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A B S T R A C T  

A major problem in executing algorithms in array 
processors is the implementation of broadcasts without 
unnecessary speed-up factor degradation. We discuss 
when and how broadcasts can be eliminated or reduced 
to easily implementable sequences of reduced local 
broadcasts. Algorithms are modelled as a structured set 
of indexed computations which operate on variables 
associated with a referencing or indexing function. The 
discussion is restricted to variables with linear indexing 
functions and to algorithms linearly scheduled for execu- 
tion in array processors..Linear indexing functions are 
represented as affine matricial functions of the index set 
of the algorithm. The linear part of such representation 
is a coefficient matrix denoted the indexing matrix. 
Linear schedules are defined as linear time-space alloca- 
tion functions mapping the computations of an algo- 
rithm into time and processors. We discuss necessary 
and sufficient conditions for the occurrence of broadcasts 
in a linearly scheduled algorithm. Necessary and 
sufficient conditions and constructive criteria are given 
for selecting linear schedules for which all broadcasts are 
eliminated or reduced to sequences of small local broad- 
casts. 

1.  I n t r o d u c t i o n  

Several parallel computers have been designed and 
built around the concept of array architecture. Exam- 
ples include the early ILLIAC IV computer [1], Mas- 
sively Parallel Processor (MPP) [2], systolic arrays [9], 
the Wavefront Array Processor (WAP [10], the 
Configurable Highly Parallel (CHiP) computer [17], and 
many others. In array architectures every processor is 
directly connected to a small subset of the processors 
and the interconnection pattern is often the same for all 
processors. This restrictive interconnection structure 
may not be able to support fast communication of data 
from one to many processors. Such type of data com- 
munication is called a broadcast and is necessary when 
several processors need the same data in order to 
proceed with their scheduled computations. If broad- 
casts cannot be made, computations must be 
rescheduled, thus slowed down if correct results are to 
be obtained. For this and other reasons (e.g., parallel- 
ism exploitation, data routing, etc.), scheduling and allo- 
cation of computations to array processors is a difficult 
problem. Linear schedules (to be defined soon) can be 
and have been used successfully for many algorithms 
executed on array processors. Examples include the 
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solution of PDE's on the ILLIAC IV [11], most algo- 
rithms executed in VLSI arrays, on the WAP, on the 
CHiP [3,9,10,13,14,17], and others (see, for example, [8]}. 

The problem of broadcasting variables in array pro- 
cessors has received considerable attention in the past. 
In some cases (most SIMD arrays) a central control unit 
has the capability to broadcast a single variable to all 
processors in the array (see, for example, [6]). However, 
the control unit becomes a serious bottleneck if many 
broadcasts have to be implemented at a given step of 
the algorithm. Skewed storage schemes and associative 
memories [61 have been proposed to reduce the need for 
broadcasts. In general, these schemes cannot eliminate 
the need for all broadcasts and are dependent on the 
algorithm being executed. Memory redundancy can also 
be used to avoid broadcasts. Examples include renam- 
ing and expansion of scalar variables used in optimizing 
compilers [6l. In [161 the interconnection network of the 
array processor is used to simulate a multi-stage net- 
work in which any broadcast can be implemented. The 
main disadvantage of this approach is that such simula- 
tion may be highly time consuming in algorithms requir- 
ing a moderate number of broadcasts. A more appealing 
solution has been proposed in [8]. In this reference, 
some algorithms are scheduled so that broadcasts over- 
lap by pipelining variables through the array intercon- 
nection network. However, no general procedure was 
given for arbitrary algorithms. Our approach is based 
on the same idea. However, the techniques for broad- 
cast presented in this paper can be applied to a large 
class of algorithms. Also, designers of VLSI architec- 
tures have long recognized the need for algorithm 
reseheduling in order to avoid broadcasts [12]. Any sys- 
tematic procedure for designing VLSI algorithms must 
be able to obtain broadcast free or broadcast reduced 
schedules. Our results apply directly to the VLSI design 
techniques proposed in [3,4,13-15]. 

This paper discusses how and whether data broad- 
casts in an array processor with a given interconnection 
structure can either be eliminated or reduced by choos- 
ing an adequate linear schedule. In Section II we 
describe the models used to represent algorithms and 
array processors throughout the paper. Next, we define 
linear schedule as a time-space allocation of computa- 
tions described by a linear function. Often, the need for 
broadcasts can be detected from the manner in which 
variables are referenced in the algorithm. Also, in Sec- 
tion II, we describe the variable referencing mechanism 
considered in this paper. Section 111 starts by stating 
sufficient and necessary conditions for the occurrence of 
broadcasts in the execution of an algorithm. Theorem 
3.1 gives necessary and sufficient conditions for the  
existence of time schedules that avoid broadcasts. 
Theorem 3.2 gives the conditions that a space schedule 

0194-7111/84/0000/0224501.00© 1984 IEEE 
224 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800015.808186&domain=pdf&date_stamp=1984-01-01


must satisfy to support the broadcast elimination pro- 
vided by a given time schedule. Section IV considers the 
problem of implementing broadcasts in architectures 
with limited broadcasting capabilities. Theorem 4.1 
gives sufficient conditions for the existence of time 
schedules that  allow the implementation of a broadcast 
as a sequence of reduced broadcasts. Theorem 4.2 gives 
the conditions that  a space schedule must satisfy in 
order to support a sequence of small broadcasts. Section 
V contains some conclusions and points out possible 
extensions to this research. 

H. M O D E L L I N G  A L G O R I T H M S ,  A R R A Y  P R O -  
C E S S O R S ,  L I N E A R  S C H E D U L E S ,  A N D  V A R I -  
A B L E  R E F E R E N C E S  

We see an algorithm as a structured set of compu- 
tations which operate on input variables and/or vari- 
ables generated by other operations and produce a set of 
output variables. In order to represent an algorithm, we 
use a simplified version of the algorithm model intro- 
duced in [3]. The simplified concepts introduced next 
are good enough for the purposes of this paper and no 
previous knowledge of [3] is assumed. 

Definition 2.I 
An algorithm is a 5-tuple A = (jn, C, D, X ,Y)  

where 

jn is the index set of A, ] n c z n  * 
C is the set of computations (indexed by jn) 
D is the set of dependencies 
X is the set of input variables 
Y is the set of output variables 

In this definition, by dependency we mean a vector 
difference between the index of a computation where a 
variable is used and the index of the computation where 
that variable is generated. The set of output variables is 
a subset of the union of the set of generated variables 
and the set of input variables. To every variable it is 
_associated an indexing function, i.e., a fu_nction 
F:J n --* Z m such that  if the variable has index F (j) then 
t_his variable is involved in the computation indexed by 
j. In this paper we assume that all variables have linear 
indexing functions, i.e., functions that satisfy the follow- 
ing definition. 

Definition 2.~ 
A variable indexing function ~:jn _. Z m is a linear 

indexing function if and only if 

1V(j -) = G 0 -I- C j  (2.1) 

where 
T 0 ~ Z (re×l) is the index displacement 
C ~ Z (re×n) is the indexing matrix. 

Example g.1 
The variable a (Jl - J2, J2 -b J3 - 1, J3 - Jl) has a 

linear indexing function where 

C = To = 
0 

End of example. 

• The symbols Z, I, I + denote the sets of integers, nonnegative in- 
tegers and positive integers, respectively. Given a set S, S n 
denotes the nth cartesian power of S. 

The next definition introduces a simple model for 
array processors. 

Definition 2.3 
An array processor is a tuple (Lm,p) where 

(i) L m is the index set of the array processor, 
L m c z  m 

(ii) P is the matrix of intereonnection primitives 
P - [Pl ..... Pr] e zm×r, where rEI is the number of 
interconnection primitives 

In this definition of array processor, every point ~ in L m 
represents an element of the array. We assume that  all 
processors are identical and that  the interconnections are 
regular and uniform. The matrix of interconnection 

primitives P is such that, if ~EP then ~EL m is connected 
to ~ - - ~ + ~  if ~ E L  m and ~ is connected to an 

input /output  port if ~l ~L m. 

Example 2. 2 
Consider the N x N  array configuration as shown in 

Figure 2.1 (for N--4), which is used in WAP [10] and 
other array processors. The structure of these arrays 
can be described by (L2,p) where 

L 2 = {(91, 92): 0 _< 91, 92 _< N-1  } 

and 
, 10 o 01 

End of Example. 
In this paper, a schedule is a time-space allocation 

function T:J~. --* J~ where J~, is the n-dimensional index 
set of the original algorithm A and J~ is the index set of 
a transformed algorithm B that  is input-output 
equivalent to A. In this paper we assume that  the origi- 
nal algorithm is such that J ~ C I  n. For more details on 
equivalence preserving algorithm transformations the  
reader is referred to [3,4]. In J~, n - r  coordinates are 
associated with time and r coordinates are associated 
with space. In this paper we assume that the first coor- 
dinate j]~ is associated with time (i.e., r = n - 1 )  and that  

Figure 2.1. Interconnection structure of the ar- 
ray processor of example 2.2 (N=4) 
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the remaining coordinates map Via the identity function 
into the index set of the array processor. If the array 
processor is small then the algorithm can be partitioned 
and the identity mapping can be used for every partition 
~?'TnThen a schedule consists of a tim~schedule 

]~A "-* S~ and a space schedule S :  J~ --~ The 
dimensionality of the index set of the array processor 
equals the dimensionality of index set of the algorithm 
minus one. 

Definition 2.4 
A linear schedule T : J~ ~ J~ is such that T is a 

linear bijeetion function, i.e., 

T =  [~] ~re Z (Ixn), S~ Z ((n-1)xn) 

and T is nonsingular. 
The above definition could be generalized to include 

schedules described by unions of integer affine functions; 
however, in this paper we restrict our discussion only to 
linear schedules. If a linear schedule is used for 
executing an algorithm in an array processor then we 
say that the array is linearly scheduled. 

m .  O N  T H E  E L I M I N A T I O N  O F  B R O A D -  
C A S T S  

During the execution of an algorithm a variable 
needs to be broadcasted if and only if the following con- 
ditions are both satisfied: 
(1) at least two computations use the variable and 
(2) such computations are scheduled for execution at 

the same instant of time 

Notice that the first condition is independent of the 
ordering of computations while the second depends on 
the time schedule. We start by discussing how the first 
condition can be checked. Clearly, a variable with 
indexing function 1V is used by computations indexed by 
j '  and j "  if and only if 

F(j' ) : F ( j "  ) (3.1) 

i.e. 
F(r)  = 0 (3.2) 

where r - j l  _ j l t .  From (2.1), condition (3.2) can be 
rewritten as 

CP ---- 0 (3.3) 

From elementary facts of linear algebra we can conclude 
the following: 

Lemma 3.1 
A variable with indexing matrix C is used in more 

than one computation if and only if rank(C) < n, where 
n is the dimensionality of the algorithm index set. 

In general, we can rewrite C (assuming 
rank(C)-k,  1 < k < n) as 

[ | 

C I - ICIIc2 - R  r C  
h d 

where 
R r - is a row rearranging matrix, i.e., an (m×m) 
matrix such that its (i,j)th entry is a "1" if row j in 

I ¢¢0" C becomes row i in C and is a otherwise. 

C 1 - is a (kxn) matrix such that its columns can 
always be rearranged to obtain a matrix 

C I' = [ B  N] = C I R  c 

where 
B - a nonsingular (kxk) matrix 
N - a (kx(n-k))  matrix (for n -k  > O) 
R c is a column rearranging matrix, i.e., an 
(nxn) matrix such that its (i,j)th entry is a 
"1" if column i in C l becomes column j in CI I 
and is a "0" otherwise. 

C 2 - is a ( (m-k)xn)  matrix {for m-k  > 0) 

Hence, we have 

C2 (3.3a) 

and we will assume hereon that for any C we know Rr, 
B, N, R c and C 2. Now consider the following equation 

C! F - 0 (3.4) 

Clearly, (3.3) and (3.4) have the same set of solutions. 
Also, (3.4) can be rewritten as 

C, Re R w P = 0 (3.5) 

or, letting R_ w r = r S  I and using the definition of C' 1 
Cl IF '  = 0 (3.6) 

i.e., 
[B N] [rB' rN' iT - -  0 (3.7) 

The solution to (3.7) satisfies the relation 
PB' = - B - I  N rN' 

or, equivalently 
[ 1 

Finally, from (3.5) and (3.8) we obtain the following 
relation that all solutions of (3.3) must satisfy 

[ 

= Rc FB' = I-Bi  1N r N '  (3.g) 

At this point we can discuss how the second condition 
for the necessity of a broadcast can be tested. Recalling 
the definition of linear time schedule, broadcasting is 
required for a linear schedule r 0 if and only if there are 
at least two distinct computations wit_h indices y ,  j " ,  
such that ~3.3) is satisfied and ~r0j' = ~roj" , i.e., 

r = -P') = o (3.1o) 

The solutions to (3.3) are given by (3.9). Replacing P in 
(3.10) by the right-hand side of (3.9) yields 

Iv] ~r0Rc FN' = 0 (3.11) 

The next lemma relates the existence of nontrivial solu- 
tions of (3.11) to the need for broadcasting a variable. 
The proof follows easily from the considerations made so 
far and it is omitted. 

Lemma Z 
Consider an algorithm with a set of variables with a 

(mxn) indexing matrix C as in (3.3a) and 
1 _< rank(C)=k < n. Broadcasting is required during the 
execution of the algorithm if and only if there is at least 
one nontrivial solution FN ~ to the equation 
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I i] [000] - 1 2 0 B ~N 
~oR~ B ~N r N' = 0 (3.12) B-I 2 1 R c 

where r N' is a ((n-k)xl) vector and lr o is the linear time 
schedule used to execute the algorithm. 

The next theorem shows that there is a large class 
of indexing functions for which data broadcasts can 
never be avoided no matter what linear time schedule is 
used (besides strictly sequential execution). For index- 
ing functions outside such class, a simple test is provided 
to decide if a given linear time schedule requires data 
broadcasts. 

If l r =  [tlt2t3t4] and t I -t-t 2 - 0  broadcasting is 
required. To illustrate this fact, let lr I = [01 11], 
lr 2 = [ - 1 1 0 0 ]  and consider the variable a (-1, 1, 1, 1) 
used at p - ( 2 3 1 1 )  t and p i - - ( 4 5 1  1). N_o broa_d- 
casting is required for ~rÁ because it schedules j' and j,~ 
for distinct instants of time (i.e., 
lrl(j I ) - 5 ~ lq( j"  ) = 7). Broadcasting is required for Ir 2 
because 7r2( j ' ):~'2(j r' ) : +1. 

Theorem 3.1 
For an algorithm with an arbitrarily large index set 

and a set of variables with an (mxn) indexing matrix C 
as in (3.3a), 

(i) there exist linear time schedules for which no 
broadcasts are necessary if and only if 
n- 1 <_ rank(C) < n 

(ii) if rank(C)= n-1 then a time schedule 7r 0 
requires broadcasting if and only if 

%R c [-B;IN} = 0 (3.13) 

Proof 
We start by proving (ii). Clearly, if (3.13) is 

satisfied, (3.12) has non trivial solutions and, from 
lemma 2, broadcasts are required. Conversely, if some 
variable needs to be broadcasted, there are nontrivial 

solutions to (3.12). Noticing that %R c I N is a 

scalar (for r a n k ( C ) =  n - l )  it follows that (3.13) must 
also be satisfied. To prove (i), from lemma 1 and from 
(ii), if n-1 _< rank(C) < n there exist schedules for which 
broadcasts are not required. To prove the "only if '  
part, let 

and rewrite (3.12) as ~r  FN' = 0. Noticing that Z is a 
((n-k)xl)  vector it follows that there are always non- 
trivial solutions to (3.12) whenever rank(C) = k < n-1. 
Hence, broadcasts will always be necessary, ind'epen- 
dently of the time schedule % used. Q.E.D. 

Ezample 3.1 
Let n - 4  and consider the variables 

a ( j l- j2, j2-Jl ,  J3, 2*j4-J3). 
We have 

Io1 
-1 o ol 
1 0 0 | =  

C =  0 I0 l 
0 -I 2J 

II llx°°ll 1 0 0 -1  0 0 1 0  
looo11 o 1 o o OOOl NIRT] 

= |1OOOl 0 - 1 2  0 1 0 0 0  [B 
|010  0| --- = RT 
LOOlO, L "7":1o"0 ..... j c2 ] 

rank(C) = 3 = n-1 

Ezample 3.~ 
Let n=4 and consider the variables a (Jl, J2,J3,J4), 

b (Jl-J2 -t-J3,  2*j2-Jl ÷ 1, Js, 2*j4-J3} and 
c ( j l - J2 , J2 -J l  +J4, J2+Ja+J4 ,  2*J4-J3). The rank of 
the indexing function of each variable is n. Hence, for 
any linear time schedule, no broadcasting is required. 

Ezample 3.3 
Let n=4 and consider the variables a (Jl), b (Jl-J2, 

J2-Jl), c (Jl-J2,J2-Jl ,  2*ja-J4, J4-2*js): These vari- 
ables have indexing functions with rank less than n-1. 
For any linear time schedule broadcasts will be required. 

The meaning of part (ii) of theorem 3.1 can be 
explained as follows: if rank(C)--n-1 then there is a 
schedule % such that a single copy of each variable is 
needed for the execution of the algorithm; in other 
words, the time schedule allows the propagation of each. 
variable to the processors which execute the computa- 
tions using that variable. Clearly, this is possible only i f  
the space schedule S is such that the available processor 
interconnections support such data communication. For 
this reason, we proceed to discuss what conditions mus_t 
be sa_tisfied by S in order to avoid broadcasts. Let j, 
and j "  denote two points where computations use the 
same variable. The interval of time between such com- 
putations is 

r = ] ~ l _ ] ~ t ) [  = I fr~ ] (3.14) 

Hence, S must be such that 
SF = P W (3.15) 

where W is an (rxl) vector with non-negative entries 
F 

Wi, i -- 1,2 ..... r and 0< ~ W i< r and r is the number 
i=l 

of columns of P. 

Equation (3.15) means that the propagation of the 
variable from the processor executing the first computa- 
tion to the processor executing the second computation 
can be made in an interval of time less than or equal to 
r thru a path resulting from composing the interconnec- 
tion primitives of the array processor. We assume that 
a single computation and propagation of a result over a 
single interconnection primitive takes one unit of time. 
From (3.9), theorem 3.1 and (3.14) it follows that the 
minimum (scalar) value of r is 

where L is the smallest positive integer that makes 

L R c I an integer vector. 

The next theorem gives the necessary conditions 
that a space schedule S must satisfy so that, for a given 
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It, broadcasts are not required and the array intercon° 
nections support the necessary data communication. 

Theorem 3.2 
Consider an array processor (L"-I,P}, P ~ Z (("-l)×r) 

and an algorithm with index set jn and a set of variables 
with indexing matrix C as in (3.3a) and rank(C) = n-1.  
Let ~r denote a time schedule such that Ymin ~ 0, where 
rmi . is as in (3.16). Let  S denote a space schedule such 

r 1 

that T = 1~] is nonsingular and 

r 

where W E I {rxl) and 0 < ~ W i <~ Tmin (3.18) 
i=1 

The execution of the algorithm on the array linearly 
scheduled by T does not require broadcasts. 

Proof 
Theorem 3.1 proves that if rmi n # 0 then no broad- 

casts are required. The discussion preceding this 
theorem shows that if (3.17) holds then the necessary 
data communication can be done using the interconnec- 
tion primitives of the array. It remains to show that 
such communication takes less time than the interval of 
time between any two consecutive usage of the same 
variable. This interval of time is at least rmi n and if 
(3.18) holds for rmh then it will also hold for longer 
intervals. From the assumption that one interconnec- 
tion primitive can be used in one unit of time if follows 
that data communication can be done. Q.E.D. 

Example 3.~ 
Let n=3,  assume that P is as in example 2.2, and 

consider the variables a (Jl + 2'j2 + Js, 3*jl + J2 + 2*j3, 
2*j l -J2+J3)-  We have 

C = - = , rank(C) =2 =n-I 

IC, J 

21] l H B -1 = ~- , ~rL i = 

Let  L = 5, Ir = [1  0 0]. Then S [ - 3 - 1  5] r 

- 10 _ 0 ] , w - t ,  o000], 
is nonsingallar. Notice that other solutions for S T 

may ~xlst. For illustration l~urposes consider a(6, 12, 6) 
used at]~ = ( 3  1 1) x and j "  = ( 0  0 6) r. Communi- 
cation between processor S ~l = (-1 6) x and 
S ~-i i = l0 6)T can be done in less than 
~r~ - ~  - 7"mi n -" 3 units of time by using primitive 
(1 0) 1. 

4, On  R e duc ing  L a r g e  B r o a d c a s t s  t o  S m a l l  
B r o a d c a s t s  

In an array architecture, every processor can broad- 
cast a variable to all processors directly connected to it. 
In this section we discuss how linear schedules can 
explore this limited broadcasting capability to imple- 
ment large broadcasts. We show that if there is an 
unique solution to a linear program involving the index 

set of the algorithm and there is a certain relation 
between the rank of the matrix of interconnection primi- 
tives, the rank of the indexing matrix of the variable to 
be broadcasted and the dimensionality of the array then 
there is a class of linear schedules for which broadcasting 
is possible. 

Before deriving this result in a formal manner, we 
proceed to discuss informally what conditions must be 
checked for. First, the linear time schedule must b e  
such that the first use of any given variable during the 
execution of the algorithm must occur for a single com- 
putation. In other words, in this section we preclude the 
possibility of inputing several copies of the same vari- 
able. This would correspond to a change in the rank of 
the indexing matrix in the sense that additional index- 
ing information would be required in order to distinguish 
such copies. It also means that the original variable can 
only be replicated locally by each processor at a rate 
that depends on the interconnections available. Then, 
the second condition that we must check is that the rate 
of increase in the number of computations using the 
same variable is not larger than the rate at which the 
array is able to replicate that variable. Finally the third 
and last condition is that t h e  space schedule must be 
such that communication can take place using the inter- 
connection primitives of the array in the interval of time 
separating consecutive usages of the variable. 

In order to discuss the first condition mentioned 
above, we recall (from (3.10) and (3.11)) that if the same 
variable is used at the same time by computations with 
indices ~o and j* then" 

Irr = ~0_~-.) = IrRe r'N = 0 14.1) 

where 
= RTI: -0 -*~ _ r ' N  ¢ UN--JNI ~N --JN' 

We want to select Ir such that there exists a point 
~o that is the index of the unique computation where the 
variable is used for the first time during the execution of 
the algorithm. This is equivalent to saying that,  for a 
given algorithm with index set J~, for a linear time 
schedule rr and for an indexing matrix C, we have 

Condition ~.1 
there exists an unique point ~ e ,l n such that 

or, equivalently, i_ i 1 
IrVjN ~ =min{~rV~'N~:Vj~J n} where V =R e B IN 

Now, we discuss the second condition, i.e., the 
number of computations using a variable does not grow 
faster than the number of copies of that variable gen- 
erated by local broadcasts. We show (in lemmas 4.1 and 
4.2) that this conditio_n is satisfie_d if the following co_ndi- 
tion holds: for any j ~ jn, let j = IrVj~q and let Xm~ 
and .V~nin denote the ((n-k)xl) vectors whose entries are 
the maximum and minimum v_alues, respe_ctively, of the 
corresponding components in J~N for all j ~ jn; a point 
~0 ~ jn satisfies 

Condition ~.e 
If every entry of ~N h_as the same value of the 

corresponding entry of either Xm~ x or ~ i n .  
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Lemma 4.1 
Let ~0 e jn satisfy conditions 4.1 and 4.2 for some r. 

[k : q ; 1 1  There exist at most k* = , qE I, points 

~l,...,~* e jn such that 

~]'i) = ~ ] 'O)+q  i = 1 ..... k* "(4.2) 

Proof 
Because ~r is a linear transformation we can rewrite 

(4.2) as 
~i_]v) = IrP = q  

or, from (4.1) 

lrRc [-BilN] r '  N "- lrVI~' N -- q (4.3) 

Let IrV = [tn_ k • • • tn]. Then (4.3) can be written as 
Sn-k S n 

ZTrN l =tn- k i tn_k[ +... +t n-~ =q (4.4) 

for all vectors S such that 
n 

(a) E sl = q 
i=n-k 

(b) SiEZ i=n-k ..... n 
(c) j = (~-l-P) e jn where P is such that 

__s° 1 
" Ito---i- 

All  parcels of (4.4) are positive for otherwise, 
would not satisfy conditions 4.1 and 4.2. Hence, there 
are at most as many vectors satisfying (a), (b) and (c) as 
there are vectors satisfying (a) and (b), i.e., vectors for 
which 

S i = q  S i e I  
i=n-k 

[ k + q - l ]  
and there are exactly k* = [ k-1 [ such vectors. 

] 

Q.E.D. 

The next lemma characterizes the broadcasting 
capabilities of array processors as a function of the rank 
of the matrix of interconnection primitives and the 
length of the interconnection paths used to implement 
broadcasts. We consider array processors of arbitrarily 
large size due to the fact that a small array can always 
be extended in time by using the algorithm partitioning 
techniques described in [3,5,15]. 

Lemma 4.~ 
Consider an arbitrarily large array processor with 

matrix of interconnection primitives P. If rank(P) = k 
[k + q - l ]  

then there exist at least • [ k-1 I paths of length q built 

by composing k linearly indelJendent interconnection 
primitives and connecting an arbitrary processor to 

I .q-,I 
exactly I k-1 I pr°cess°rs" 

Proof 
A path resulting from composing linearly indepen- 

dent interconnection, primitives is unique up to commu-  

tativity (in the sense that the starting and ending pro- 
cessors are the same}. Hence, a path of length q can be 
represented by a vector V such that k 

V -- ~ SiP i where piEP, Sie I and ~ S i = q 
i=l i=l 

Then, there are exactly k - I  processors connected to 

the starting processor through at least as many paths 
(there can be more paths due to commutativity, as 
mentioned before). Q.E.D. 

The next theorem and its corollaries show that for a 
large class of algorithms there exist linear schedules for 
which broadcasts of non-scalar variables can be imple- 
mented as sequences of small local broadcasts. 

Theorem J.1 
Consider an algorithm with index set jn and a set 

of input variables for which the indexing matrix C is as 
in (3.3a). Consider also an array processor of dimension 
fn -D and a matrix of interconnection primitives 

((n 1)xk) e ~ - . There exist linear time schedules r 0 for 
which all broadcasts can be implemented if 

(i) n-rank(P) _< rank(C) _< n and 
(ii) ~r 0 is such that conditions 4.1 and 4.2 are 

satisfied. 

Proof 
If rank(C) = n then broadcasts are not required 

(from lemma 4.3.1). From lemm,a 4.2 a processor can 
[rank(P) + q--I 

communicate with ] . . . . .  in q interconnection [ ranzlr';--t 
steps. From lemma 4.1, if (ii) h'~flds then only broad- 

In-rank(C) + q-1 
casts to at most • [ n-rank(C)-I  processors need to be 

implemented in q units of time ~ len the time schedule 
~r 0 is used. Hence, if rank(P)_>n-rank(C), i.e., 
n-rank(P) _< rank(C), then all broadcasts can be imple- 
mented. Q.E.D. 

Corollary 4.1.1 
If- 6 e jn, n-rank(P) < rank(C) <~ n and 

B-I ] 
It°Re I N has all its entries positive then all broad- 

casts ban be implemented. 

Proof 
Part (ii) of theorem 4.1 is satisfied for ]-o = 0. (0 

denotes a zero vector.} Q.E.D. 

Corollary 4.1.2 
If the conditions of corollary 4.1..1 hold and the 

array processor is fully connected then the broadcasts 
required by non-scalar variables can be implemented 

Proof 
From corollary 4.1.1 if we note that in a fully con- 

nected array, rank(P) - n-1 and the indexing matrix of 
a non-scalar variable has rank larger than zero. Q.E.D. 

Consider the case when there is a linear time 
schedule satisfying the conditions of theorem 4.1. In the 
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next theorem we state the conditions that a linear space 
schedule must satisfy so that the interconnections of the 
array effectively support the required local broadcasts. 
The reasoning behind this theorem is similar to the one 
used for theorem 4.3.2. _ The difference is in equation 
(3.15) where the vector W is replaced by a matrix W. 
The entries of each column of W must satisfy the same 
conditions as the entries of W. The proof of theorem 
4.3.2 can be easily extended to prove the next theorem 
and we omit such extension here. 

Theorem .4.~ 
Consider the algorithm and the array of theorem 

4.1 and assume that conditions (i) and (ii) of the same 
theorem are satisfied for a given time schedule ~r,. Let S 

H denote a linear space schedule such that T = S is non- 

singular and 

SRc [-BI 'N ] = P W  

r 
where W e I (rx(n-k)) and 0 < ~ Wii < (rmin)i, 

j = 1, . . ,n-k where (train) j is the ~t~a entry of 
f 1 

r0LRcI-BIINI. All broadcasts required by the execution 
[ -  j 

H of the algorithm using schedule T = S can be imple- 

mented as a sequence of local broadcasts using the inter- 
eonnection primitives of the array. 

Example 4.1 
Consider the algorithm described by the following 

program. 

FOR J 1 - 0  TO 5 
FOR J2=0 TO 5 
FOR J3--0 TO 5 
G(JI,J2, J3) =G(JI,J2-1,J3)*A{J1- J2,2, J l -  2. J2,-  J l  +J2) 
END J3 
END J2 
END J1 

Suppose that we wish to execute this algorithm in a 
(6×6) array like the WAP described in example 2.2 (for 
which rank(P) = 2). The indexing matrix of the input 
variables A(J1-  J2,2*J1-2* J2,-  J1 + J2) is 

C - -2  
1 

and rank(C) = 1 = n-rank(P) = 3-2. Also, 

[ Ii o] B = [1] N = [-1 01 - B  1 0 

: 11 = [ oo] f o . o w s  from 

corollary 4.1.1 and theorem 4.2 that all broadcasts can 
be implemented. To illustrate this fact consider the 
variable A(-1,-2,1)  used at time ~J1  J2 J3) = 5 for the 
computations with index points (0 1 4), (1 2 3), (2 3 2), 
(3 4 1) and (3 5 0) in processors (0 4), (1 3), (2 2), (3 1), 
and (3 0). This variable was communicated using the 
interconnection primitives (0 1) and (1 0) from proces- 
sors (0 3), (1 2), (2 1), and (3 0) where it was used at 
time t = 4  for the computations with index points (0 1 3), 
(1 2 2), (2 3 1), and (3 4 0). These processors, in turn, 

received a copy of the variable from processors (0 2), 
(1 1) and (2 0) where it was used at time t = 3  for the 
computations indexed by (0 1 2), (1 2 1) and (2 3 0). 
Similarly, these had received the same variable from 
processors (0 1) and (1 0) where it was used at time t=2  
for computations indexed by (0 1 1) and (1 2 0). These ,  
in turn, received A(-1,-2,-1)  from processor (0 0) where 
it was used for the first time at t = l .  This succession of 
reduced broadcasts is illustrated in figure 4.1. In this 
figure we also show the "broadcasting wavefronts" that 
are not to be confused with the computational wave- 
fronts that are parallel to the direction of the coordinate 
Q1 (in this example). 

From figure 4.1 and our description of the succes- 
sive broadcasts, some processors can receive the same 
variable from two distinct processors. In an actual 
implementation some local control rule would determine 
which processor sends the variable. Assume that each 
processor has a bit denoted X that has the value 1 if 
data comes from its southern neighbor and has the value 
0 if data comes from its left neighbor. This allows us to 
rewrite the original program in a form that clearly shows 
how each variable is propagated. 
FOR J l = 0 T O 5  

FOR J2=0 TO 5 
FOR J3=0 TO 5 

IF THEN 

L2=J2 
L~=J3 

A ( L 1 - L 2 , 2 . L 1 - 2 . L 2 , - L I + L 2 ) |  Lt=n_l 
" L 2 - J - I  

ELSE , L3=J3 
A(L 1-L 2,2.L 1-2.L 2,-L 1 +L2) [ LI=jI = 

! L2=J2 
L~=J3 

A(L1-L2,2*L1-2*L2, -Ll+L2)[  LI--Jt 
L2=J2 

L3=J3-1 
G(JI,J2,J3) --G(J1,J2-1,J3)*A(J1-J2,2* J1-2 .  J2 , - J I  + J2) 

END J3 
END J2 

END J1 
End of example. 

V. C O N C L U S I O N S  A N D  FURTHER.  
R E S E A R C H  

We showed how to linearly schedule array proces- 
sors so that broadcasts can be eliminated or reduced to 
sequences of local broadcasts. We considered the case of 
linear schedules mapping n-dimensional algorithms into 
the dimension of time and into (n-1)-dimensional 
arrays. In the general case, linear schedules map n- 
dimensional algorithms into (n-x)-dimensional arrays, 
where l_<x <n .  Although these schedules are less 
understood, we believe that our results can be extended 
to such eases. For example part (i) of theorem 3.1 
would state that there are schedules for which no broad- 
casts are required if and only if n -x  < rank(C) < n. The 
philosophy behind our technique is-to order computa- 
tions (perhaps losing potential computational speed) so 
that a given variable can be shared or locally replicated 
by every processor using it. However, the mathematical 
formulation of such techniques allows us to look for 
schedules with minimal speed degradation. Linear 
schedules must satisfy other conditions besides those dis- 
cussed here. In particular, they must not violate the 
algorithm data dependences. These conditions have 
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been studied in [3, 14]. Also, it is often the case that a 
same variable is referenced more than once in an algo- 
rithm with distinct indexing matrices. One possible 
solution is to. consider a distinct variable for each index- 
ing function by replicating the original variable. 
Further research could concentrate on more efficient 
solutions to these cases. 

( ..~A BROADCAST~t~ WAVEFRONT$ 
Local Broadca$! 

Figure 4.1. A succession of local broadcasts that 
implement the large broadcasts dis- 
cussed in example 4.1 

Also, the results of this paper show a direct relation 
between the rank of the indexing matrix of a variable 
and the need for broadcasts. By changing the rank of 
the indexing matrix we can reduce such broadcasts. 
Hence, our results can be used as a basis for renaming 
and expansion algorithms for optimizing compilers. 
Finally, some parallel computers have broadcasting 
capabilities and they can be used to achieve fast execu- 
tion of an algorithm. Our results can be easily modified 
so that broadcasts are used instead of avoided (by select- 
ing % so that it satisfies (3.12}}. 
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