C, we have

Condition ~.1
there exists an unique point ~ e ,l n such that

or, equivalently, i_ i 1
IrVjN ~ =min{~rV~'N~:Vj~J n} where V =R e B IN

Now, we discuss the second condition, i.e., the
number of computations using a variable does not grow
faster than the number of copies of that variable gen-
erated by local broadcasts. We show (in lemmas 4.1 and
4.2) that this conditio_n is satisfie_d if the following co_ndi-
tion holds: for any j ~ jn, let j = IrVj~q and let Xm~
and .V~nin denote the ((n-k)xl) vectors whose entries are
the maximum and minimum v_alues, respe_ctively, of the
corresponding components in J~N for all j ~ jn; a point
~0 ~ jn satisfies

Condition ~.e
If every entry of ~N h_as the same value of the

corresponding entry of either Xm~ x or ~ i n .

228

Lemma 4.1
Let ~0 e jn satisfy conditions 4.1 and 4.2 for some r.

[k : q ; 1 1 There exist at most k* = , qE I, points

~l,...,~* e jn such that

~]'i) = ~] 'O)+q i = 1 k* "(4.2)

Proof
Because ~r is a linear transformation we can rewrite

(4.2) as
~i_]v) = IrP = q

or, from (4.1)

lrRc [-BilN] r ' N "- lrVI~' N -- q (4.3)

Let IrV = [tn_ k • • • tn]. Then (4.3) can be written as
Sn-k S n

ZTrN l =tn- k i tn_k[+... +t n-~ =q (4.4)

for all vectors S such that
n

(a) E sl = q
i=n-k

(b) SiEZ i=n-k n
(c) j = (~-l-P) e jn where P is such that

__s° 1
" Ito---i-

All parcels of (4.4) are positive for otherwise,
would not satisfy conditions 4.1 and 4.2. Hence, there
are at most as many vectors satisfying (a), (b) and (c) as
there are vectors satisfying (a) and (b), i.e., vectors for
which

S i = q S i e I
i=n-k

[k + q - l]
and there are exactly k* = [k-1 [such vectors.

]

Q.E.D.

The next lemma characterizes the broadcasting
capabilities of array processors as a function of the rank
of the matrix of interconnection primitives and the
length of the interconnection paths used to implement
broadcasts. We consider array processors of arbitrarily
large size due to the fact that a small array can always
be extended in time by using the algorithm partitioning
techniques described in [3,5,15].

Lemma 4.~
Consider an arbitrarily large array processor with

matrix of interconnection primitives P. If rank(P) = k
[k + q - l]

then there exist at least • [k-1 I paths of length q built

by composing k linearly indelJendent interconnection
primitives and connecting an arbitrary processor to

I .q-,I
exactly I k-1 I pr°cess°rs"

Proof
A path resulting from composing linearly indepen-

dent interconnection, primitives is unique up to commu-

tativity (in the sense that the starting and ending pro-
cessors are the same}. Hence, a path of length q can be
represented by a vector V such that k

V -- ~ SiP i where piEP, Sie I and ~ S i = q
i=l i=l

Then, there are exactly k - I processors connected to

the starting processor through at least as many paths
(there can be more paths due to commutativity, as
mentioned before). Q.E.D.

The next theorem and its corollaries show that for a
large class of algorithms there exist linear schedules for
which broadcasts of non-scalar variables can be imple-
mented as sequences of small local broadcasts.

Theorem J.1
Consider an algorithm with index set jn and a set

of input variables for which the indexing matrix C is as
in (3.3a). Consider also an array processor of dimension
fn -D and a matrix of interconnection primitives

((n 1)xk) e ~ - . There exist linear time schedules r 0 for
which all broadcasts can be implemented if

(i) n-rank(P) _< rank(C) _< n and
(ii) ~r 0 is such that conditions 4.1 and 4.2 are

satisfied.

Proof
If rank(C) = n then broadcasts are not required

(from lemma 4.3.1). From lemm,a 4.2 a processor can
[rank(P) + q--I

communicate with] in q interconnection [ranzlr';--t
steps. From lemma 4.1, if (ii) h'~flds then only broad-

In-rank(C) + q-1
casts to at most • [n-rank(C)-I processors need to be

implemented in q units of time ~ len the time schedule
~r 0 is used. Hence, if rank(P)_>n-rank(C), i.e.,
n-rank(P) _< rank(C), then all broadcasts can be imple-
mented. Q.E.D.

Corollary 4.1.1
If- 6 e jn, n-rank(P) < rank(C) <~ n and

B-I]
It°Re I N has all its entries positive then all broad-

casts ban be implemented.

Proof
Part (ii) of theorem 4.1 is satisfied for]-o = 0. (0

denotes a zero vector.} Q.E.D.

Corollary 4.1.2
If the conditions of corollary 4.1..1 hold and the

array processor is fully connected then the broadcasts
required by non-scalar variables can be implemented

Proof
From corollary 4.1.1 if we note that in a fully con-

nected array, rank(P) - n-1 and the indexing matrix of
a non-scalar variable has rank larger than zero. Q.E.D.

Consider the case when there is a linear time
schedule satisfying the conditions of theorem 4.1. In the

229

next theorem we state the conditions that a linear space
schedule must satisfy so that the interconnections of the
array effectively support the required local broadcasts.
The reasoning behind this theorem is similar to the one
used for theorem 4.3.2. _ The difference is in equation
(3.15) where the vector W is replaced by a matrix W.
The entries of each column of W must satisfy the same
conditions as the entries of W. The proof of theorem
4.3.2 can be easily extended to prove the next theorem
and we omit such extension here.

Theorem .4.~
Consider the algorithm and the array of theorem

4.1 and assume that conditions (i) and (ii) of the same
theorem are satisfied for a given time schedule ~r,. Let S

H denote a linear space schedule such that T = S is non-

singular and

SRc [-BI 'N] = P W

r
where W e I (rx(n-k)) and 0 < ~ Wii < (rmin)i,

j = 1, . . ,n-k where (train) j is the ~t~a entry of
f 1

r0LRcI-BIINI. All broadcasts required by the execution
[- j

H of the algorithm using schedule T = S can be imple-

mented as a sequence of local broadcasts using the inter-
eonnection primitives of the array.

Example 4.1
Consider the algorithm described by the following

program.

FOR J 1 - 0 TO 5
FOR J2=0 TO 5
FOR J3--0 TO 5
G(JI,J2, J3) =G(JI,J2-1,J3)*A{J1- J2,2, J l - 2. J2,- J l +J2)
END J3
END J2
END J1

Suppose that we wish to execute this algorithm in a
(6×6) array like the WAP described in example 2.2 (for
which rank(P) = 2). The indexing matrix of the input
variables A(J1- J2,2*J1-2* J2,- J1 + J2) is

C - -2
1

and rank(C) = 1 = n-rank(P) = 3-2. Also,

[Ii o] B = [1] N = [-1 01 - B 1 0

: 11 = [oo] f o . o w s from

corollary 4.1.1 and theorem 4.2 that all broadcasts can
be implemented. To illustrate this fact consider the
variable A(-1,-2,1) used at time ~J1 J2 J3) = 5 for the
computations with index points (0 1 4), (1 2 3), (2 3 2),
(3 4 1) and (3 5 0) in processors (0 4), (1 3), (2 2), (3 1),
and (3 0). This variable was communicated using the
interconnection primitives (0 1) and (1 0) from proces-
sors (0 3), (1 2), (2 1), and (3 0) where it was used at
time t = 4 for the computations with index points (0 1 3),
(1 2 2), (2 3 1), and (3 4 0). These processors, in turn,

received a copy of the variable from processors (0 2),
(1 1) and (2 0) where it was used at time t = 3 for the
computations indexed by (0 1 2), (1 2 1) and (2 3 0).
Similarly, these had received the same variable from
processors (0 1) and (1 0) where it was used at time t=2
for computations indexed by (0 1 1) and (1 2 0). These ,
in turn, received A(-1,-2,-1) from processor (0 0) where
it was used for the first time at t = l . This succession of
reduced broadcasts is illustrated in figure 4.1. In this
figure we also show the "broadcasting wavefronts" that
are not to be confused with the computational wave-
fronts that are parallel to the direction of the coordinate
Q1 (in this example).

From figure 4.1 and our description of the succes-
sive broadcasts, some processors can receive the same
variable from two distinct processors. In an actual
implementation some local control rule would determine
which processor sends the variable. Assume that each
processor has a bit denoted X that has the value 1 if
data comes from its southern neighbor and has the value
0 if data comes from its left neighbor. This allows us to
rewrite the original program in a form that clearly shows
how each variable is propagated.
FOR J l = 0 T O 5

FOR J2=0 TO 5
FOR J3=0 TO 5

IF THEN

L2=J2
L~=J3

A (L 1 - L 2 , 2 . L 1 - 2 . L 2 , - L I + L 2) | Lt=n_l
" L 2 - J - I

ELSE , L3=J3
A(L 1-L 2,2.L 1-2.L 2,-L 1 +L2) [LI=jI =

! L2=J2
L~=J3

A(L1-L2,2*L1-2*L2, -Ll+L2)[LI--Jt
L2=J2

L3=J3-1
G(JI,J2,J3) --G(J1,J2-1,J3)*A(J1-J2,2* J1-2 . J2 , - J I + J2)

END J3
END J2

END J1
End of example.

V. C O N C L U S I O N S A N D FURTHER.
R E S E A R C H

We showed how to linearly schedule array proces-
sors so that broadcasts can be eliminated or reduced to
sequences of local broadcasts. We considered the case of
linear schedules mapping n-dimensional algorithms into
the dimension of time and into (n-1)-dimensional
arrays. In the general case, linear schedules map n-
dimensional algorithms into (n-x)-dimensional arrays,
where l_<x <n . Although these schedules are less
understood, we believe that our results can be extended
to such eases. For example part (i) of theorem 3.1
would state that there are schedules for which no broad-
casts are required if and only if n -x < rank(C) < n. The
philosophy behind our technique is-to order computa-
tions (perhaps losing potential computational speed) so
that a given variable can be shared or locally replicated
by every processor using it. However, the mathematical
formulation of such techniques allows us to look for
schedules with minimal speed degradation. Linear
schedules must satisfy other conditions besides those dis-
cussed here. In particular, they must not violate the
algorithm data dependences. These conditions have

230

been studied in [3, 14]. Also, it is often the case that a
same variable is referenced more than once in an algo-
rithm with distinct indexing matrices. One possible
solution is to. consider a distinct variable for each index-
ing function by replicating the original variable.
Further research could concentrate on more efficient
solutions to these cases.

(..~A BROADCAST~t~ WAVEFRONT$
Local Broadca$!

Figure 4.1. A succession of local broadcasts that
implement the large broadcasts dis-
cussed in example 4.1

Also, the results of this paper show a direct relation
between the rank of the indexing matrix of a variable
and the need for broadcasts. By changing the rank of
the indexing matrix we can reduce such broadcasts.
Hence, our results can be used as a basis for renaming
and expansion algorithms for optimizing compilers.
Finally, some parallel computers have broadcasting
capabilities and they can be used to achieve fast execu-
tion of an algorithm. Our results can be easily modified
so that broadcasts are used instead of avoided (by select-
ing % so that it satisfies (3.12}}.

Acknowledgments: To Nancy Lein and Carol Gordon for
the careful typing of the manuscript.

R E F E R E N C E S

[1] Barnes et al., "The ILLIAC-VI computer," IEEE
Trans. on Computers, C-17, Aug. 1968, pp. 746-757.

[2] K . E . Batcher, "Design of a massively parallel pro-
cessor," IEEE Trans. on Computers, C-29, pp. 836-
840.

[3] J. A. B. Fortes, "Algorithm transformations for
parallel processing and VLSI architecture design,"
Ph.D. Thesis, Dept. of EE-Systems, University of
Southern California, December 1983.

[4] J . A . B . Fortes, D. I. Moldovan, "Parallelism detec-
tion and algorithm transformation techniques useful
for VLSI designs," Tech. Report. PPP83-1, Dept. of
EE-Systems, Univ. of Southern Calif., 1983.

[5] K. Hwang, Y-H Chen, "Partitioned matrix algo-
rithms for VLSI arithmetic systems," IEEE Trans.
on Computers, C-31, No. 12, December 1982, pp.
1215-1224.

[6] D. J. Kuck, "The structure of computers and com-
putations," Vol. 1, John Wiley & Sons, Inc., 1978.

[7] D. J. Kuck, et al., "Dependence graphs and com-
piler optimizations," in Proe. 8th ACM Symp. Prin-
ciples of Programming Languages, Jan. 1981, pp.
207-218.

[8] R. H. Kuhn, "Optimization and interconnection
complexity for parallel processors, single stage net-
works and decision trees," Ph.D. Thesis, Dept. of
Computer Science, Report 80-1009, Univ. of Illinois,
Urbana-Champaign, Ill., Feb. 1980.

[9] H . T . Kung, "Let's design algorithms for VLSI sys-
tems," in Proc. of Calteeh Conf. on VLSI, Califor-
nia Institute of Technology, Jan, 1979.

[10] S. Y. Kung, "Wavefront array processor: language,
architecture and applications," IEEE Trans. on
Computers, Vol. C-31, No. 11, Nov. 1982, pp.
1054-1066.

[11] L. Lamport, "The parallel e~ecution of DO-loops,"
Comm. of ACM, Vol. 17, No. 2, February 1976, pp.
83-93.

[12] C. E. Leiserson, J. B. Saxe, "Optimizing synchro-
nous systems," in Proc. 22nd Annual Symposium on
Foundations of Computer Science, IEEE Computer
Society, Oct. 1981, pp. 23-34.

[13] D. I. Moldovan, "On the analysis and synthesis of
VLSI algorithms," IEEE Trans. on Computers, Vol.
C-31, No. 11, Nov. 1982.

[14] D. I. Moldovan, "On the design of algorithms for
VLSI systolic arrays," Proc. of IEEE, Vol. 71, No.
1, pp. 113-120, Jan. 1983.

[15] D. I. Moldovan, J. A. B. Fortes, "Partitioning algo-
rithms for fixed size VLSI architectures," Teeh.
Report PPP83-5, Dept. of EE-Systems, University
of Southern California, 1983.

[16] D. Nassimi, S. Sahni, "Data Broadcasting in SIMD
computers," IEEE Trans. on Comp., Vol. C-30, No.
2, Feb. 1982.

[17] L. Snyder, "Introduction to the configurable highly
parallel computer," Computer, Vol. 15, No. 1, Jan.
1982, pp. 47-64.

231

