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ABSTRACT 

This  paper summarizes a project, introduced in [HO79, 
I-IO82b], whose goal is the implementat ion o f  a useful inter- 
preter for abstract equations that is absolutely faithful to the 
logical semantics of equations. The Interpreter was first dis- 
tributed to Berkeley UNIX VAX sites in May, 1983. The 
main novelties of  the interpreter are 
(1) strict adherence to semantics based on logical conse- 

quences; 
(2) "lazy" (outermost)evaluation applied uniforml~ 

(3) an implementation besed on table-driven pattern match- 
in8, with no run-time penalty for large sets of  equa- 
tions; 

(4) strict separation of syntactic and semantic processing, so 
that different syntaxes may be used for different prob- 
lems. 

I. Introduction 

The prime motivation for the equation interpreter pro- 
jeet was to develop a programming language whose semantics 
can be described completely in terms of simple mathematical 
concepts. We chose equations as the notation for the project 
because E -- F has 

(1) a n  obvious mathematical Interpretation - E and F are 
different mines  for  the same thing, 

(2)  a natural and  simple computational interpretation - 
replace E by F whenever  possible, and 

(3) well-documented theoretical results o n  the equivalence 
of  these two interpretations Church-Rosser or 
confluence theorems. 

A / t o ,  ram for the equation interpreter Is a list of  symbols to 
be used, followed by a lbt  of  equations involving those sym- 
bols and  variables. The  mean/rig of  a program is completely 
described by the following: 
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Definition 1.1 
A term containing no imtance o f  a left-hand side of  an  equa- 
tion is in n o r m a l  f o r m .  

An interpreter for a set of  equations is a program that, given 
an  input term E, produces a term F, in normal form, such 
that E - - F  is a logical consequence o f  the equations, if such 
an  F exists. If no such F exists, the interpreter must not 
produce output.  

1.1 Syntax  of the Equat ional  Programming Language 

Input to the equation interpreter is in the following 
form: 

Symbols 

s y k e s  ,; 

o n * d e s  ~; 

s y m d e s m  * 

For all va t  i,var 2, " " " vm'n: 

equn  z; 

equ  n 2; 
e q u n  v • 

Symbol descriptors indicate one or more symbols in the 
language to be defined, and give their arities. Intuitively, 
symbols of  arity 0 are the constants of the language, and 
symb()ls of  higher arity are the operators. A s~zbol descriptor 
(snndes) is either of the form 
s~=,.wm2, ' • • symm: amy m )1  

or of the form 

Include s~nclass =, • • • .wmcla~n n 91 

Syntactically, ~nbols and ~nbo l  classes (symclass ) are 
identifiers. A symbo ! class indicates the inclusion of a 
predefined class of  symbols. The classes available are 
atomic_symbols, Integer_numerals, and  truth values. Symbols 
that have been explicitly declared in the Symbols section are 
called literal ~ym~ls, to distinguish them f rom members of 
the predefined classes. 

Variables (vat) are identifiers, of the same sort as sym- 
bols. An equation (equn) is either of the form 

term l="/etTfl 2 
of  the form 
term z~-term 2 where quali f icat ion end where 

111 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800017.800522&domain=pdf&date_stamp=1984-01-15


or of  the form 

Include equclass I, " ' " equclaSSm 

Equation classes (equclass) are identifiers indicating the inclu- 
sion of  a large number  of predefined equations. These 
classes include the defining equations for the standard arith- 
metic operations. For example, addition is defined by' 
add(1,l)=.2, add(l,2)=3, etc. Of course, such equations are 
not stored ,explicitly, but their effect is produced by efficient 
machine opemtions. 

A qualification is of  the form 

quahtem ~, • • l qualitem m m ~ I 

arid qua/items are of  the forms 

var i~ qua~term 
vt~ I, ' " " var~ are qua/term 

a n d  qua/terms are of  the forms 

in predefined_s~tbol__class 
term 

qualterm where qual(fication end where 
either ~ a l t e r m j  or.  • • qua/term, end or 

Qualifications, as defined above, restrict the ranges of  
variables to terms of  given forms. Normally, variables range 
over  all terms in the language de.,cribed by the Symboh sec- 
tion° Different syntaxes for terms may be chosen  to suit 
different problems. In this paper, we will use two different 
term syntaxes: 1) the standard mathematical notation in 
which function application is denoted f(a,b),  and  2) LISP 
notation, in which such application is fla;b], and  parentheses 
are used to abbreviate uses of  the special binary operator 
cons to build lists and trees. A lambda notation is also avail- 
able, and it is straightforward to add yacc and  lex programs 
for o ther  syntaxes as needed. 

The  following example illustrates all of the constructs 
described above, using LISP notation. 

Example  !.1 

Symbols 

: List constructors 
cons: 2; nil: 0; 

: Standard arithmetic operators 
add: 2; 

: nonils[x] is the list containing all of  the nonnil 
: e lements  of  the list x 

no nils: l ;  

: leafcountlx] is the number of leaves in the tree x 
leafcou nt: I; 

include atomic_symbols, integernumerals. 

For all x, y, z, rein: 

nonils[()] -- (); 

nonils[(()  . rem)]  -- nonils[rem]; 

nonilsl(x, rem)] -- ( x .  nonilslrem]) 
where x is either (y .  z) 

or in atomicsymbols 
end or  

end where; 

leafcou nti() l  --  0; 

leafcount l (x ,  y)l --  add[leafcount[x]; leafcountly]]; 

include addint. 
Notice that the symbols cons, nil, and add must be declared. 
They appear implicitly in the equations. ( x .  y) is merely an 
abbreviation for cons[x;y]. "include addint" is semantically 
equivalent to the set of equations defining addition of integer 
numerals. 

In order for the reduction strategies used by the equa- 
tion interpreter to be correct according to the logical- 
consequence semantics, some restrictions must be placed on 
the equations. Presently, 5 restrictions are erfomed: 

I. No variable may be repeated on the left side of an equa- 
tion. For instance, 

!l( x ,y ,r )=y 

is prohibited, because of the 2 instances of  y on the left 
side. 

2. Every variable appearing on the right side of an equa- 
tion must also appear on the left. For instance, f ( x ) . , , y  
is prohibited. 

3. Two different left sides may not match the same expres- 
sion. ~ the pair of  equations 

g(0,x)=0; g ( x , I ) = l  

is prohibited. 

4. When two (not recessarlly different) left-hand sides 
match two different parts of  the same expression, the 
two parts must not overlap. E.g., the pair of  equations 
f lrst (pred (x  ) )--pred f unc ; pred ( ~ucc ( x ) )--x 

is prohibited, since the left-hand sides overlap in 
.first ( l ied (suet (O)). 

5. It must be possible, in a left-to-right preorder traversal 
of  any term, to identify an  instance of  a left-hand side 
without  traversing any part of  the term below that  
instance. For example, the pair of  equations 

f ( g ( x , a  ) ,y )==O; g(b ,c ) - - t  

is prohibited, since after  scanning f ( g  it is impossible to 
decide whether  to look at the first argument  to g in 
hopes of  matching the b in the second equation, or  to 
skip it and try to match the first equation. 

Sets of  equations satisfying 1-4 above are called regular. The  
property described in (5) is strong left--sequentiality.  V i o l a .  
tions of  strong left-sequentiality may of ten  be avoided by 
reordering the arguments  to a function. Strong left- 
seque ntiality is treated in more detail in Section 4. 

Restrictions 1-4 guarantee that  normal forms are 
unique, and that outermost ¢~,eluation wil l  find ell .norn~l 
forms. Restriction 5, which technically subsumes the other 
four, wil l be removed in a later version with an implementa- 
tion of  parallel evaluation. Restriction 3 will also be relaxed 
to allow different left-hand sides to match when the 
corresponding right-hand sides agree, as in 
or(True ~c )==True , or ( x ,True )==True. 

1.2 Conten ts  

The  remainder  of  the paper discusses the  mawr ideas of  
the pro~ect and its execution, as well as our  experience with 
using the system. Section 2 gives the history of the project 
and compares the equation interpreter to PROLOG and 
HOPE [BMSS0]. Sections 3-5 discuss the most important 
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design decisions and their consequences. Section 6 discusses 
our  experience in using the system, and Section 7 demon-  
strates one of  the programming adva,=tages of  the outermost  
( lazy)  evaluation strategy. 

2. History of the  Project 

The  logical foundations of  the pro k~ct, results concern- 
ing uniqueness of normal forms and correct orders of evalua- 
tion, come from [O'D77]. From 1978 to 1981, work toward 
an  implementation, both in theoretical development  of algo- 
ri thms and in the building of prototype systems, was per- 
formed by the authors,  with programming aid f rom two stu- 
dents, Giovanni  ~ and Paul Golick lHO82b]. Final 
preparation for distribution was done by O'Donnel i  in 1982- 
1983, while Hoffmann ported a n  earlier version to Kiel, Ger -  
many, and  led two projects involving alternative approaches 
to pattern-raatching in the interpreter, and use of  the inter- 
preter to define interpreters and compilers for PASCAL. 

Among other  nonprocedural programming languages, 
the one  which is very similar in flavor to the equat ion inter- 
preter is PROL(XI [Ko79]. PROLOG accepts Horn  clauses 
in the first-order predicate calculus as programs. All existing 
PROLOG interpreters and compilers are incomplete - they 
sometimes fail to produce output  even  though an  output  fol- 
lows logically from the program. This is acortc, equence of  
PROLOG's  computationaUy very expensive semantics: a 
complete implementat ion o f  PROLOG requires a breadth- 
first evaluation of  the proof tree, but  this would require an  
unacceptable amount  of  space. PROLOG implementors have 
therefore chosen  to evaluate the proof  tree depth-first, with 

• back tracking. This evaluation strategy introduces a pro- 
cedural element absent in the strict semantics, and is respon- 
sible for the implementations' failure to produce logically 
enta,led output in certain cases. Since equation semantics is 
computationally much simpler, our equation interpreter can 
produce all of  the logically entailed outputs without making 
unacceptable resource demands.  

Another  language processor sirnilar syntactically to the 
equation interpreter is HOPE [BMS80], which also uses 
equations as programs. HOPE has more str ingent  restrictions 
o n  equations than our  interpreter. For example, HOPE:dis- 
tinguishes funct ion and constructor  symbols and prohibits 
equations in which subexpressions involve function symbols. 
This restriction greatly simplifies the pattern matching 
required to find instances of  equat ion lefthand sides. We 
believe that in view of  our  pat tern matching algorithms such 
a simplification does not lead to a significant performance 
improvement.  HOPE uses conventional  innermost  evalua- 
tion, instead of  lazy evaluation, for all operators except the 
conditional and cons. SO, it is possible to write equations, 
involving constructors o ther  than cons, for which HOPE will 
fail to find a logically entailed normal form because it follows 
an  irrelevant infinite evaluation of  a subterm not included in 
the fi~tl output. 

There  have been hybrid approaches to equational pro- 
gramming in which the equations are assigned a priority, e.g., 
[CIMWS0, MonS0]. If several reductions are possible at the 
same position, then  the one  whose equat ion has the highest 
priority is chosen. Such programming systems do not have a 
neat, well-understood semantics, but their proponents  con- 
sider them easy to use and of  practical importance. If one  
were to compare this approach to ours,  it should be remem- 
bered that we wish to obtain a practically useful programming 
system without sacrificing semantic rigor. 

3. Semant ic  Str ic tness  and its Consequences 

The  first and foremost design decision was to be abso- 
lutely faithful to the logical semantics. The  only type of  
failure tolerated in the process of reducing a term to normal 
form is exhaust ion of the available space re:wmrces. The  
main consequence of  this decision was the necessity of 
implementing lazy evaluation uniformly. Nearly all program- 
ruing languages evaluate conditionals in this way, and like 
t reatment  of  the LISP function cons has been proposed in 
[HM76, FW76, BMS80I, but we kr~w of  no other  language 
processor which implements lazy evaluation in all ~ s .  
Kahn and McQueen IKM771 have a PASCAL-like dataflow 
language in which all communicat ion between coroutines is 
performed in a demand-dr iven fashion equivalent to lazy 
evaluation, but  expressions inside routines are evaluated con- 
ventionally. Lazy evaluation has advantages for the user, 
allowing straightforward use of  a certain type of  parallel pro- 
gramming. [FW76, HM76] demonstra ted some of  these 
advantages in the case of  LISP. Section 7 shows how lazy 
evaluation automatically performs one  of  the design tasks in 
dyrumic programming which otherwise must  be explicitly 
programmed. 

A m t h e r  important cortc, equence of semantic strictness 
involves the inclusion of  efficient machine operations as 
primitives. Take, for example, integer addition. In principle, 
addit ion may be defined from zero and successor by equa- 
tions such as 

add(0,x) -- x 
add(s(y) ,x)  --  s(add(y,x))  

These equations produce a n  addition that is semantically 
correct, but unacceptably inefficient. The conventional  
course is to invoke the machine 's  addition operation to 
evaluate add(i,j)  whenever  i and j are integer numerals. The 
latter course is efficient, but cannot  be explained very well by 
logical consequence semantics because of  the possibility of  
overflow. In the equat ion interpreter, we may combine the 
good points o f  both approaches. What the machine addit ion 
really does is to implement the large, but finite set of  equa- 
lions add( I, I ) - -2 ,  add( 1,2)-..3, etc., representing those addi- 
tions not causing overflow. Those machine-implemented 
equations may be augmented by equations for addition in 
ba.~. maxint, where maxim is the largest integer represented 
by the machine. Thus, the user has the benefit of  the pre- 
cise semantics of  integer addit ion on  arbitrarily large 
nun~bers, and the efficiency of machine addition in the usual 
ease where the numbers  are not large. Hecause of lazy 
evaluation and the pattern-matching techniques described in 
Section 4, single-precision arithmetic does not have to pay 
the overhead of checking whether  the inputs are single preci- 
sion. 

The current  version of  the equation interpreter allows 
use of  the machine-implemented single-precision arithmetic, 
and leaves to the user the definition of  multiprecision arith- 
metic. Operations that, in conventional  programs, would 
cause overflow, are simply not performed, so that the even  
the user who has not written multiprecision equations sees 
correct, but possibly less helpful, output.  Of course, the 
equations for arithmetic and other  natural primitives should 
be writ ten once and saved away to avoid duplication of  effort. 
The facility to do so seems to be a special case of  the general 
need for facilities to structure and  combine equational 
definitions, discussed in .Section 5. We have chosen  to await 
results in the more general area, rather than to perform an  
ad hot- extension for primitive operations. 
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4. The Importance of Pa t t e rn -Match ing  Algori thms 

4.1 Motivat ion 

In order that programming with equations be really 
different f rom more conventional  programming styles, it is 
important to be able to write many equations, preferably 
between small terms, rather than a few huge ones. If all of  
the i=£orrr~tion about  a function f is given by a single equa- 
t ion, f (x)==T, then  the term T is essentially just  a lazy LISP 
program for f .  In order for equational programming to 
serve a purpose not already served by LISP, one must have 
an  interpreter capable of  processing many equations giving 
different pieces of  the definitions of  functions. The  imple- 
mentat ion must not penalize programs for using a large 
number  of  equations by sequential checking of  the left-hand 
sides of  equations to see which ones apply. In order  to com- 
pete in performance with conventional  LISP interpreters, the 
process of finding the next subexpression to replace must  
have a cost comparable to the cost of  manipulating the recur- 
sion stack in LISP. 

Instead of  sequential checking, we preprocess the equa- 
tions and produce tables to drive the reduction. These tables 
describe state transitions during a traversal of  the term that 
indicate immediately when  an  instance of  an  equat ion lefl- 
hand side is found, and tell which equat ion is involved. The  
overhead of each traversal step at run  time is only a table 
lookup. 

For multiple-pattern string matching, the Aho-Corasick 
generalization of the Knuth-Morris-Prat t  algori thm [AC75, 
KMP77] solves a problem closely analogous to ours. Exten-  
sion of  these string-matching techniques to terms 
(equivalently, trees) was treated separately in [HO82a]. In 
the last year of  the project, we discovered that the restric- 
t iom already imposed upon equations for o ther  reasons allow 
for a much simpler extens ion of string matching techniques. 
The  following subsection assumes a n  understanding of  the 
Aho-Corasick algorithm. 

4.2 A Specialized Pa t t e rn -Match ing  Algori thm 

The  current  version of  the equat ion interpreter is 
left-sequential.  That is, a term to be reduced is traversed to 
the left first, and any left-hand side that is found is replaced 
before the traversal continues. Such a strategy cannot  deal 
with certain equations, such as the parallel or equations: 

or(True pc ")'=--True; or ( x ,True )=--True. 

The interpreter preprocessor detects and rejects such equa- 
tions. For left-sequential equations, a special and simple 
pat tern-matching algorithm 'may be used. 

Tree patterns are flattered into preorder strings, omit-  
ting variables. The Aho-Corasick algorithm [AC75] is used 
to produce a finite au tomaton  recognizing those strings. 
Each slate in the automaton is annotated with a description 
of  the trec moves needed to get to the next symbol in the 
string, or the pattern that is matched, if the end of the string 
has been reached. Such descriptions need only give the 
number of  edges (~0 )  to travel upwards toward the root, 
and the left-right number of  the edge to follow downwards. 
For example, the patterns (equation left-hand sides) 
f ( f ( a . x  ) ,g (a ,y ) )  and  g (x ,b  ) generate the strings .[faga and  
gb, and the au tomaton  given in Figure 4.1. The  au tomaton  
cannot  be annotated consistently if conflicting moves are 
associated with the same state. Such conflicts occur precisely 
when  there exist preorder flattened strings of  the forms ,~/]1' 
and /]8, such that the annotat ions on  the last symbol of/~ in 

/ J 
/ / '  

l "  
J 

/ "  

g ' 

/ ' 

forward edge 
failure edge 

failure edges not shown all lead to the start state 
lu means move up or= level in the tree 
dl  means move down to son number 1 
m l  means a match of  pattern number 1 

Figure 4.1 

the two strings are d~f'erent. These differences are 
discovered directly by attempts to reassign state i~ormat ion 
in the automaton when = is the empty string, and by com- 
paring states at opposite ends of  failure edges when (, is not 
empty. When 1" and 8 are not empty, the conflicting annota- 
tions are both tree moves, and indicate a violation of  restric- 
tion (5) of  ,~ction !. ! .  When one of  1,,8 is the empty string, 
the cx~rresponding annotation reports a match, and indicates a 
violation of  restriction (3) or (4). In the example above, 
there is a conflict with c~-ffa,/].=g, 1".-a, 8-b. That is, after 
scanning .[fag, the first pattern directs the traversal down 
edge number I, and the second pattern directs the traversal 
down edge number 2. This conflict is discovered because 
there is a failure arc between states with those two annota- 
lions. 

4.3 Completeness of the  Pa t t e rn -Match ing  Algor i thm 

The restriction imposed on equations by the pattern- 
matching strategy above may be justified in a fashion similar 
to the justification of  deterministic parsing strategies. That  
is, we show that the algorithm succeeds (generates no 
conflicts) on every set o f  equations that is left-sequential 
according to a reasonable abstract definition of  sequentiality. 
In order to define sequentiality, we need some special terms 
for discussing computation steps in the interpreter. All o f  
the discussion in this subsection refers to an arbitrarily given 
set of  equations. 

Definition 4.1 
A set of  equations is regular if it satisfies restrictions 1-4 of  
Section i .I  (but  not necessarily restriction 5). 
A context is a term built f rom the constants  and operators in 
the given set o f  equations, as well as the new constant  sym- 
bol =. 
An instance of  a context  C is any term or  context  S resulting 
from the replacement of  one  or  more occurrences of  ¢e in C. 
A left conte.xt is a context  C such that there is a path f rom the 
root of  C to a leaf, with no occurrences of  o, o n  or  to the left 
of  tl-.¢ path, and  nothing but =s to the right of  the path. 
A I(~--lraver~l COOteXt is a pair < C , I > ,  where C is a left 
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context, and I is a node on  the path dividing ,,s from other 
symbols in C. 
A redex is an occurre~'ce of an insta,x,-.-~e of  a left-hand side of  
an equation (letting each variable occurrence be treated as an 
~'J)), 
A term S /--reduces to a term T ifS may be transformed into 
T by replacing redexes by arbitrarily chosen terms. 
A redex R in a term S is essential if there is no way to /- 
reduce S to normal form without reducing R. 
A term S is root stable if there is no redex T such that S /- 
reduces to T. 
A redex R in a term S is root essential to S if there is no way 
to / - reduce  S to a redex or a root stable term without reduc- 
ing R. 

A context represents the information known about a term 
after a partial traversal. The oJs stand for unknown portions. 
A left-traversal context contains exactly the part o f  a term 
that has been seen by a depth-first le~t traversal that has pro- 
gressed to the specified node. /-reduction is the best approx- 
imation to reduction that may be derived without knowing 
the right-hand sides of  equations. 

In the process of  reducing a term by outermost reduc- 
tiot~% our short-term goal is to make the whole term into a 
redex. If that is impossible, then the term is root stable, and 
nnay be cut down into independent subproblems by removing 
the root. 

Definition 4.'~ 
A set of  equations is slrongly left--sequential if there is a set of  
left-traversal conte~'ts L such that the following conditions 
hold: 
I. For all < C  J >  in I., the subtree of  C rooted at I is a 
redex. 
2. For all < C , I >  in I., S an instance of  C, / is essential to 
S. 
3. For all left-traversal contexts < C , / >  not in L, S an 
instance of  C, / is not mot-essential t o S .  
4. Every term is either root stable or an instance of a left 
context in I.. 

In a strongly left-sequential system, we may reduce a term by 
traversing it in preorder to the left. Whenever a redex is 
reached, the left-traversal context specifying that redex is 
checked for membership in I,. If the left context is in I,, the 
redex is reduced. Otherwise, the traversal contirnaes. When 
no left context in I, is found, the term must be root stable, 
so the root may be removed, and the resulting subterms pro- 
cessed independently. ( I )  and (2) guarantee that only essen- 
tial redexes are reduced. (3) guarantees that no root- 
essential redex is skipped. (4) guarantees that the reduction 
never hits a dead end by failing to choose any redex. The 
analogous property to strong left-sequentiality, using reduc- 
t ion instead of  /-reduction, is undecidable. Notice that 
strong left-sequentiality depends only on the left-hand sides 
of  equations, not on the right-hand sides. 

Strong left-sequentiality is a special case of  the strong 
sequentiality defined by Huet and Lt~vy IHL791, who give a 
thorough technical treatment o f  these concepts. Huet and 
L~vy have a pattern-matching algorithm that is much rnore 
general than ours, but its practical implementation has not 
yet been studied. We expect that our  algorithm wil l  continue 
to be useful because of  its simplicity, even when implemen- 
tations of  the Hue t - l~vy  method are available to cover their 
wider class o f  sequential systems. 

Strongly left-sequential sets o f  equations are intended to 
include all o f  those systents that one might reasonably expect 

IO process by scanning from left to right. Notice that 
definition 4.3 d(ms not require L to be decidable. Also, a 
strongly left-sequential system may not necessarily be. pro- 
cessed by leftmost-outermost evaluation. Rather than 
requiring us to reduce a leftmost redex, definition 4.3 merely 
requires us to decide whether or not to reduce a redex in the 
left part of  a term, before looking to the right. Every redex 
that is reduced must be essential to finding a normal form. 
When the procedure decides not to reduce a particular redex, 
it is only allowed to reconsider that choice after producing a 
mot-stable term and breaking the problem into smaller 
pieces. While strongly left-sequential systems are defined to 
allow a full depth-first traversal o f  the term being reduced, 
the algorithm of  Section 4.2 avoids searching to the full 
depth of  the term in many cases by recognizing that certain 
subterms are irrelevant to choosing the next step. 

Theorem 4.1 
The pattern-matching algorithm of  Section 4.2 succeeds (i.e., 
generates no conflicts) if and only if the input patterns are 
left-hand sides of a regular and strongly left-sequential set of  
equations. 
Proof sketch: 
(~¢') If the pattern matching-automaton is built with no 
conflicts, then L may be defined to be the set of  all left- 
traversal contexts < C , / >  such that I is the root o f a  redex in 
C, and / is visited by the automaton, when started at the 
root of  C. 

(<=') If a conflict is found in the pattern-matching automa- 
ton, then there are two flattened preorder strings a/8~, and/88 
derived from the patterns, with conflicting tree moves at 
from /9 to y and from /8 to B. Without loss of  generality, 
assume that there are no such conflicts within the two 
(~currences of/8. ~,/8, with its associated tree moves, defines 
a context C, which is the smallest left context allowing the 
traversal specified by a/8. B defines a smaller left-traversal 
context D in the same way. D is contained as a subterm in 
C, in such a way that the last nodes visited in the two traver- 
sals coincide. If one or both of  7,8 is empty, then C demon- 
strates a violation of  restriction (4) or (3), respectively. So, 
assume that ~,,8 are not empty, and the annotations at the 
encls of  the/gs are both tree moves. 

Consider the two positions to the right of  C specified by 
the two conflicting traversal directions for aB and/8. Expand 
C to E by filling in the leftmost of  these two positions with 
an arbitrary redex, and let n be the root of  this added redex. 
Let equ t be the equation associated with whichever o f  a/8.|,, 
/8~ directed traversal toward this leftmost position, and let 
equ2 be the equation associated with the remaining one of  
~x/87, /88. <E,n> cannot be chosen in L, because there is an 
instance S of  E in which a redex occurs above n matching 
the left-hand side of  equ2, and S may be/-reduced to normal 
form at this redex, wi thout reducing the redex at n in E. 
<E,n > cannot be omit ted f rom L, because there is another 
instance T o r e  in which everything but n matches the rexlex 
associated with equ ~, and n is therefore root-essential to T. 
I-q 
For example, the pair of  equation left-hand sides f (g(x ,a ),y) 
and g(b,c) have the preorder strings fga and gbc. A conflict 
exists with a - . f ,  B--g, ~,=-a, 8--,c. The first equation directs 
the traversal down edge 2 after seeing .fg, and the second 
equation directs it down edge 1. The conflicting prefixes f g  
and g produce the context ./(g(aJ,=),~). The context above 
is expanded to the left-traversal context consisting of  
f(g(g(b,c),to),to) with the root o f g ( b , c )  specified. This left- 
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traversal context cannot be chosen in I. (i.e., it is not safe to 
reduce the redexg(b,c) in this case), because the leftmost ¢e 
could be filled in with a to produce .[(g(g(b,c),a),oJ), which 
is a redex of  the fo rm/ ' (&(x ,a ) ,y ) ,  and can be / - r educed  to 
normal form in one  step, ignoring the smaller redex g(b,c). 
But. this Icft-traversal context may not be omit ted from I. 
(i.e., it is not safe to omit reducing x,(h,c )), because the left- 
most = may also be filled in with c to produce 

f(g(g(b,c),c),~,~), and reduction ofg(b,c) is essential to get a 
normal form or a root-stable term. 

4.4 Interpret ing Nonsequent ia l  Sets of Equations. 

In the future, an improved version of  the equation 
interpreter should eliminate the restriction to strongly left- 
sequential systems, and allow definitions of" (:onstructs such 
as the parallel or. The pattern-matching algorithm of Section 
4.2 may be extended to handle nonsequential systems by 
annotating each state in the automaton with a nonempty set 
of  tree moves. When more than one move is specified, 
parallel processes must be initiated to follow the different 
possibilities. This approach keeps the degree of parallelism 
low (but not always the lowest possible), which is desirable 
on sequential hardware. To =naintain acceptable perfor- 
mance, these processes must be able to wait for results pro- 
duced by other such processes when two or  more of them 
wander into the same region (else work wil l  be duplicated), 
and a process must be killed whenever a second process 
creates a redex containing the first one (else wasted work 
may be done on a subterm that has been discarded). Solu- 
tions to these problems are well-known in principle, but care- 
ful study is required to implement them with a very small 
time and space overhead. Even when such an implementa- 
tion is accomplished, sequential algorithms such as ours and 
Huet and I_~vy's wi l l  be useful because they can avoid the 
overhead of  the parallel methods. 

5. Separation of Syntact ic  Processing From Semant ics  

One of  the main problems in making the equat ion inter- 
preter useful to a human  programmer,  is the syntactic form 
of  the terms written within equations, and those presented 
for reduction to normal form. Prefix notation is the standard 
of reference in mathematics, but is almost never convenient 
for a specific application. We discovered this problem with a 
prototype interpreter, when we tried to write equations 
defining LISP. Most of  our time was spent wrestling with 
hairy expressions for simple lists, such as 
cons(l,cons(2,cons(3,cons(4,nil)))), for (1 2 3 4 ) ,  instead of  
thinking about  semantic issues. Unfortunately,  different 
domains of  computat ion seem to have developed different 
notation, and we know of  none that is universally acceptable. 
So, we decided to communicate with the equation interpreter 
through a number of  different front ends, stored in a stan- 
dard library. A user may, of  course, use his or her own if  
the ones provided do not suffee. It is important to be able 
to use the same syntactic definitions of  terms to parse terms 
in equations, and to parse terms before evaluation. 

A way to separate syntax and semantics thoroughly is to 
use an explicit uniform internal form for the abstract syntax 
of  terms and equations, into which special syntaxes are 
translated. This internal syntax is string-based which greatly 
simplifies porting the system to a new machine. These front 
ends may be written in a any programming language. Struc- 
ture editors are the ideal front ends in our view, but at 
present we use lex and yacc to produce parsers. Of course, 
for consistency the interpreter also produces its output in 

internal form, and the output is then sent to one of a library 
of  pretty-printers for display. Current parsing technology 
t ~ k e s  it easy to use the same grammar for terms in parsing 
both preprocessor and interpreter input, but the (much 
easier) pretty-printers are written separately. While a pro- 
gram to generate par.~rs and unparsers (pretty-printers) 
from the same grammar would be very nice, we prefer to 
await the availability of  grammar-driven structure editors, 
with which the only syntactic transformation required wil l  be 
the pretty-printing. 

Several advantages result f rom the discipline of using an 
explicit intermediate form between text produced by the user 
and semantic processing by the system. First is the complete 
separation of  syntactic and semantic modules. Conventional 
use of grammars to generate parsers requires a complex 
interface between the parser and the semantic processor, spe- 
cialized to the particular parser generator. We require no 
internal connection whatsoever between syntactic and seman- 
tic processors. Second, once a context-free parser has done 
its task, there may remain issues, such as checking symbol 
declarations against use, that are purely syntactic ( in spite of  
compiler-writer's jargon), but are not expressible by a 
context-free grammar. By letting the parser produce an expli- 
cit syntax tree, we are at liberty to process that tree further 
before submitting it to the semantic processor. In fact, we 
have implemented the nort-context-free parts of  syntactic 
analysis in the equation interpreter itself by equational pro- 
grams that transform the abstract syntax after context-free 
parsing and before semantic processing. Systematic encod- 
ings of  notation, such as Currying (transforming f(a,b,c) 
into apply(apply(apply(f,a ),b),c)) may be implemented at this 
level. 

Last, and perhaps most important in the long run, the 
use of an explicit abstract syntax allows applications of  the 
system to develop far beyond the simple context of  a user 
who types in a program, preprocesses it, types in an input, 
and awaits the results at his terminal. Many future applica- 
tions of  our interpreter may involve input terms, and even 
equational programs, that are themselves produced automati- 
cally by other programs, and the outputs may often be sub- 
ject to other processing before, or instead of, being displayed. 
The very syntactic sugar that makes program and input entry 
easier for a human, makes it harder to produce automatically. 
Simply by omitt ing the syntactic pre- and postprocessors 
when appropriate, we may build useful systems containing 
equational programs, and the communication wi th in these 
systems need not deal with the inefficiencies and notational 
problems (especially quoting conventions) of  the humanly 
readable syntax. We have already taken advantage of  this 
feature, by omitt ing the pre- and postprocessin8 steps f rom 
the equational programs that do syntactic analysis of  equa- 
tional programs. A more important  use of  this feature to 
extend the usefulness of  equational programming is 
described below. 

Although equational programs require substantial trans- 
lation to be executed o n  conventional  machinery, ou r  current  
language is very low level in the s ame  that no facilities are 
provided for organizing or moduiarizing large programs. The 
implementat ion o f  a high-level approach to equational pro- 
gramming should include the ability to combine separately 
wri t ten equational programs into larger ones,  in a semanti-  
(:ally meaningful, rather  than purely lexical, way. Combining  
forms such as those described by Burstall and  Goguen  
[BG65] should provide a good starting point for development  
of  higher-level techniques in equational programming. We 
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expect to implemem such combining forms by equational 
programs that transform the abstract syntax of  other equa- 
tional programs. Once we have chosena pleasant mechanism 
for resolving name clashes, this capability is integrated into 
the system between the front end and the semantic part of  
the equation preprocessor. 

preprocessor 

equational program 

I 

1 

I semantics 1 

term term 

Interpreter 

Figure 5.1 

TI~e considerations above, along with the separate 
preprocessing step for pattern matching, lead naturally to the 
system configuration shown in Figure 5.1. Communication 
between modules is always by UNIX text fries. 

6. Experience with the System 
In [HO82b], we reported our  experiences with an earlier 

version of  the system. Briefly, we concluded that the 
bottom-up matching strategy is extremely fast permitting 
reductions at very high rates. Since then we conducted two 
major experiments in graduate seminars. 

The purpose of the first experiment was to evaluate the 
practical performance of  the various pattern matching algo- 
rithms proposed in [HO82a]. We found that the top-down 
method with counter coordination is inferior to the other two 
methods, because it is slightly slower in detecting matches 
and requires more processing after reductions to maintain 
matching information. In particular, the matching time is 
prOportional to the number of  patterns to be matched. Since 
we wish to encourage writing many small equations, the large 
number of  resulting patterns is noticeable in the perfor- 
mance. The top-down method with bitstring coordination 
performed better in detecting matches and update processing, 
but its match time also Increases in proportion to the number 
of  patterns matched. The perceived performance differential 
is probably due to the smaller locality In which update pro- 
cessing has to be performed. 

Top-down matching wRh bitstring coordination did rot  
offer a clear advantage over the bottom-up method, despite 
its cheap proprocessing. Bottom-up matching has more 

expensive preprocessing and requires tables to direct the 
matching algorithms which can be fairly large, however, it 
affords better diagnostics and is fastest in locating matches 
and update processing. This comparative appraisal of  the 
bottom-up technique is corrotx}ramd by the work of Wilhelm 
(e.g., [GMW80]), who has used this matching method 
extensively in his equational approach to compiler writing. In 
Wilhelm's experience (as in ours), the patterns which give 
rise to poor preprocessing times do not normally arise in 
applications. Moreover, there are heuristics to reduce space 
demands and compress the tables needed by the matching 
algorithm resulting in acceptable sizes. 

In the case of  left-sequential equations, the new method 
derived from string matching is in our opinion the best 
choice, as it is as fast as the bottom-up approach at run time 
and usually as space efficient as the top-down methods. 

A second experiment was to investigate the suitability of  
equational programs for writ ing compilers for procedural 
languages. We chose PASCAL as compromise between 
source language complexity and the time constraints in a 
class room situation. Results indicate both pros and cons o f  
writing compilers with equations: On the one hand, for attri- 
bute maintenance equations are not especially converdent, 
but on the other, the equational compiler was very concise 
and the students felt that their programming of it was much 
lass error-prone. The project also pointed out a need for a 
structured specification technique similar to the ones advo- 
cated in I1~J65] (e.g., "derive'), which allow a single, com- 
mon specifu:ation of  subtasks whose equations differ only in 
inessential ways. 

7. Avoiding Repeated Evaluation of Subterms. 

Outermost evaluation, while avoiding evaluation of  sub- 
terms that am irrelevant to the final result, allows unn~,.,es- 
sary duplication of  relevant subterms. Whenever a variable 
appears more than once on the right-hand side of  an equa- 
tion, innermost evaluation would evaluate the term substi- 
tuted for that variable once, before applying the equation in 
question. Outermost evaluation appears to create multiple 
copies of  such a term, which apparently will be evaluated 
separately. It is easy to avoid this particular duplication of  
effort by implementing multiple instames of  the same vari- 
able by multiple pointers to the same subterm. Such collaps- 
ing, of  course, makes future implementation of  parallel 
reductions (Section 4.4) more diff~ult, because several 
processes may simultaneously occupy the same subterm. 

We have gone farther in avoiding repetition. Whenever 
an instam¢ of  a right-hand side is created, the newly created 
nodes are hashed, and coalesced with any existing identical 
nodes. This innovation was introduced as an optimization by 
Paul Golick in a prototype version of  the interpreter. As a 
result, if a subterm T is created repeatedly, it is still 
evaluated only once. Further improvements are possible. If, 
as a result o f  reduction of  one of its proper subterms, T 
becomes identical with an existing subterm, we do not detect 
such an identity. To do so would require restructuring of  the 
hash table, and a noticeable extra overhead. Such a dynamic 
detection of  identical subterms would lead to an implementa- 
t ion of  the directed congruence ctoaa'e algorithm of Paul Chew 
[ChLS0], and is left to future work. The current level o f  
identity detection already has interesting consequences for 
programming. 

117 



7.1 A u t o m a t i c  Dynamic Programming. 

Dynamk; programming may be viewed as a general tech- 
nique for transforming an inefflcient recursive program into a 
more efficient, iterative one which stores some port ion o f  the 
graph of  the recursively defined function in a data structure, 
in order to avoid recomputation of  function values. In a typ- 
ical application of  dymmic programming, the programmer 
must specify how the graph of  the function is to be stored, as 
well as the order in which the graph is to be computed. The 
latter task may be handled automatically by the equation 
interpreter. 

We illustrate this automation on equations to solve the 
optimal matrix multiplication problem of  [AHU74].  The 
input to the problem is a list o f  integers ( d o ' ' .  am)m 91, 
representing a sequence M l , . . .  Mm of  matrices o f  dimen- 
siors doxdt ,dsxd2, . . .d , ,_ l×d, ,  respectively. The problem is 
to find the cost o f  the cheapest order for multiplying such 
matrices, assuming that multiplication o f  an /xJ by a j x k  
matrix costs toj, k. There is an obvious recursive solution 
given by 

c o s t  [(do" • d , ,  ~l = 

m i n { c o s t [  ( d o  . • • d ~ ) ' f " c o s t [  (d~ " • • d m  )]'hd0*d~*dm ] 0< i  ~m } 
cost [(do d I ) ] - 0  
This recursive solution, implemented dlrecgy, requires 
expor~ntial  time, because it recomputes the same values o f  
the cost function many times. Dymmic  programming 
achieves a polynomial solution by producing the graph of  the 
cosz function as a static data structure, into which each value 
is stored only once, but inspected repeatedly. Instead of" the 
conventional approach o f  defining only a small f inite part o f  
the graph of  the coat function, we define the infinite graph, 
and the outermost evaluation strategy o f  the equation inter- 
prefer guarantees that only the relevant part o f  the graph is 
actually computed, and in the right order. The more converb 
tional solution o f  this problem requires the programmer to 
specify just the right finite port ion o f  the graph o f  cost to 
compute, and the precise order o f  its computation. 
The fol lowing equational program solves the optimal matrix 
multiplication problem, using LISP notation. Lines begin- 
ning with colon are comments. 

: In  the fol lowing equations, the function cost is represented 
: by an infinRe.-dimensio nai infinite list giving the graph o f  
: the functiotx 

: costgraph[O] -,. 

: (0 (cost[(l)]  (cost[(] 1)1 (cost[(! ! 1)] ... ) 

: (cost[(l ! 2)] ... ) 

: .°°) 

: (cost[(l 2)] (cost[(l 2 1)1 ... ) 

: (cost[(l 2 2)] .,. ) 

: .o.) 

: °,.) 

: (~Sd(2 ) l  (reSt[(2 1)1 (coSt[(2 I i ) ]  ... ) 

: . . )  

• . , .  ) 

: ..°) 

: That is, cost[(d0 ... dm) ]  is Ihe first element o f  the list 
: which is element dm + 1 of  element dm-I + 1 o f  ... 
: element dO + 1 o f  costgraph[()], cost[0)]  is always 0, but 
: inclusion o f  these 0s simplifies the structure o f  costgraph. 
: costgraph[a], for a <  > O is the fragrnent o f  costgraph[ O] 
: whose indexes are all prefixed by a. 

Symbols 

: operators directly related to the computation o f  cost 
cost: I; 
costgraph: I ; 
costrow: 2~ 
reccost: I ;  
su tx~osts: 2; 

: list-manipulation, logical, and arithmetic operators 

coi~: 2; 
nil: 0; 
min: 1; 
index: 2; 
length: I;  
element: 2; 
first n: 2; 
first: I; 
tail: !; 
aftern: 2; 
last: 1; 
addend: 2; 
cond: 3; 
add: 2; 
equ: 2; 
less: 2; 
subtract: 2; 
multiply: 2; 
include integer_numerals, truth_values. 

For all a, b, i, j, k, x, y: 

cost[a] --  index[a; costgraph[O]]; 

: costgraph[a] is the infinite graph o f  the cost funct ion for  
: arguments starting with the prefix a. 

costgraph[a] -- (reccost[a]. costrow[a:, 1]); 

: costrow[a; i] is the infinite list 
: (costgraphlai] costgraph[ai+ 1 ] ... ) 
: where al is a with i added on at the end. 

costrow[a; fl - -  
(costgraph[addend[a; i ] ] .  costrow[a; add[i; !]1), 

: reccost[a] has the same value as cost[a], but is defined 
: by lhe recursive equat iom from the header. 

reccost[(I J)l - 0; reccost[(i)] -.. 0; recoost[()] - 0; 
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recxostI(i j .  a)l - min[subcx)stsl(i j .  a); lengthla]]l 
-- where a is ( k .  b) eixl where; 

: su~-osts[a; i] is a finile list of the recursively computed 
: costs of (dO ... din), fixing the last index removed at 
:i, i-I . . . .  I. 

subcosts[a; i] -- condlequli; 0]; O; 
(addladd[costlfirstn[addli; I ]; all;  

cost[afternli; a]]]; 
mu Itiply[ mult iply[ firstla]; 

element[add[i; I]; all;  
iastla]l] 

• subcosts[a; add[i; -1]])]; 

: Definitions of  list-manipulation operators, 
: logical arvd arithmetical operators. 

min[(i)l -- i; 

min[( i ,  a)] -- cond[lessli; minla]l; i; min[a]l 
where a is ( k .  b) end where; 

indexl(); (x .  b)] - .  x; 

index[(i,  a); x] - indexla; elementladd[i; 1]; x]]; 

length[()] -- 0; 

lengthI(x, a)] -- add[length[a]; I ]; 

elementli; (x .  a)] , -  cond[ectuli; 1 ]; x; 
element[subtract[i; 11; a]]; 

firstn[i; a] -- cond[equ[i; 01; 
O; 
(first[al. 
firsm[subtractli; 1 ]; tailla[l)]; 

firstI(x, a)] -- x; tail[(x, a)] -- a; 

afternli; a] -- cond[equ[i; 0]; 
a; 
aftern[subtractli; 1]; tail[a]]]; 

lastl(x)l - x; 

last[(x y .  a)] -- last[(y, a)]; 

adclend[(); yl ' -  (y); 

addend[(x,  a); yl -- ( x .  addendIa; y]); 

cond[true; x; y] -- x; cond[false; x; y] -- y; 

include addint, ec~int, subint, multint. 

While understanding the mapping of the graph of the func- 
tion cost onto the structure costgralCall is somewhat tedious, 
such tediousness might be greatly ameliorated by a special- 
ized notation for such problems, without losing the advan- 
tage of automatic discovery of the correct order of computa- 
tion. 

The efficiency (but l~t Ihe correctness) of the program 
at'~ve depends on  the fact thai all instances of costgraphl()] 
will be detected and coalesced by the interpreter. A future 
inlplec~lentation of the clyuramic identity detection embodied 
in the directed congruence closure algorithm [ChL80] would 
allow the .came efficiency to be achieved by the straightfor- 
ward recursive program. 
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