
I m p l e m e n t a t i o n of an Interpreter for Abs t r ac t E q u a t i o n s

Christoah M . t l c f f m a n n

M i c h a e l J: O 'Donne l l

Purdue University
The Johns Hopkins University

ABSTRACT

This paper summarizes a project, introduced in [HO79,
I-IO82b], whose goal is the implementat ion o f a useful inter-
preter for abstract equations that is absolutely faithful to the
logical semantics of equations. The Interpreter was first dis-
tributed to Berkeley UNIX VAX sites in May, 1983. The
main novelties of the interpreter are
(1) strict adherence to semantics based on logical conse-

quences;
(2) "lazy" (outermost)evaluation applied uniforml~

(3) an implementation besed on table-driven pattern match-
in8, with no run-time penalty for large sets of equa-
tions;

(4) strict separation of syntactic and semantic processing, so
that different syntaxes may be used for different prob-
lems.

I. Introduction

The prime motivation for the equation interpreter pro-
jeet was to develop a programming language whose semantics
can be described completely in terms of simple mathematical
concepts. We chose equations as the notation for the project
because E -- F has

(1) a n obvious mathematical Interpretation - E and F are
different mines for the same thing,

(2) a natural and simple computational interpretation -
replace E by F whenever possible, and

(3) well-documented theoretical results o n the equivalence
of these two interpretations Church-Rosser or
confluence theorems.

A / t o , ram for the equation interpreter Is a list of symbols to
be used, followed by a lbt of equations involving those sym-
bols and variables. The mean/rig of a program is completely
described by the following:

This research was supported in pert by the National S~ierce Foundation
under grams MCS 78-01812, and MCS 82-17996.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advanhage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

O 1983 A C M 0 - 8 9 7 9 1 - 1 2 5 - 3 / 8 4 / 0 0 1 / 0 1 1 1 $00 .75

Definition 1.1
A term containing no imtance o f a left-hand side of an equa-
tion is in n o r m a l f o r m .

An interpreter for a set of equations is a program that, given
an input term E, produces a term F, in normal form, such
that E - - F is a logical consequence o f the equations, if such
an F exists. If no such F exists, the interpreter must not
produce output.

1.1 Syntax of the Equat ional Programming Language

Input to the equation interpreter is in the following
form:

Symbols

s y k e s ,;

o n * d e s ~;

s y m d e s m *

For all va t i,var 2, " " " vm'n:

equn z;

equ n 2;
e q u n v •

Symbol descriptors indicate one or more symbols in the
language to be defined, and give their arities. Intuitively,
symbols of arity 0 are the constants of the language, and
symb()ls of higher arity are the operators. A s~zbol descriptor
(snndes) is either of the form
s~=,.wm2, ' • • symm: amy m)1

or of the form

Include s~nclass =, • • • .wmcla~n n 91

Syntactically, ~nbols and ~nbo l classes (symclass) are
identifiers. A symbo ! class indicates the inclusion of a
predefined class of symbols. The classes available are
atomic_symbols, Integer_numerals, and truth values. Symbols
that have been explicitly declared in the Symbols section are
called literal ~ym~ls, to distinguish them f rom members of
the predefined classes.

Variables (vat) are identifiers, of the same sort as sym-
bols. An equation (equn) is either of the form

term l="/etTfl 2
of the form
term z~-term 2 where quali f icat ion end where

111

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800017.800522&domain=pdf&date_stamp=1984-01-15

or of the form

Include equclass I, " ' " equclaSSm

Equation classes (equclass) are identifiers indicating the inclu-
sion of a large number of predefined equations. These
classes include the defining equations for the standard arith-
metic operations. For example, addition is defined by'
add(1,l)=.2, add(l,2)=3, etc. Of course, such equations are
not stored ,explicitly, but their effect is produced by efficient
machine opemtions.

A qualification is of the form

quahtem ~, • • l qualitem m m ~ I

arid qua/items are of the forms

var i~ qua~term
vt~ I, ' " " var~ are qua/term

a n d qua/terms are of the forms

in predefined_s~tbol__class
term

qualterm where qual(fication end where
either ~ a l t e r m j or. • • qua/term, end or

Qualifications, as defined above, restrict the ranges of
variables to terms of given forms. Normally, variables range
over all terms in the language de.,cribed by the Symboh sec-
tion° Different syntaxes for terms may be chosen to suit
different problems. In this paper, we will use two different
term syntaxes: 1) the standard mathematical notation in
which function application is denoted f(a,b), and 2) LISP
notation, in which such application is fla;b], and parentheses
are used to abbreviate uses of the special binary operator
cons to build lists and trees. A lambda notation is also avail-
able, and it is straightforward to add yacc and lex programs
for o ther syntaxes as needed.

The following example illustrates all of the constructs
described above, using LISP notation.

Example !.1

Symbols

: List constructors
cons: 2; nil: 0;

: Standard arithmetic operators
add: 2;

: nonils[x] is the list containing all of the nonnil
: e lements of the list x

no nils: l ;

: leafcountlx] is the number of leaves in the tree x
leafcou nt: I;

include atomic_symbols, integernumerals.

For all x, y, z, rein:

nonils[()] -- ();

nonils[(() . rem)] -- nonils[rem];

nonilsl(x, rem)] -- (x . nonilslrem])
where x is either (y . z)

or in atomicsymbols
end or

end where;

leafcou nti() l -- 0;

leafcount l (x , y)l -- add[leafcount[x]; leafcountly]];

include addint.
Notice that the symbols cons, nil, and add must be declared.
They appear implicitly in the equations. (x . y) is merely an
abbreviation for cons[x;y]. "include addint" is semantically
equivalent to the set of equations defining addition of integer
numerals.

In order for the reduction strategies used by the equa-
tion interpreter to be correct according to the logical-
consequence semantics, some restrictions must be placed on
the equations. Presently, 5 restrictions are erfomed:

I. No variable may be repeated on the left side of an equa-
tion. For instance,

!l(x ,y ,r)=y

is prohibited, because of the 2 instances of y on the left
side.

2. Every variable appearing on the right side of an equa-
tion must also appear on the left. For instance, f (x) . , , y
is prohibited.

3. Two different left sides may not match the same expres-
sion. ~ the pair of equations

g(0,x)=0; g (x , I) = l

is prohibited.

4. When two (not recessarlly different) left-hand sides
match two different parts of the same expression, the
two parts must not overlap. E.g., the pair of equations
f lrst (pred (x))--pred f unc ; pred (~ucc (x))--x

is prohibited, since the left-hand sides overlap in
.first (l ied (suet (O)).

5. It must be possible, in a left-to-right preorder traversal
of any term, to identify an instance of a left-hand side
without traversing any part of the term below that
instance. For example, the pair of equations

f (g (x , a) ,y)==O; g(b ,c) - - t

is prohibited, since after scanning f (g it is impossible to
decide whether to look at the first argument to g in
hopes of matching the b in the second equation, or to
skip it and try to match the first equation.

Sets of equations satisfying 1-4 above are called regular. The
property described in (5) is strong left--sequentiality. V i o l a .
tions of strong left-sequentiality may of ten be avoided by
reordering the arguments to a function. Strong left-
seque ntiality is treated in more detail in Section 4.

Restrictions 1-4 guarantee that normal forms are
unique, and that outermost ¢~,eluation wil l find ell .norn~l
forms. Restriction 5, which technically subsumes the other
four, wil l be removed in a later version with an implementa-
tion of parallel evaluation. Restriction 3 will also be relaxed
to allow different left-hand sides to match when the
corresponding right-hand sides agree, as in
or(True ~c)==True , or (x ,True)==True.

1.2 Conten ts

The remainder of the paper discusses the mawr ideas of
the pro~ect and its execution, as well as our experience with
using the system. Section 2 gives the history of the project
and compares the equation interpreter to PROLOG and
HOPE [BMSS0]. Sections 3-5 discuss the most important

112

design decisions and their consequences. Section 6 discusses
our experience in using the system, and Section 7 demon-
strates one of the programming adva,=tages of the outermost
(lazy) evaluation strategy.

2. History of the Project

The logical foundations of the pro k~ct, results concern-
ing uniqueness of normal forms and correct orders of evalua-
tion, come from [O'D77]. From 1978 to 1981, work toward
an implementation, both in theoretical development of algo-
ri thms and in the building of prototype systems, was per-
formed by the authors, with programming aid f rom two stu-
dents, Giovanni ~ and Paul Golick lHO82b]. Final
preparation for distribution was done by O'Donnel i in 1982-
1983, while Hoffmann ported a n earlier version to Kiel, Ger -
many, and led two projects involving alternative approaches
to pattern-raatching in the interpreter, and use of the inter-
preter to define interpreters and compilers for PASCAL.

Among other nonprocedural programming languages,
the one which is very similar in flavor to the equat ion inter-
preter is PROL(XI [Ko79]. PROLOG accepts Horn clauses
in the first-order predicate calculus as programs. All existing
PROLOG interpreters and compilers are incomplete - they
sometimes fail to produce output even though an output fol-
lows logically from the program. This is acortc, equence of
PROLOG's computationaUy very expensive semantics: a
complete implementat ion o f PROLOG requires a breadth-
first evaluation of the proof tree, but this would require an
unacceptable amount of space. PROLOG implementors have
therefore chosen to evaluate the proof tree depth-first, with

• back tracking. This evaluation strategy introduces a pro-
cedural element absent in the strict semantics, and is respon-
sible for the implementations' failure to produce logically
enta,led output in certain cases. Since equation semantics is
computationally much simpler, our equation interpreter can
produce all of the logically entailed outputs without making
unacceptable resource demands.

Another language processor sirnilar syntactically to the
equation interpreter is HOPE [BMS80], which also uses
equations as programs. HOPE has more str ingent restrictions
o n equations than our interpreter. For example, HOPE:dis-
tinguishes funct ion and constructor symbols and prohibits
equations in which subexpressions involve function symbols.
This restriction greatly simplifies the pattern matching
required to find instances of equat ion lefthand sides. We
believe that in view of our pat tern matching algorithms such
a simplification does not lead to a significant performance
improvement. HOPE uses conventional innermost evalua-
tion, instead of lazy evaluation, for all operators except the
conditional and cons. SO, it is possible to write equations,
involving constructors o ther than cons, for which HOPE will
fail to find a logically entailed normal form because it follows
an irrelevant infinite evaluation of a subterm not included in
the fi~tl output.

There have been hybrid approaches to equational pro-
gramming in which the equations are assigned a priority, e.g.,
[CIMWS0, MonS0]. If several reductions are possible at the
same position, then the one whose equat ion has the highest
priority is chosen. Such programming systems do not have a
neat, well-understood semantics, but their proponents con-
sider them easy to use and of practical importance. If one
were to compare this approach to ours, it should be remem-
bered that we wish to obtain a practically useful programming
system without sacrificing semantic rigor.

3. Semant ic Str ic tness and its Consequences

The first and foremost design decision was to be abso-
lutely faithful to the logical semantics. The only type of
failure tolerated in the process of reducing a term to normal
form is exhaust ion of the available space re:wmrces. The
main consequence of this decision was the necessity of
implementing lazy evaluation uniformly. Nearly all program-
ruing languages evaluate conditionals in this way, and like
t reatment of the LISP function cons has been proposed in
[HM76, FW76, BMS80I, but we kr~w of no other language
processor which implements lazy evaluation in all ~ s .
Kahn and McQueen IKM771 have a PASCAL-like dataflow
language in which all communicat ion between coroutines is
performed in a demand-dr iven fashion equivalent to lazy
evaluation, but expressions inside routines are evaluated con-
ventionally. Lazy evaluation has advantages for the user,
allowing straightforward use of a certain type of parallel pro-
gramming. [FW76, HM76] demonstra ted some of these
advantages in the case of LISP. Section 7 shows how lazy
evaluation automatically performs one of the design tasks in
dyrumic programming which otherwise must be explicitly
programmed.

A m t h e r important cortc, equence of semantic strictness
involves the inclusion of efficient machine operations as
primitives. Take, for example, integer addition. In principle,
addit ion may be defined from zero and successor by equa-
tions such as

add(0,x) -- x
add(s(y) ,x) -- s(add(y,x))

These equations produce a n addition that is semantically
correct, but unacceptably inefficient. The conventional
course is to invoke the machine 's addition operation to
evaluate add(i,j) whenever i and j are integer numerals. The
latter course is efficient, but cannot be explained very well by
logical consequence semantics because of the possibility of
overflow. In the equat ion interpreter, we may combine the
good points o f both approaches. What the machine addit ion
really does is to implement the large, but finite set of equa-
lions add(I, I) - -2 , add(1,2)-..3, etc., representing those addi-
tions not causing overflow. Those machine-implemented
equations may be augmented by equations for addition in
ba.~. maxint, where maxim is the largest integer represented
by the machine. Thus, the user has the benefit of the pre-
cise semantics of integer addit ion on arbitrarily large
nun~bers, and the efficiency of machine addition in the usual
ease where the numbers are not large. Hecause of lazy
evaluation and the pattern-matching techniques described in
Section 4, single-precision arithmetic does not have to pay
the overhead of checking whether the inputs are single preci-
sion.

The current version of the equation interpreter allows
use of the machine-implemented single-precision arithmetic,
and leaves to the user the definition of multiprecision arith-
metic. Operations that, in conventional programs, would
cause overflow, are simply not performed, so that the even
the user who has not written multiprecision equations sees
correct, but possibly less helpful, output. Of course, the
equations for arithmetic and other natural primitives should
be writ ten once and saved away to avoid duplication of effort.
The facility to do so seems to be a special case of the general
need for facilities to structure and combine equational
definitions, discussed in .Section 5. We have chosen to await
results in the more general area, rather than to perform an
ad hot- extension for primitive operations.

113

4. The Importance of Pa t t e rn -Match ing Algori thms

4.1 Motivat ion

In order that programming with equations be really
different f rom more conventional programming styles, it is
important to be able to write many equations, preferably
between small terms, rather than a few huge ones. If all of
the i=£orrr~tion about a function f is given by a single equa-
t ion, f (x)==T, then the term T is essentially just a lazy LISP
program for f . In order for equational programming to
serve a purpose not already served by LISP, one must have
an interpreter capable of processing many equations giving
different pieces of the definitions of functions. The imple-
mentat ion must not penalize programs for using a large
number of equations by sequential checking of the left-hand
sides of equations to see which ones apply. In order to com-
pete in performance with conventional LISP interpreters, the
process of finding the next subexpression to replace must
have a cost comparable to the cost of manipulating the recur-
sion stack in LISP.

Instead of sequential checking, we preprocess the equa-
tions and produce tables to drive the reduction. These tables
describe state transitions during a traversal of the term that
indicate immediately when an instance of an equat ion lefl-
hand side is found, and tell which equat ion is involved. The
overhead of each traversal step at run time is only a table
lookup.

For multiple-pattern string matching, the Aho-Corasick
generalization of the Knuth-Morris-Prat t algori thm [AC75,
KMP77] solves a problem closely analogous to ours. Exten-
sion of these string-matching techniques to terms
(equivalently, trees) was treated separately in [HO82a]. In
the last year of the project, we discovered that the restric-
t iom already imposed upon equations for o ther reasons allow
for a much simpler extens ion of string matching techniques.
The following subsection assumes a n understanding of the
Aho-Corasick algorithm.

4.2 A Specialized Pa t t e rn -Match ing Algori thm

The current version of the equat ion interpreter is
left-sequential. That is, a term to be reduced is traversed to
the left first, and any left-hand side that is found is replaced
before the traversal continues. Such a strategy cannot deal
with certain equations, such as the parallel or equations:

or(True pc ")'=--True; or (x ,True)=--True.

The interpreter preprocessor detects and rejects such equa-
tions. For left-sequential equations, a special and simple
pat tern-matching algorithm 'may be used.

Tree patterns are flattered into preorder strings, omit-
ting variables. The Aho-Corasick algorithm [AC75] is used
to produce a finite au tomaton recognizing those strings.
Each slate in the automaton is annotated with a description
of the trec moves needed to get to the next symbol in the
string, or the pattern that is matched, if the end of the string
has been reached. Such descriptions need only give the
number of edges (~0) to travel upwards toward the root,
and the left-right number of the edge to follow downwards.
For example, the patterns (equation left-hand sides)
f (f (a . x) ,g (a ,y)) and g (x ,b) generate the strings .[faga and
gb, and the au tomaton given in Figure 4.1. The au tomaton
cannot be annotated consistently if conflicting moves are
associated with the same state. Such conflicts occur precisely
when there exist preorder flattened strings of the forms ,~/]1'
and /]8, such that the annotat ions on the last symbol of/~ in

/ J
/ / '

l "
J

/ "

g '

/ '

forward edge
failure edge

failure edges not shown all lead to the start state
lu means move up or= level in the tree
dl means move down to son number 1
m l means a match of pattern number 1

Figure 4.1

the two strings are d~f'erent. These differences are
discovered directly by attempts to reassign state i~ormat ion
in the automaton when = is the empty string, and by com-
paring states at opposite ends of failure edges when (, is not
empty. When 1" and 8 are not empty, the conflicting annota-
tions are both tree moves, and indicate a violation of restric-
tion (5) of ,~ction !. ! . When one of 1,,8 is the empty string,
the cx~rresponding annotation reports a match, and indicates a
violation of restriction (3) or (4). In the example above,
there is a conflict with c~-ffa,/].=g, 1".-a, 8-b. That is, after
scanning .[fag, the first pattern directs the traversal down
edge number I, and the second pattern directs the traversal
down edge number 2. This conflict is discovered because
there is a failure arc between states with those two annota-
lions.

4.3 Completeness of the Pa t t e rn -Match ing Algor i thm

The restriction imposed on equations by the pattern-
matching strategy above may be justified in a fashion similar
to the justification of deterministic parsing strategies. That
is, we show that the algorithm succeeds (generates no
conflicts) on every set o f equations that is left-sequential
according to a reasonable abstract definition of sequentiality.
In order to define sequentiality, we need some special terms
for discussing computation steps in the interpreter. All o f
the discussion in this subsection refers to an arbitrarily given
set of equations.

Definition 4.1
A set of equations is regular if it satisfies restrictions 1-4 of
Section i .I (but not necessarily restriction 5).
A context is a term built f rom the constants and operators in
the given set o f equations, as well as the new constant sym-
bol =.
An instance of a context C is any term or context S resulting
from the replacement of one or more occurrences of ¢e in C.
A left conte.xt is a context C such that there is a path f rom the
root of C to a leaf, with no occurrences of o, o n or to the left
of tl-.¢ path, and nothing but =s to the right of the path.
A I(~--lraver~l COOteXt is a pair < C , I > , where C is a left

114

context, and I is a node on the path dividing ,,s from other
symbols in C.
A redex is an occurre~'ce of an insta,x,-.-~e of a left-hand side of
an equation (letting each variable occurrence be treated as an
~'J)),
A term S /--reduces to a term T ifS may be transformed into
T by replacing redexes by arbitrarily chosen terms.
A redex R in a term S is essential if there is no way to /-
reduce S to normal form without reducing R.
A term S is root stable if there is no redex T such that S /-
reduces to T.
A redex R in a term S is root essential to S if there is no way
to / - reduce S to a redex or a root stable term without reduc-
ing R.

A context represents the information known about a term
after a partial traversal. The oJs stand for unknown portions.
A left-traversal context contains exactly the part o f a term
that has been seen by a depth-first le~t traversal that has pro-
gressed to the specified node. /-reduction is the best approx-
imation to reduction that may be derived without knowing
the right-hand sides of equations.

In the process of reducing a term by outermost reduc-
tiot~% our short-term goal is to make the whole term into a
redex. If that is impossible, then the term is root stable, and
nnay be cut down into independent subproblems by removing
the root.

Definition 4.'~
A set of equations is slrongly left--sequential if there is a set of
left-traversal conte~'ts L such that the following conditions
hold:
I. For all < C J > in I., the subtree of C rooted at I is a
redex.
2. For all < C , I > in I., S an instance of C, / is essential to
S.
3. For all left-traversal contexts < C , / > not in L, S an
instance of C, / is not mot-essential t o S .
4. Every term is either root stable or an instance of a left
context in I..

In a strongly left-sequential system, we may reduce a term by
traversing it in preorder to the left. Whenever a redex is
reached, the left-traversal context specifying that redex is
checked for membership in I,. If the left context is in I,, the
redex is reduced. Otherwise, the traversal contirnaes. When
no left context in I, is found, the term must be root stable,
so the root may be removed, and the resulting subterms pro-
cessed independently. (I) and (2) guarantee that only essen-
tial redexes are reduced. (3) guarantees that no root-
essential redex is skipped. (4) guarantees that the reduction
never hits a dead end by failing to choose any redex. The
analogous property to strong left-sequentiality, using reduc-
t ion instead of /-reduction, is undecidable. Notice that
strong left-sequentiality depends only on the left-hand sides
of equations, not on the right-hand sides.

Strong left-sequentiality is a special case of the strong
sequentiality defined by Huet and Lt~vy IHL791, who give a
thorough technical treatment o f these concepts. Huet and
L~vy have a pattern-matching algorithm that is much rnore
general than ours, but its practical implementation has not
yet been studied. We expect that our algorithm wil l continue
to be useful because of its simplicity, even when implemen-
tations of the Hue t - l~vy method are available to cover their
wider class o f sequential systems.

Strongly left-sequential sets o f equations are intended to
include all o f those systents that one might reasonably expect

IO process by scanning from left to right. Notice that
definition 4.3 d(ms not require L to be decidable. Also, a
strongly left-sequential system may not necessarily be. pro-
cessed by leftmost-outermost evaluation. Rather than
requiring us to reduce a leftmost redex, definition 4.3 merely
requires us to decide whether or not to reduce a redex in the
left part of a term, before looking to the right. Every redex
that is reduced must be essential to finding a normal form.
When the procedure decides not to reduce a particular redex,
it is only allowed to reconsider that choice after producing a
mot-stable term and breaking the problem into smaller
pieces. While strongly left-sequential systems are defined to
allow a full depth-first traversal o f the term being reduced,
the algorithm of Section 4.2 avoids searching to the full
depth of the term in many cases by recognizing that certain
subterms are irrelevant to choosing the next step.

Theorem 4.1
The pattern-matching algorithm of Section 4.2 succeeds (i.e.,
generates no conflicts) if and only if the input patterns are
left-hand sides of a regular and strongly left-sequential set of
equations.
Proof sketch:
(~¢') If the pattern matching-automaton is built with no
conflicts, then L may be defined to be the set of all left-
traversal contexts < C , / > such that I is the root o f a redex in
C, and / is visited by the automaton, when started at the
root of C.

(<=') If a conflict is found in the pattern-matching automa-
ton, then there are two flattened preorder strings a/8~, and/88
derived from the patterns, with conflicting tree moves at
from /9 to y and from /8 to B. Without loss of generality,
assume that there are no such conflicts within the two
(~currences of/8. ~,/8, with its associated tree moves, defines
a context C, which is the smallest left context allowing the
traversal specified by a/8. B defines a smaller left-traversal
context D in the same way. D is contained as a subterm in
C, in such a way that the last nodes visited in the two traver-
sals coincide. If one or both of 7,8 is empty, then C demon-
strates a violation of restriction (4) or (3), respectively. So,
assume that ~,,8 are not empty, and the annotations at the
encls of the/gs are both tree moves.

Consider the two positions to the right of C specified by
the two conflicting traversal directions for aB and/8. Expand
C to E by filling in the leftmost of these two positions with
an arbitrary redex, and let n be the root of this added redex.
Let equ t be the equation associated with whichever o f a/8.|,,
/8~ directed traversal toward this leftmost position, and let
equ2 be the equation associated with the remaining one of
~x/87, /88. <E,n> cannot be chosen in L, because there is an
instance S of E in which a redex occurs above n matching
the left-hand side of equ2, and S may be/-reduced to normal
form at this redex, wi thout reducing the redex at n in E.
<E,n > cannot be omit ted f rom L, because there is another
instance T o r e in which everything but n matches the rexlex
associated with equ ~, and n is therefore root-essential to T.
I-q
For example, the pair of equation left-hand sides f (g(x ,a),y)
and g(b,c) have the preorder strings fga and gbc. A conflict
exists with a - . f , B--g, ~,=-a, 8--,c. The first equation directs
the traversal down edge 2 after seeing .fg, and the second
equation directs it down edge 1. The conflicting prefixes f g
and g produce the context ./(g(aJ,=),~). The context above
is expanded to the left-traversal context consisting of
f(g(g(b,c),to),to) with the root o f g (b , c) specified. This left-

115

traversal context cannot be chosen in I. (i.e., it is not safe to
reduce the redexg(b,c) in this case), because the leftmost ¢e
could be filled in with a to produce .[(g(g(b,c),a),oJ), which
is a redex of the fo rm/ ' (&(x ,a) ,y) , and can be / - r educed to
normal form in one step, ignoring the smaller redex g(b,c).
But. this Icft-traversal context may not be omit ted from I.
(i.e., it is not safe to omit reducing x,(h,c)), because the left-
most = may also be filled in with c to produce

f(g(g(b,c),c),~,~), and reduction ofg(b,c) is essential to get a
normal form or a root-stable term.

4.4 Interpret ing Nonsequent ia l Sets of Equations.

In the future, an improved version of the equation
interpreter should eliminate the restriction to strongly left-
sequential systems, and allow definitions of" (:onstructs such
as the parallel or. The pattern-matching algorithm of Section
4.2 may be extended to handle nonsequential systems by
annotating each state in the automaton with a nonempty set
of tree moves. When more than one move is specified,
parallel processes must be initiated to follow the different
possibilities. This approach keeps the degree of parallelism
low (but not always the lowest possible), which is desirable
on sequential hardware. To =naintain acceptable perfor-
mance, these processes must be able to wait for results pro-
duced by other such processes when two or more of them
wander into the same region (else work wil l be duplicated),
and a process must be killed whenever a second process
creates a redex containing the first one (else wasted work
may be done on a subterm that has been discarded). Solu-
tions to these problems are well-known in principle, but care-
ful study is required to implement them with a very small
time and space overhead. Even when such an implementa-
tion is accomplished, sequential algorithms such as ours and
Huet and I_~vy's wi l l be useful because they can avoid the
overhead of the parallel methods.

5. Separation of Syntact ic Processing From Semant ics

One of the main problems in making the equat ion inter-
preter useful to a human programmer, is the syntactic form
of the terms written within equations, and those presented
for reduction to normal form. Prefix notation is the standard
of reference in mathematics, but is almost never convenient
for a specific application. We discovered this problem with a
prototype interpreter, when we tried to write equations
defining LISP. Most of our time was spent wrestling with
hairy expressions for simple lists, such as
cons(l,cons(2,cons(3,cons(4,nil)))), for (1 2 3 4) , instead of
thinking about semantic issues. Unfortunately, different
domains of computat ion seem to have developed different
notation, and we know of none that is universally acceptable.
So, we decided to communicate with the equation interpreter
through a number of different front ends, stored in a stan-
dard library. A user may, of course, use his or her own if
the ones provided do not suffee. It is important to be able
to use the same syntactic definitions of terms to parse terms
in equations, and to parse terms before evaluation.

A way to separate syntax and semantics thoroughly is to
use an explicit uniform internal form for the abstract syntax
of terms and equations, into which special syntaxes are
translated. This internal syntax is string-based which greatly
simplifies porting the system to a new machine. These front
ends may be written in a any programming language. Struc-
ture editors are the ideal front ends in our view, but at
present we use lex and yacc to produce parsers. Of course,
for consistency the interpreter also produces its output in

internal form, and the output is then sent to one of a library
of pretty-printers for display. Current parsing technology
t ~ k e s it easy to use the same grammar for terms in parsing
both preprocessor and interpreter input, but the (much
easier) pretty-printers are written separately. While a pro-
gram to generate par.~rs and unparsers (pretty-printers)
from the same grammar would be very nice, we prefer to
await the availability of grammar-driven structure editors,
with which the only syntactic transformation required wil l be
the pretty-printing.

Several advantages result f rom the discipline of using an
explicit intermediate form between text produced by the user
and semantic processing by the system. First is the complete
separation of syntactic and semantic modules. Conventional
use of grammars to generate parsers requires a complex
interface between the parser and the semantic processor, spe-
cialized to the particular parser generator. We require no
internal connection whatsoever between syntactic and seman-
tic processors. Second, once a context-free parser has done
its task, there may remain issues, such as checking symbol
declarations against use, that are purely syntactic (in spite of
compiler-writer's jargon), but are not expressible by a
context-free grammar. By letting the parser produce an expli-
cit syntax tree, we are at liberty to process that tree further
before submitting it to the semantic processor. In fact, we
have implemented the nort-context-free parts of syntactic
analysis in the equation interpreter itself by equational pro-
grams that transform the abstract syntax after context-free
parsing and before semantic processing. Systematic encod-
ings of notation, such as Currying (transforming f(a,b,c)
into apply(apply(apply(f,a),b),c)) may be implemented at this
level.

Last, and perhaps most important in the long run, the
use of an explicit abstract syntax allows applications of the
system to develop far beyond the simple context of a user
who types in a program, preprocesses it, types in an input,
and awaits the results at his terminal. Many future applica-
tions of our interpreter may involve input terms, and even
equational programs, that are themselves produced automati-
cally by other programs, and the outputs may often be sub-
ject to other processing before, or instead of, being displayed.
The very syntactic sugar that makes program and input entry
easier for a human, makes it harder to produce automatically.
Simply by omitt ing the syntactic pre- and postprocessors
when appropriate, we may build useful systems containing
equational programs, and the communication wi th in these
systems need not deal with the inefficiencies and notational
problems (especially quoting conventions) of the humanly
readable syntax. We have already taken advantage of this
feature, by omitt ing the pre- and postprocessin8 steps f rom
the equational programs that do syntactic analysis of equa-
tional programs. A more important use of this feature to
extend the usefulness of equational programming is
described below.

Although equational programs require substantial trans-
lation to be executed o n conventional machinery, ou r current
language is very low level in the s ame that no facilities are
provided for organizing or moduiarizing large programs. The
implementat ion o f a high-level approach to equational pro-
gramming should include the ability to combine separately
wri t ten equational programs into larger ones, in a semanti-
(:ally meaningful, rather than purely lexical, way. Combining
forms such as those described by Burstall and Goguen
[BG65] should provide a good starting point for development
of higher-level techniques in equational programming. We

116

expect to implemem such combining forms by equational
programs that transform the abstract syntax of other equa-
tional programs. Once we have chosena pleasant mechanism
for resolving name clashes, this capability is integrated into
the system between the front end and the semantic part of
the equation preprocessor.

preprocessor

equational program

I

1

I semantics 1

term term

Interpreter

Figure 5.1

TI~e considerations above, along with the separate
preprocessing step for pattern matching, lead naturally to the
system configuration shown in Figure 5.1. Communication
between modules is always by UNIX text fries.

6. Experience with the System
In [HO82b], we reported our experiences with an earlier

version of the system. Briefly, we concluded that the
bottom-up matching strategy is extremely fast permitting
reductions at very high rates. Since then we conducted two
major experiments in graduate seminars.

The purpose of the first experiment was to evaluate the
practical performance of the various pattern matching algo-
rithms proposed in [HO82a]. We found that the top-down
method with counter coordination is inferior to the other two
methods, because it is slightly slower in detecting matches
and requires more processing after reductions to maintain
matching information. In particular, the matching time is
prOportional to the number of patterns to be matched. Since
we wish to encourage writing many small equations, the large
number of resulting patterns is noticeable in the perfor-
mance. The top-down method with bitstring coordination
performed better in detecting matches and update processing,
but its match time also Increases in proportion to the number
of patterns matched. The perceived performance differential
is probably due to the smaller locality In which update pro-
cessing has to be performed.

Top-down matching wRh bitstring coordination did rot
offer a clear advantage over the bottom-up method, despite
its cheap proprocessing. Bottom-up matching has more

expensive preprocessing and requires tables to direct the
matching algorithms which can be fairly large, however, it
affords better diagnostics and is fastest in locating matches
and update processing. This comparative appraisal of the
bottom-up technique is corrotx}ramd by the work of Wilhelm
(e.g., [GMW80]), who has used this matching method
extensively in his equational approach to compiler writing. In
Wilhelm's experience (as in ours), the patterns which give
rise to poor preprocessing times do not normally arise in
applications. Moreover, there are heuristics to reduce space
demands and compress the tables needed by the matching
algorithm resulting in acceptable sizes.

In the case of left-sequential equations, the new method
derived from string matching is in our opinion the best
choice, as it is as fast as the bottom-up approach at run time
and usually as space efficient as the top-down methods.

A second experiment was to investigate the suitability of
equational programs for writ ing compilers for procedural
languages. We chose PASCAL as compromise between
source language complexity and the time constraints in a
class room situation. Results indicate both pros and cons o f
writing compilers with equations: On the one hand, for attri-
bute maintenance equations are not especially converdent,
but on the other, the equational compiler was very concise
and the students felt that their programming of it was much
lass error-prone. The project also pointed out a need for a
structured specification technique similar to the ones advo-
cated in I1~J65] (e.g., "derive'), which allow a single, com-
mon specifu:ation of subtasks whose equations differ only in
inessential ways.

7. Avoiding Repeated Evaluation of Subterms.

Outermost evaluation, while avoiding evaluation of sub-
terms that am irrelevant to the final result, allows unn~,.,es-
sary duplication of relevant subterms. Whenever a variable
appears more than once on the right-hand side of an equa-
tion, innermost evaluation would evaluate the term substi-
tuted for that variable once, before applying the equation in
question. Outermost evaluation appears to create multiple
copies of such a term, which apparently will be evaluated
separately. It is easy to avoid this particular duplication of
effort by implementing multiple instames of the same vari-
able by multiple pointers to the same subterm. Such collaps-
ing, of course, makes future implementation of parallel
reductions (Section 4.4) more diff~ult, because several
processes may simultaneously occupy the same subterm.

We have gone farther in avoiding repetition. Whenever
an instam¢ of a right-hand side is created, the newly created
nodes are hashed, and coalesced with any existing identical
nodes. This innovation was introduced as an optimization by
Paul Golick in a prototype version of the interpreter. As a
result, if a subterm T is created repeatedly, it is still
evaluated only once. Further improvements are possible. If,
as a result o f reduction of one of its proper subterms, T
becomes identical with an existing subterm, we do not detect
such an identity. To do so would require restructuring of the
hash table, and a noticeable extra overhead. Such a dynamic
detection of identical subterms would lead to an implementa-
t ion of the directed congruence ctoaa'e algorithm of Paul Chew
[ChLS0], and is left to future work. The current level o f
identity detection already has interesting consequences for
programming.

117

7.1 A u t o m a t i c Dynamic Programming.

Dynamk; programming may be viewed as a general tech-
nique for transforming an inefflcient recursive program into a
more efficient, iterative one which stores some port ion o f the
graph of the recursively defined function in a data structure,
in order to avoid recomputation of function values. In a typ-
ical application of dymmic programming, the programmer
must specify how the graph of the function is to be stored, as
well as the order in which the graph is to be computed. The
latter task may be handled automatically by the equation
interpreter.

We illustrate this automation on equations to solve the
optimal matrix multiplication problem of [AHU74]. The
input to the problem is a list o f integers (d o ' ' . am)m 91,
representing a sequence M l , . . . Mm of matrices o f dimen-
siors doxdt ,dsxd2, . . .d , ,_ l×d, , respectively. The problem is
to find the cost o f the cheapest order for multiplying such
matrices, assuming that multiplication o f an /xJ by a j x k
matrix costs toj, k. There is an obvious recursive solution
given by

c o s t [(do" • d , , ~l =

m i n { c o s t [(d o . • • d ~) ' f " c o s t [(d~ " • • d m)]'hd0*d~*dm] 0< i ~m }
cost [(do d I)] - 0
This recursive solution, implemented dlrecgy, requires
expor~ntial time, because it recomputes the same values o f
the cost function many times. Dymmic programming
achieves a polynomial solution by producing the graph of the
cosz function as a static data structure, into which each value
is stored only once, but inspected repeatedly. Instead of" the
conventional approach o f defining only a small f inite part o f
the graph of the coat function, we define the infinite graph,
and the outermost evaluation strategy o f the equation inter-
prefer guarantees that only the relevant part o f the graph is
actually computed, and in the right order. The more converb
tional solution o f this problem requires the programmer to
specify just the right finite port ion o f the graph o f cost to
compute, and the precise order o f its computation.
The fol lowing equational program solves the optimal matrix
multiplication problem, using LISP notation. Lines begin-
ning with colon are comments.

: In the fol lowing equations, the function cost is represented
: by an infinRe.-dimensio nai infinite list giving the graph o f
: the functiotx

: costgraph[O] -,.

: (0 (cost[(l)] (cost[(] 1)1 (cost[(! ! 1)] ...)

: (cost[(l ! 2)] ...)

: .°°)

: (cost[(l 2)] (cost[(l 2 1)1 ...)

: (cost[(l 2 2)] .,.)

: .o.)

: °,.)

: (~Sd(2) l (reSt[(2 1)1 (coSt[(2 I i)] ...)

: . .)

• . , .)

: ..°)

: That is, cost[(d0 ... dm)] is Ihe first element o f the list
: which is element dm + 1 of element dm-I + 1 o f ...
: element dO + 1 o f costgraph[()], cost[0)] is always 0, but
: inclusion o f these 0s simplifies the structure o f costgraph.
: costgraph[a], for a < > O is the fragrnent o f costgraph[O]
: whose indexes are all prefixed by a.

Symbols

: operators directly related to the computation o f cost
cost: I;
costgraph: I ;
costrow: 2~
reccost: I ;
su tx~osts: 2;

: list-manipulation, logical, and arithmetic operators

coi~: 2;
nil: 0;
min: 1;
index: 2;
length: I;
element: 2;
first n: 2;
first: I;
tail: !;
aftern: 2;
last: 1;
addend: 2;
cond: 3;
add: 2;
equ: 2;
less: 2;
subtract: 2;
multiply: 2;
include integer_numerals, truth_values.

For all a, b, i, j, k, x, y:

cost[a] -- index[a; costgraph[O]];

: costgraph[a] is the infinite graph o f the cost funct ion for
: arguments starting with the prefix a.

costgraph[a] -- (reccost[a]. costrow[a:, 1]);

: costrow[a; i] is the infinite list
: (costgraphlai] costgraph[ai+ 1] ...)
: where al is a with i added on at the end.

costrow[a; fl - -
(costgraph[addend[a; i]] . costrow[a; add[i; !]1),

: reccost[a] has the same value as cost[a], but is defined
: by lhe recursive equat iom from the header.

reccost[(I J)l - 0; reccost[(i)] -.. 0; recoost[()] - 0;

118

recxostI(i j . a)l - min[subcx)stsl(i j . a); lengthla]]l
-- where a is (k . b) eixl where;

: su~-osts[a; i] is a finile list of the recursively computed
: costs of (dO ... din), fixing the last index removed at
:i, i-I I.

subcosts[a; i] -- condlequli; 0]; O;
(addladd[costlfirstn[addli; I]; all;

cost[afternli; a]]];
mu Itiply[mult iply[firstla];

element[add[i; I]; all;
iastla]l]

• subcosts[a; add[i; -1]])];

: Definitions of list-manipulation operators,
: logical arvd arithmetical operators.

min[(i)l -- i;

min[(i , a)] -- cond[lessli; minla]l; i; min[a]l
where a is (k . b) end where;

indexl(); (x . b)] - . x;

index[(i, a); x] - indexla; elementladd[i; 1]; x]];

length[()] -- 0;

lengthI(x, a)] -- add[length[a]; I];

elementli; (x . a)] , - cond[ectuli; 1]; x;
element[subtract[i; 11; a]];

firstn[i; a] -- cond[equ[i; 01;
O;
(first[al.
firsm[subtractli; 1]; tailla[l)];

firstI(x, a)] -- x; tail[(x, a)] -- a;

afternli; a] -- cond[equ[i; 0];
a;
aftern[subtractli; 1]; tail[a]]];

lastl(x)l - x;

last[(x y . a)] -- last[(y, a)];

adclend[(); yl ' - (y);

addend[(x, a); yl -- (x . addendIa; y]);

cond[true; x; y] -- x; cond[false; x; y] -- y;

include addint, ec~int, subint, multint.

While understanding the mapping of the graph of the func-
tion cost onto the structure costgralCall is somewhat tedious,
such tediousness might be greatly ameliorated by a special-
ized notation for such problems, without losing the advan-
tage of automatic discovery of the correct order of computa-
tion.

The efficiency (but l~t Ihe correctness) of the program
at'~ve depends on the fact thai all instances of costgraphl()]
will be detected and coalesced by the interpreter. A future
inlplec~lentation of the clyuramic identity detection embodied
in the directed congruence closure algorithm [ChL80] would
allow the .came efficiency to be achieved by the straightfor-
ward recursive program.

Bibliography and References

AC75 Aho, A., and M. Corasick, Efficient String Matching:
an Aid to llibliographic Search, C.4CA4 18:6 (1975)
333-343

AI-tU74 Aho, A., J. E. Hopcroft, J. D. Ullman, The Design
and Analysts ed" C'omlntter illgorithms. Addison-Wesley,
1974.

ALJ72 Aho, A. and J. Llllmart, The Theory of Parsing, Trans-
lation, and Cot~zpiling, Volume 1: Parsing, Prentice-
Hall, 1972.

AW76 Ashcroft, E. and W. Wadge, Lucid - A Formal Sys-
tem for Writing and Proving Programs. SIAM Jour-
nal on Computing 5:3, 1976, 336:354.

Ashcroft, E. and W. Wadge, Lucid, a Nonproce.,dural
Language with Iteration, CACM 20:7, 1977, 519-526.

I~ckus, J. Programming Language Semantics and
C'losed Applicative Languages. ACM Symposium on
Principles of Programming Languages, 1974, 71-86.

l~.ckus, J. Can Programming Be Liberated from the
yon Neumann Style? A Functional Style and its
Algebra of Programs, CACM 21:8, 1978, 613-641.

I'lauer, F. L., M. 13roy, R. Gx~tz, w. Hesse, B. Krieg-
Bruckner, H. Partsch, P. Pepper, H. Wossner.
Towards a Wide Spectrurn Language to Support Pro-
gram I)evelopn,ent by Trartsformatior~. Prod'am
Construction: International Suntmer School, Lecture
Notes in Complaer Science v. 69, Springer-Verlag,
1979, 543-552.

116rry, C;. and L~vy, J .J . Minimal and Optimal Com-
putations of Rocursive Programs. 4th ACM Sympo-
sium on Principles of Programming Languages, 1977,
215.226.

I~rry, G. alxl i.~vy, J. J. Letter to the Editor,
SICiACT News, v. I 1, no. i , Summer 1979, 3-4.

13jorner, D. Fi , i te State Tree Computations (Part I).
IBM Research Technical Report RJ 1053 (#17598),
1972.

13ruylx~oghe, M., An Interpreter for Predicate Logic
Programs Part I, Report CWl0, Applied Mathematics
and Programming Division, Katholieke Universiteit,
Leuven, Belgium, 1976.

13urstall, R. M. and Cioguen, J. A. Putting Theories
Together to Make Specifications. 5th International
Joint Conference on Artificial Intelligence, Cam-
bridge, Mass., 1965.

13urstall, R., MacQueen, D., Sannella, D. HOPE:
An Experimental Applicative Language. Internal
Report CSR-62-80, University of Edinburgh, 1980.

Cadiou, J,, Recursive Definitions of Partial Functions
and Their Computations, Ph.D. Dissertation, Com-
puter Science l"Jept., Stanford University, 1972.

AW77

I~.74

Ba78

ltl379

BL77

BL79

Itj72

llr76

1K;65

IIMS80

Ca J72

119

CAT76 Cargill, T., Deterministic Operational Semantics for
Lucid, Research Report C'S-76-19, University of
Waterloo, 1976.

ChL80 Chew, L. P. An [reproved Algorithm for Computing
With Equaliom. 21st Annual Symlx>sium on Founda-
liOnS of Computer Science, 1980, 108-117.

ChA41 Church, A. The Calculi of Lambda-Conversion.
Princeton University Press, Princeton, New Jersey,
1941.

deBT2 de Bmijn, N. Ci. Lambda C£1cuius Notation with
Nameless Dummies, Nederl. Akad. Wetensch. Prec.
Series A 75, 1972, 381-392.

CF58 Curry, H. B., and Feys, R., Combirwtory Logic
volume I. North-Holland, Amsterdam, 1958.

DS76 Downey, P. and R. Sethi, Correct Computation Rules
for Recurslve Languages. SIAM Journal on Computing
5:3, 1976, 378-401.

Fa77 Farah, M., Correct Compilation of a Useful Subset of
Lucid, Ph.D. Dissertation, Department of Computer
Scieme, University of Waterloo, 1977.

FW76 Friedman, D., and D. Wise, Cons should not evalu-
ate its arguments, 3rd International Colloquium on
Automata, Languages and Programming, Edinburgh,
Edinburgh University Press, 1976, 257-284.

GMWS0 Glasner, I., M6ncke, U., and Wilhelm, R.
OPTRAN, a language for the specification of program
transformations lttformatik-Fachberichte. Springer-
Verlag 1980, 125-142

Go77 Goguen, J., Abstract Errors for Abstract Data Types,
IFIP Working Conference on Formal Description of
Programming Concepts, E. J. Neuhold, e,d., North-
Holland, 1977,

GS78 Ciuibas, L. and R. Sedgewick, A Dichromatic Frame-
work for Balanced Trees, 19th Symposium on Foun-
dalions of computer Science, 1978, 8-21.

GHM?6 Guttag, J., E. Horowitz and D. Musser, Abstract
Data T~0~es and Software Validation, Information Sci-
ence Research Report IS1/RR-76-48, University of
Southern California, 1976.

HM76 Henderson, P., and J. H. Morris, A Lazy Evaluator,
3rd ACM Symlx~sium on Principles of Programming
Languages, 1976, 95-103.

Ho78 Hoffmann, C., Design and Correctness of a Compiler
for a Nonprocedural Language, Acta ltlforrnatica 9,
1978, 217-241.

HO79 Hoffmann, C. and O'Donnell, M. J., Interpreter Gen-
eralion Using Tree Pattern Matching. 6th Annual
Symposium on Principles of Programming
Languages, 1979, 169-179.

HO82a Hoffmann, C. and O'Donnell, M. J., Pattern Match-
ing in Trees, 2ACM. January 1982, 68-95.

HO82b Hoffmann, C. and O'Donnell, M. J., Programming
With Equations, ACM TOPLAS. January 1982, 83-
112.

HL79 Huet, G. and J.-J. Ldvy, Computations in Non-
ambiguous Linear Term Rewriting Systems, IRIA
Technical Report #359, 1979.

Jo77 Johnson, S. D., An Interprelive Model for a
Language Based on Suspended Construction, Techni-
cal Report #68, Dept. of Computer Science, Indiana
University, 1977.

KM77 Kahn, G. and MacQueerg D. B. Coroutines and Net-
works of Parallel Processes, Information Processing
77, B. Gilchrist ed., North-Holland, 1977, 993-998.

KMP77 Knuth, D., J. Morris and V. Pratt, Fast Pattern
Matching in Strings, SIAM J. on Comp. 6:2 (1977)
323-350

K[80 Klop, J. W. Combimtory Reduction Systems, Ph.D.
dissertation, Mathematisch Centrum, Amsterdam,
1980.

KB70 Knuth, D., and P. l]endix, Simple Word Problems in
Universal Algebras. Computational Problems in
Ab.~ract A/gebra. J. Leech, ed., Pergammon Press,
Oxford, 1970, 263-297.

Ko79 Kowalski, R. Algorithm -- Logic + Control. CACM
22:7, 1979, 424-436.

McC60McCarthy, J., Recursivo Functions of Symbolic
Expressiom and Their Computation by Machine,
CACM 3:4, 1960, 184-195.

McI68 McIlroy, M. D., Coroutinas, Internal report, Bell
Telephone Laboratories, Murray Hill, New Jersey,
May 1968.

Mm~0 M6ncke, U. An Incremental and Decrernental Gen-
erator for Tree Analysers Bericht Nr. A 80/3,
Fachber. lnformatik Univ. des Saarlandes,
Saarbrficken, April 1980

NO78 Nelson, G. and D. C. Oppen, A Simplifier Based on
Efficient Decision Algorithms, 5th Annual ACM
Symposium on Principles of Programming
Languages, 1978, 141-150.

NOB0 Nelson, G. and D. C. Oppen, Fast Decision Algo-
rithms Based on Congruence Closure, JACM 27:2,
1980, 356-364.

O'D77 O'Donnell, M. J., Computing in systems Described by
Equation.s, Lecture Notes in Computer Science v. 58,
Spri nger-Verlag, 1977.

O'D79 O'Donnell, M. J. Letter to the Editor, SIGACT
News, v. 11, no. 2, Fall 1979, p. 2.

RoG77 Roberts, G., An lmplen~ntation of PROLOG, M.S.
Thesis, Dept. of Computer Science, University of
Waterloo, 1977.

ROB73 Rosen, B. K., Tree Manipulation Systems and
Church-Rosser Theorems, JACM 20:1, 1973, 160-
187.

S177 Staples, J., A Class of Replacement Systems with
Simple Optimality Theory, Bulletin of the Australian
Mathematical Society, 17:3, 1977, 335-350.

St79 Staples, J. A Graph-Like Lambda Calculus For
Which Leftmost-Outermost Reduction Is Optimal.
Graph Grammars and Their Application to Computer
Science and Biology, Lecture Notes in Computer Science.
volume 73, V. Claus H. Ehrig, G. Rosenberg eds.,
Spri nger-Verlag, 1979.

St72 Stenlund, S. Combinators, Lambda-Terms, and Proof
Theory. D. Reid¢l Publishing Company, Dordrecht,
Holland, 1972.

Vu74 Vuillemin, J., Correct and Optimal Implementations
of Recursion in a Simple Programming Language,
JCSS 9:3, 1974, 332-354.

120

WaM76 Wand, M., First Order Identities as a Defining
Language, Technical Report #29, Dept. or" Computer
Science, Indiana University, 1976.

WAD77 Warren, D., Implementing PROLOG, Research
Reports #39, 40, Dept. of Artificial Intelligence,
University of F.,dinbvrgh, 1977.

121

