
I m p l e m e n t i n g  R e l a t i o n a l  V i e w s  o f  P r o g r a m s  

Mark A. Linton 

Computer Systems Laboratory 
Department of Electrical Engineering 

Stanford University 
Stanford, California 94305-.2192 

ABSTRACT 

Configurations, versions, call graphs, and 
slices are all examples of views, or cross-sections, 
of programs. To provide a powerful mechanism 
for defining, retrieving, and updating these views, 
the OMEGA programming system uses a rela- 
tional database system to manage all program 
information. 

We have built a prototype implementation 
of the OMEGA-da tabase  system interface. 
This implementation includes the design of a 
relational schema for a Pascal-like language, a 
program for taking software stored as text and 
translating it into the database representation, 
and a simple, pointing-oriented user interface. 
Initial performance measurements indicate that 
response is too slow in our current environment, 
but that advances in database software technol- 
ogy and hardware should make response fast 
enough in the near future. 

1. Introduction 

As software systems evolve, they continu- 
ally grow larger as a result of added functional- 
ity, improved reliability, and enhanced perfor- 
mance. The growth increases both the amount 

Research supported by NSF grant MCS-8010686, a State of 
California MICRO grant, and Defense Advance Research 
Projects Agency (DoD) Arpa Order No. 4031 monitored by 
Naval Electronic System Command under Contract No. 
N00039-82-CC-0235. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct com- 
mercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee andJor specific permission. 

©1984 ACM 0-89791-131-8/84/0400/0132500.75 

of information in the system and the complexity 
of the interconnections of the pieces. 

Making a change to a software system 
requires an understanding of how the part being 
changed fits into the system. A major part of 
understanding is simply seeing the information 
relevant to what one is trying to understand. 

The OMEGA programming system [Linton 
83] provides mechanisms for seeing and manipu- 
lating software in a much more powerful and 
general way than current systems. Instead of a 
linear view, such as presented by UNIXt [Ker- 
nighan and Mashey 81], or a hierarchical view, 
such as presented by Gandalf [Habermann, et al. 
82], OMEGA provides multiple relational views 
of the information in a program. 

The relational model provides very power- 
ful operations for describing portions of a data- 
base of information. OMEGA gives programmers 
the opportunity to view and change a wide 
variety of cross-sections of a software system. 

We have begun building a prototype imple- 
mentation of OMEGA using the relational data- 
base system INGRES [Stonebrakcr, Wong, and 
Kreps 76]. So far, we have implemented a pro- 
gram to extract and store the information in 
traditional program text into an INGRES data- 
base, and a simple pointing-oriented user inter- 
face for browsing programs in the database. 

In the remainder of this paper, we describe 
the general views of software that OMEGA pro- 
vides the user (including traditional views), 
describe how our prototype implementation 
interfaces to INGRES to support these views, 
briefly describe the user interface, and present 
preliminary measurements of the performance of 
this prototype. 

~UNIX is a registered trademark of Bell Laboratories. 

132 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800020.808258&domain=pdf&date_stamp=1984-04-25


2. Views of Programs 

Two popular program representation3 are 
text and trees. Text is expensive to extract pro- 
gram semantics from and, therefore, inefficient to 
use in processing most queries. For example, to 
find all uses of the " + "  operator where both 
operands represent real numbers requires parsing 
and semantic analysis of the entire program. 

In a text-oriented system programmers 
must translate update operations on program 
objects such as statements, expressions, and vari- 
ables into operations on text objects such as 
lines, words, and characters. This translation 
can be complicated; for example, changing the 
name of a variable requires string substitution 
every place that the variable is used, which is not 
necessarily the same as every place the string 
appears. 

The hierarchical view provided by tree- 
oriented systems is better than the linear view of 
text-oriented systems, but is still only a single 
view and therefore inadequate. For example, 
when porting some software to a new machine, a 
programmer might wish to look at all the con- 
stants defined throughout the software. How- 
ever, the constant definitions are likely to be 
spread throughout the program hierarchy, leav- 
ing no convenient way to view them together. In 
general, a system that provides programmers 
only one organization of programs cannot satisfy 
the variety of activities that make up software 
development and maintenance. 

Programmers are not interested in the com- 
plete structure of a large software system; at any 
given time they need to see some cross-section 
that contains the objects relevant to a particular 
task. The data management term for such a 
cross-section is a view. 

Text and tree organizations are two com- 
mon views of a software database. Other exam- 
ples of views include the following: 

• statements that reference a variable 

• procedures that use a module 

• statements executed for a certain input 

• modules written before a certain date 

• constants defined for a particular 
machine 

Views of programs capture many separate 
facilities in current programming environments, 

including structure-oriented editing, module 
dependency analysis, cross-reference listings, call 
graph generation, version history manipulation, 
and execution trace analysis. In addition, there 
are many other possible program views 
corresponding to particular information in which 
a programmer might be interested. For example, 
one might wish to see a view containing the uses 
of an I /O procedure involving a particular file. 

To provide a powerful, general mechanism 
for describing views, OMEGA uses a general- 
purpose relational database system to manage 
the procedures, statements, variables, and the 
other information that makes up a program. By 
using this approach, we do not constrain the 
ways in which a programmer can view software, 
and avoid duplicating the functions of a database 
system. 

Database systems provide many other use- 
ful facilities in addition to the ability to retrieve 
and define general views of data. They manage 
permanent storage, support efficient data access, 
provide concurrency control, at tempt to recover 
from crashes, and try to ensure the integrity of 
the data. All of these problems arise in software 
development systems. In addition, database 
researchers are also looking at the problem of 
managing physically distributed data, which is 
rapidly becoming an important problem in 
managing the development and distribution of 
software. 

We chose to use the relational data model 
COdd 71] because it provides powerful facilities 

r defining and manipulating general views of 
data, and because we had a relational database 
system readily available. A more complete and 
general description of the use of a relational 
database system by a programming environment 
is described in [Powell and Linton 83a], including 
integration of runtime information. We focus 
here on our prototype implementation. 

3. Overview of Prototype Implementation 

To experiment with our ideas, we needed 
an apparatus with which we could quickly build 
parts of OMEGA. The underlying environment 
that we had available was UNIX running on a 
VAXT-11/780. We chose INGRES as our data- 
base system because it was both convenient (it 
runs on UNIX), and familiar (we had used it 
before). 

The intent of OMEGA is to manage large 
software systems; we therefore wanted to be able 
to use OMEGA on a relatively large system. 

~'VAX is a registered trademark or Digital Equipment Cor- 
poration. 

133 



This desire meant  that  we needed a way to 
quickly enter some existing software into the 
database. 

The requirement of an existing body of 
software eliminated our first choice for a 
language to support,  namely Ada [Ada 82]. We 
also decided against the popular languages C and 
Pascal. The textual macro facilities available in 
C makes it difficult to store the program in the 
database as the programmer really thinks of it. 

We chose the programming language Model 
[Morris 80] over Pascal because it supports  more 
recent programming language concepts such as 
data  abstraction and generic types. We felt it 
was important  to understand how to handle 
these facilities since they are present in Ada and 
other, newer languages. Also, the DEMOS 
operating system [Baskett, Howard, and Mon- 
tague 77], which is being used as the basis for 
some operating systems research at Berkeley, is 
written in Model and provides an interesting 
testbed of evolving software. 

Given these tools, our implementation con- 
sists of parse, a program that  takes Model source 
and enters it into an INGRES database, and 
peruse, a program for viewing the software 
stored in the database. Figure 1 shows how the 
various pieces of our implementation fit together. 

Model  
text 

u s e r  

p a r s e  ] [ p e r u s e  

INGRES 

P r o g r a m  

D a t a b a s e  

4. Interfac ing  to  I N G R E S  

To use INGRES, we first had to decide how 
to organize program information into a relational 
schema. We used the following ideas to guide 
our design: 

Represent classes of program objects 
be.g, procedures, variables, s tatements)  

y relations, and individual objects by 
tuples. 

Q Store a unique identification (UID), 
represented as an integer, in the first 

field of each tuple and use this number  
to refer to the tuple from other tuples. 
Use zero to indicate a nil, or unassigned, 
reference. 

Use a (relation UID, tuple UID) pair to 
refer to an object whose representation 
can vary, e.g., an expression that  can be 
a function call, subscript operator, or 
constant. 

• Represent information once; use views 
to represent different kinds of references 

Fig. 1: Implementat ion overview. 

to objects, e.g. variables usage is a view 
of the variables relation. 

The  resulting schema consists of 58 rela- 
tions and 15 views for storing program informa- 
tion. A little less than half of the relations (26) 
are for traditional symbol table information, 
almost a third (19) for representing expressions, 
and the remainder split between representing 
s ta tements  (10), the string table (2), and a rela- 
tion associating objects with the objects that  
they contain. Tables l(a) and l(b) list the vari- 
ous relations and their fields. 

In addition to these relations, there are four 
auxiliary relations: uniqueid, abstraction, bodyof, 
and viewof. The uniqueid relation contains a sin- 
gle tuple with a single integer field that  is the 
last UID to be assigned to some tuple. To allo- 
cate a UID this field is conceptually retrieved, 
incremented, and stored back in the database. 
In practice, it is too expensive to allocate UIDs 
one at a t ime like this, so a group of n UIDs are 
allocated at once by adding n to the field of the 
uniqueid tuple. 



relation 
programs 
procedures 
functions 

proc class 
paramlists 
parameters 
param class 
variables 
constants 
decls 
typerefs 
typenames 
spaces 
space_param 
typelists 
ranges 
arrays 
dynarrays 
records 
recurrecs 
unions 
fieldlists 
fields 
chums 
constlists 
proctypes 
pictographs 
pictof 

fields (intesers unless otherwise indicated) 
id, procedures 
id, pietographs, proc-class, paramlists, decls, stmtlists 
id, pictographs, proc-class, paramlists, 
type rel, type_id, decls, stmtlists, 
expr-rel, expr-id 
id, string -~- (public, inline, external, or builtin) 
id, parameters, paramlists 
id, pict<)graphs, param-elass, type-rel, type-id 
id, string .~- (readonly, varies, copied) 
id, pictographs, type-rel, type-id 
id, value-rel, value-id 
id, symbol-rel, symbol-id, decls 
id, pictographs, typelists 
id, pictographs, type-rel, type-id 
id, pictographs, typelists, reptype-rel, reptype-id, decb 
id, pictographs 
id, type-rel, type-id, typelists 
id, type-tel, type-id, lower-rel, lower-id, upper-tel, upper-id 
id, eltype-rel, eltype-id, typelists 
id eltype-rel, eltype-id 
id fieldlists 
id fieldlists 
id fieldlists 
id fields, fieldlists 
id pictographs, type-rel, type-id 
id constlists 
id const-use, constlists 
id proc-spec 
id format ---- array[l..80] of char 
object-rel~ object-id~ picto~raphs 

Figure l(a): Relations for symbol table information. 

The abstraction relation associates each 
relation name with a UID to allow references to 
relations to be stored as integers rather than 
character strings. The bodyof relation associates 
implementation views with definition views, and 
is used by peruse to implement the "zoom in" 
command (described in the next section). The 
viewof relation associates views defined on the 
database with their underlying relations, and was 
only necessary for our  experiments with directly 
accessing information from the database. 

The views that  are predefined represent 
definitions or uses of program objects. The use 
of views allows objects to be displayed differently 
depending on their context.  For  example, when 
displaying a variable as part  of an expression, 
only the variable's name is printed, but when 
displaying a declaration of a variable, its type is 
printed as well. Of  course, it is possible in 
OMEGA to have the type displayed in expres- 
sions as well, but this is not the normal way peo- 
ple wish to see expressions displayed. Therefore, 
there is a view, called vat-use, tha t  is referred to 
by expression tuples. Using the INGRES query 

language QUEL, this view is defined by the fol- 
lowing sta tements :  

r a n g e  o f  v is variables 
d e f i n e  v i e w  var-use ( 

did ---- v.uid, name ---- v.name 
) 

There are also views for uses of procedures, func- 
tions, parameters, constants, and types. 

The definition of an object, such as a 
module, is represented as a view of the 
corresponding implementation object. For exam- 
ple, there is a view of procedures called proc-spec 
defined as follows: 

range  of  p is p r o c e d u r e s  
de f ine  v i e w  proc-spec ( 

did ---- p.uid, name = p.name, 
proc-class -~- p.proc-class, 
paramlists ---- p.paramlists 

) 

Using views keeps the information in a single 

135 



relation 
stmtlists 
asgstmts 
callstmts 
ifthens 
condlists 
casestmts 
caselists 
vMuelists 
loopstmts 
forstmts 

fcalls 
exprlists 
fieldrefs 
subscript 
abstract 
concrete 
typerename 
newexpr 
Ibnd 
ubnd 
width 
strings 
intcons 
octcons 
charcons 
realcons 
undefined 
nilexpr 
contains 

fields (values are integers unless otherwise indicated) 
id, stmt-rel, stmt-id, stmtlists 
id, var-rel, var-id, expr-rei, expr-id 
id, proc-use, exprlists 
id, condlists, else-rel, else-id 
id, cond-rel, cond-id, then-rel, then-id, condlists 
id, expr-rel, expr-id, pictographs, caselists, stmtlista 
id, valuelists, stmtlists, easelists 
id, lower-rel, lower-id, upper-rel, upper-id, valuelists 
id, before-tel, before-id, cond-rel, cond-id, stmtlists 
id, var-use, range-rel, range-id, incr-rel, incr-id, 
eond-rel F cond-id 1 stmtlists 
id, func-use, exprlists 
id, expr-rel, expr-id, exprlists 
id, recor&rel, record-id, field-use 
id, expr-rel, expr-id, exprlists 
id, expr-rel, expr-id 
id, expr-rel, expr-id 
id, expr-rel, expr-id, type-rel, typedd 
id, type-rei, type-id, expr-rel, expr-id 
id, type-rel, type-id 
id, type-rel, type-id 
id, type-rel, type-id 
id, pictographs 
id, value -~ integer 
id, value -~ integer 
id, value ~ integer 
id, value ~- real 
id 
id 
outer-rel 7 outer-ida inner-rel~ inner-id 

Figure l(b): Relations for statements and expressions. 

place, while allowing either the definitions or 

implementat ion of the object to be displayed. 

5. U s e r  I n t e r f a c e  

The  purpose of implementing peruse  was  as 
much to see tha t  the information was really in 
the database as to experiment with the OMEGA 
user interface described in [Powell and Linton 
83b]. Our implementation focused on three 
areas: how to display objects in the database, the 
management  of the screen, and the command 
interface. 

5 .1  P i c t o g r a p h s  

A p ic tograph  is the view of an object that  is 
displayed on the screen. Each relation or view 
has a pictograph associated with it that  specifies 
how a tuple belonging to the relation or view 
should be printed. 

By design, a pictograph consists of graphi- 
cal and textual images arranged in a two- 
dimensional area, where parts of it represent 
slots where objects can be placed to designate 
values for attr ibutes of other objects. Since we 
did not have a terminal with graphical capabili- 
ties, we represented pictographs as format strings 
containing meta-characters to indicate where and 
how fields of a tuple should be displayed. For 
example, the pictograph for the var -use  view is 

%2r 

The  ,,o~,, character indicates that  the value of a 
field is to be displayed at the current ou tpu t  
location, and the digit following the " % "  (" this 

"2") case a indicates which field is ~ be 
displayed. 

The character following the digit indicates 
how the field should be displayed. For  the var-  
use example, this character is an "r"  and means 
that  the field is a reference to another tuple that  
should be retrieved and displayed according to 
the pictograph for its relation. Other characters 
to indicate how to display a field are "s",  "d" ,  



"o", "c", and "f"  for character string, decimal 
integer, octal integer, single character, and real 
number respectively. 

The " r"  in the oar-use example also indi- 
cates that the name of the relation to which the 
field refers is the same as the name of the field. 
The pictograph "%2r"  for a oar-use topic there- 
fore specifies that the second field is a reference 
to a tuple in the pictographs relation, because the 
name of the second field of the oar-use view is 
"pictographs". 

5.2 Disp lay  M a n a g e m e n t  

When a view of the database is requested, 
the information is retrieved and transformed into 
text using pictographs and stored into a picture. 
During this transformation, each object and its 
location within the picture is recorded in a map. 
Afterward, a rectangular portion of the screen, 
called a window, is allocated and as much of the 
picture as will fit is displayed in the window. 
The associated picture, map, and window are 
kept together in a data structure called a scene. 
Figure 2 shows an example of a scene. 

Also associated with each scene is a cursor 
that refers to the current program object of 
interest in the associated view. This cursor is 
not a character cursor as in a text editor since 
the object can be represented by more than one 
character (or even more than one line) in the pic- 
ture. The text associated with the current object 
is highlighted on the screen. 

A 

5.3 Input Commandm 

Commands are entered by a single keys- 
troke, and specify an operation on the current 
object in the current scene. Table 2 shows the 
commands that are recognized by peruse (the 
notation "TX" indicates the control key is held 
down while pressing the key "x"). 

key command 
s select 
S Dick UP 
w move cursor forward 
b move cursor backward 

e zoom in 
v show slots 
c create 
f fill in 
.IF scroll forward 
.~B scroll backward 
tR rotate left 
[G rotate right 
~'D redraw screen 

Table 2: Peruse commands. 

The "select" command requests that the 
scene's cursor be moved to the object nearest the 
input cursor. The input cursor can be controlled 
by either a pointing device or by cursor move- 
ment keys. "Pick up" is just like "select" except 
that the object is pushed on a stack for use with 
future commands. 

pictographs 

window 

picture 

pro.gram 
V l e W  

Fig. 2: Structure of a scene. 

.137 



The input cursor refers to a particular 
character location and therefore could be ambi- 
guous, e.g., selecting the "a"  in "a  :~ -b  + c" 
could refer to either the variable named "a"  or 
the entire statement.  To allow fine tuning of the 
cursor position, the "move .... cursor forward" and 
"move cursor backward" commands move the 
cursor according to the order in which the 
objects were traversed when they were displayed. 

The "zoom in" command finds an object's 
relation UID in the bodyof relation and uses the 
UID of the associated relation to display the 
object. For example, since the tuph  {Woe- 
spee, procedures) is in the bodyof relation, press- 
ing "zoom in" when the current object is a proe- 
spec causes a new window to be allocated and 
the body of the procedure to be displayed in it. 

The "create" command creates a new 
object with the same relation as the current 
object. The "show slots" command forces 
unfilled fields of an object to be displayed as 
"<relation-name>"; they are not normally 
displayed. The "fill in" command can be used to 
set the value of an unfilled field to either a refer- 
ence to an object that  has been picked up, or a 
literal value (e.g., integer or string) entered by 
the user. 

5.4 Current  S t a t u s  

Peruse provides some of the basic capabili- 
ties of the OMEGA user interface, but is not yet 
complete. It provides fixed size windows in a 
fixed location, rather than dynamic allocation 
and reshaping of windows without users having 
to specify a size or location. 

It can create and zoom in on objects, but  
does not yet support general queries and global 
relational updates. To implement these opera- 
tions requires that  query objects be definable and 
executable, where executing a query involves 
translating it into QUEL and sending it to 
INGRES. 

6. P e r f o r m a n c e  Measurements  

Using a relational database system offers 
substantial power, but an equally important 
aspect of a software development system is the 
speed with which it can respond to programmer 
requests. In addition to execution time, we 
wanted to make sure that  using a database did 
not require an unreasonably large amount of disk 
storage. 

In this section we present time and space 
performance measurements for a simple use of 
peruse. These measurements in no way represent 
a complete analysis; to do so would require a 
complete implementation of OMEGA and a col- 
lection of large software databases on which to 
gather measurements. Nonetheless, our initial 
experience has been helpful in determining prob- 
lem areas. 

6.1 Response  T i m e  

Our initial implementation of peruse was 
very slow in displaying the body of a procedure. 
The poor response time was due to each object 
being retrieved with a separate query. For exam- 
ple, suppose the user wishes to see the body of a 
procedure. This object is represented by a single 
tuple from the implementation view of the pro- 
cedures relation. When this tuple is displayed, 
all the different objects within the procedures 
(statements, variables, etc.) have to be retrieved. 

The problem of processing a large number 
of small queries is a general one. Queries have an 
inherent amount of overhead due to the parsing, 
access strategy selection, and locking that  is 
necessary. The most frequent queries sent by 
OMEGA occur while traversing references, and 
are of the form 

range  of  t is some-relation 
retrieve (t.all) where  t.uid = some-aid 

for a given UID and relation. To minimize the 
searching necessary to perform this query, we 
advised INGRES to keep a hash table on all rela- 
tions using their UID as the key. 

Knowing the exact form of the query and 
the appropriate access strategy for it, we 
modified peruse to perform these queries using 
the INGRES access methods directly and thereby 
avoid the overhead associated with query pro- 
cessing. Since INGRES runs as a process 
separate from peruse, this also avoided the over- 
head of exchanging messages via UNIX pipes. 

This modification gave the effect of com- 
piled queries, since what we did was "hand- 
compile" a particular class of queries. These 
queries still ran as separate transactions, meaning 
no pages were buffered across queries. To simu- 
late transactions, or more precisely, buffering 
across queries, we modified peruse to keep rela- 
tions open rather than closing them at the end of 
each query. 

Tables 3(a) and 3(b) show the performance 
of peruse retrieving and displaying the body of 

138 



Configuration # tuples 

compiled 
buffered 

3 6  
36.  

# pages CPU time Elapsed time 
read {seconds) {seconds) 

30.7 40 
1 5 6  4 . 8  13  
93 3.4 7 

Table 3(a): Response time for viewing body of a 5 line program. 

Configuration [ # tuples 

standard ] 3746 

# pages 
read 

33847 
compiled [ 3746 14996 5.64.1 [ 957 
buffered I 3746 6085 300.0 I 446 

Table 3(b): Response time for viewing body of DEMOS. 

both a simple, 5 line program, and the main pro- 
gram body of the DEMOS kernel (about 1,000 
lines). We measured configurations of peruse 
using standard queries, hand-compiled queries, 
and hand-compiled queries with buffering. 

The CPU time above includes both user and sys- 
tem time as measured under UNIX. All measure- 
ments were made on a lightly loaded VAX- 
11/75o. 

The time it takes to retrieve the main pro- 
gram body of DEMOS is a good benchmark, but 
does not reflect actual response time because the 
main body of DEMOS is so large. Ideally, peruse 
would stop retrieving tuples when the results will 
no longer fit on the screen, then continue retriev- 
ing and filling its data structure on demand. 
Currently, it is filled of all at once before display- 
ing any results. 

Compiling queries has a dramatic effect on 
performance, reducing CPU time by more than a 
factor of six. Buffering has a more modest effect, 
and as might be expected is more pronounced for 
the larger benchmark. These results indicate 
that a production implementation of OMEGA 
requires a database system that can compile 
queries, and that some buffering capability would 
also help performance. 

6.2 S t o r a g e  R e q u i r e m e n t s  

Table 4 shows the number of tuples and 
total size of the largest relations in the database. 

The total size is close to that of the 
corresponding text, but this is somewhat mislead- 
ing because the database storage does not include 
space for indices (in this case hash tabh~) or 
comments. The elimination of comments was 

done for simplicity; there is no reason they could 
not also be stored. Even with conservatively 
high estimates for the space needed for comments 
and indices, storing programs in a database does 
not appear to require substantially more storage 
than the corresponding program text. 

relation 

strings 
_ typeof 

exprlists 
parameters 

size of text 

# t u p l e s  

1563 
4 5 2 1  
3507 

width 
(bytes) 

84 
1 6  
16 

total size 
(bytes) 
131292 
72336 
56112 

1720 20 34400 
functions 712 40 28480 
stmtlists 1567 16 25072 
fieldrefs 1471 16 23536 
paramlists 1720 12 20640 
decls 1180 16 18880 
fcalls 1473 12 17676 
asgstmts 812 20 16240 
nameof 1001 12 12012 
procedures 399 24 9576 
condlists 314 24 7536 
intcons 700 8 5600 
variables 338 16 5408 
eallstmts 448 12 5376 
fields 335 16 5360 
constants 292 16 4672 
ifthens 290 16 4640 

"OTHERS 2115 
total 26515 

- 38372 
- 536316 

418792 

Table 4: Space usage in database for DEMOS kernel. 

.139 



7. Conclusions 

To experiment with the implementation of 
support for the relational views that we designed 
into OMEGA, we have built parse, a program 
that takes source text and stores all the informa- 
tion in the program into a database managed by 
INGRES, and peruse, a program that displays 
information from the database onto the screen. 

Although there are clearly performance 
problems using INGRES, the funetionality it pro- 
vides has allowed us to not worry about manag- 
ing permanent storage or processing queries. The 
ability to define general views has been particu- 
larly useful. 

Our initial measurements of performance 
show that compiled queries and buffering 
improve performance significantly. In general, 
the database system should be able to use main 
memory and more semantic information about 
the data to provide substantially better perfor- 
mance than is currently available. 

It is true that it will always be possible to 
construct a special-purpose database system 
tuned to managing program information that is 
faster than a general-purpose system. Similarly, 
it is always possible to hand-code assembly 
language that executes faster than the code gen- 
erated by a compiler. However, just as it is 
cost.effective to write in a high-level language 
and use a compiler, it will be worth using the 
general-purpose, better supported, and more reli- 
able system. Database systems are approaching 
this threshold of being cost-effective for use in 
managing program information. 

8. Acknowledgments 

The ideas in OMEGA are the result of 
many discussions with Mike Powell; both he and 
Larry Rowe provided helpful comments on por- 
tions of this paper. The referees' comments were 
also helpful in improving the paper's focus and 
presentation. 

9. References  

[Ada 82] 
Reference Manual for the Ads Program- 
ming Language, U. S. Department of 
Defense, July 1982. 

[Baskett, Howard, and Montague 77[ 
Baskett, F., Howard, J. rL, and Mon- 
tague, J. T., "Task Communication in 
DEMOS", Proceedings of the Sizth 
Symposium on Operating Systems Prin- 
ciples, November 1977. 

[todd 70] 
Codd, E. F., "A Relational Model of 
Data for Large Shared Data Banks", 
Communications of the ACM, Vol. 13, 
No. 6, June 1970. 

[Habermann, et al. 82] 
Habermann, A. N., Ellison, E., Medina- 
Mora, R., Feller, P., Notkin, D., Kaiser, 
G. E., Garlan, D. B., and Popovieh, S., 
"The Second Compendium of Gandalf 
Documentation", CMU Department of 
Computer Science, May 24, 1982. 

[Kernighan and Mashey 81] 
Kernighan, B., and Mashey, J., "The 
Unix Programming Environment", 
Computer, Vol. 14, No. 4, April 1981. 

[Linton 83] 
Linton, M., "Queries and Views of Pro- 
grams Using a Relational Database Sys- 
tem", Report No. UCB/CSD 83/164, 
Computer Science Division, University 
of California, Berkeley, California, 
December 1983. 

[Morris 80] 
Morris, J. B., A Manual for the Model 
Programming Language, February 1980. 

[Powell and Linton 83a] 
Powell, M., and Linton, M., "Database 
Support for Programming Environ- 
ments", Proceedings of the Database 
Week Special Session on Databases for 
Engineering Applications, May 1983. 

[Powell and Linton 83b] 
Powell, M., and Linton, M., "Visual 
Abstraction in an Interactive Program- 
ming Environment", Proceedings oJ 
SIGPLAN 83: Symposium on Program- 
ming Language Issues in Software Sys- 
tems, June 1983. 

[Stonebraker, Wong, and Kreps 76~ 
Stonebraker, M., Wong, ~., and Kreps, 
P., "The Design and Implementation of 
INGRES", ACM Transactions on Data- 
base Systems, Vol. 1, No. 3, September 
1976. 

140 


