Check for
Updates

A STUDY OF PROTECTION
IN PROGRAMMING LANGUAGES

Allen L. Ambler
Amdahl Corporation

and

Charles G. Hoch
The University of Texas at Austin

The concept of "protection" in programming languages refers to the ability to express

directly in

the language the desired access control relationships for all objects defined in the language. The
use of such mechanisms as data types, scope, parameter passing mechanisms, routines as parameters,

abstract data types, and capabilities in

Pascal, Concurrent Pascal,
explored via a simple example which embodies many protection problems.

Euclid, Clu, and Gypsy are
The usefulness of language

defined and enforced protection mechanisms to the process of forma) verification is discussed.

Keywords and Phrases: Protection, Pascal,
types, module

CR Catagories: 4.22, 4.34

Introduction

The concept of ‘“protection" 1in programming
languages refers to the ability to express directly

in the language the desired access control
relationships for all objects defined 1in the
tanguage. While in operating systems protection

has received extensive attention, only recently
have we recognized the need for similar protection
facilities 1in programming 1languages. There are
several factors which have contributed to this
recent realization. First, the emphasis being
placed on producing better software has generally
supported the concept of highly modular programs

with well-defined and tightly-enforced module
interfaces. Parnas modules [10], step-wise
refinement [11], structured programming [3],
etc. all employ modules with rigid interface

conventions which whenever possible are enforced by
the language and which when unenforceable rely on
self-imposed programmer discipline. Second, formal
program verification either by hand or by semi-
automated techniques must rely on information
about object accessibility in order to prove
assertions about manipulations on objects. These
object access restrictions necessary for formal
verification need to be expressed directly in the
language and to be enforceable by compilers of
that language.

Concurrent Pascal, Euclid,

25

Clu, Gypsy, abstract data

arisen new
introduced to

As various
protection
handle them.

protection needs have
mechanisms have been

Data types have been introduced to
protect objects from misinterpretation across
module interfaces. Scope of variables allows
selective "hiding" of objects; thereby, limiting
access. Independent cormpilation provides another
means of selectively "hiding" objects. Parameter
passing mechanisms provide for “partial” access to
variables passed across module interfaces.
Routines as parameters provide a means of passing
indirect access to an object without alluwing
direct, uncontrolled access. The implementations
of abstract data txges provide new mechanisms for
selectively "hiding" objects and for allowing
“partial" access. Finally, there have been
proposals for 1introducing ‘“capabilities" into
programming languages [6].

In the course of this paper we will explore

the usage of these protection mechanisms as
presented in specific existing and/or future
languages. The vehicle for our discussions will be

an example, referred to as the Prison Mail System.

Prison Mail System Problem

The Prison Mail (PMS)

described as follows:

System, Problem 1is

http://crossmark.crossref.org/dialog/?doi=10.1145%2F390019.808309&domain=pdf&date_stamp=1977-03-01

writes bundles sorts
Jetters picked up letters
I f i
Pl Gl M1

i

Figure 1. Bundle Cycle

1. Prisoners are confined to individual
cells unable to communicate directly
or indirectly with any of the other
prisoners, except via the Prison Mail

Systen.

N

. Prisoners communicate

50 through the
Prison Mail System by exchanaing
messages which are picked-up and

delivered by the prison gquards.

Each message consists of a body and a
signature and is placed inside an
envelope which is then sealed and to
which an address is affixed.

The Prison ilail System resembles the Post
Office System except that the guards and the
prisoners are mutually suspicious of each other.
The gquards are afraid that the prisoners may be
planning a prison break and consequently, are
constantly alert for any information that might
reveal the prisoners’' plans. The prisoners, on the
other hand, resent this snooping by the gquards and
do everything in their power to make it impossible

for the guards to obtain information. By mutual
agreement there 1is one and only one security
constraint which is always observed.

The Security Constraint: Only the

addressee is allowed to open
once sealed.

an envelope

However, the guards are allowed to remember
any information that is discernible by examination

including from whom and to whom messages are
carried. Cognizant of this fact, the prisoners
worked out the following convention for reducing

the significance of the information
the quards.

obtainable by

4, For each prisoner all messages
(possibly none) to be mailed during
some time period are placed inside

another envelope, referred to- as a
bundle, which is then sealed and
labelled for a non-partisan
Postmaster.

The Postmaster receives bundles, opens
them, sorts the letters contained
inside (without opening them), rewraps
them ijnto a single bundle (possibly
empty) for each prisoner, and relabels
them for the correct recipient.

26

re-bundies bundles reads
letters delivered Tletters
i i i
M2 G2 p2
Hence, during each delivery cycle each

prisoner sends to and receives from the Postmaster
exactly one bundle. Thus the guards are thwarted
from discovering which prisoners are communicating.
We choose to ignore any further possibilities of
discovery such as weighing the bundles, measuring
their thickness, etc.

A PMS Solution

In the remainder of this paper we will discuss
a solution to the PMS problem as it is expressible
in the languages Pascal [5], Concurrent Pascal
L2}, Euclid [(7}, Clu [8], and Gypsy
[1]. For each Yanguage we will analyze the
effectiveness of 1its protection mechanisms at
enforcing the Security Constraint. We note from
the outset that none of these lanauages, except
Gypsy, was specifically designed for protection. It

is not our intention to criticize them in any way,
but rather to contrast the various existing
protection mechanisms. It 1is our contention that

protection in programming languages is an old, but
real, issue that has often been buried in other
constructs and that only recently has been
addressed directly. We begin by characterizing the

general properties of the solution.

If we limit our thoughts to a single “"bundle”
cycle, we observe that (P1) the prisoners write
letters wrapping them in a bundle, (Gl) the guards
pick up the bundles and deliver them to the
Postmaster, (Ml) the Postmaster opens the bundles
and sorts the mail, (M2) the Postmaster then re-
bundles the letters and hands them back to the
auards, (G2) the guards deliver the bundles to the
prisoners, and (P2) the prisoners open the bundles
and read their mail. The ‘“bundle" cycle is
j1lustrated in Figure 1. We now write individual
algorithms for each phase of the “bundle" cycle.

Algorithm P1: Start with an empty bundle
and while the mood strikes compose
letters signing each before placing it
into an envelope and addressina it. When
the mood no longer persists, seal the
bundle, affix the Postmaster's name to
the label, and place the bundle in the
mailbox.

Algorithm Gl: From each prisoner pick up
one bundle from his mailbox addressed to
the Postmaster and deliver them to the
postmaster's mailbox.

Bundle: _ T
Label: 1€
Letters: _]— ~i
Address: LT
Message: _
Body: I ves
Signature: |_I
AL

Figure 2. PMS Bundle/Letter/Message Structure

bundles in
one and
one nile

Algorithn Ml: While there are
the Postmaster's mailbox remove
sort the letters into piles -
for each prisoner.

Algorithm M2: For each prisoner, place

his pile of letters into an empty bundle,

seal the bundle, affix the prisoner's

name to the label, and place it in the
Postmaster's mailpox.

Algorithm G2: Pick wup the bundles from
the Postmaster's mailbox and deliver them
to the labelled prisoner's mailbox.

Algorithm p2: Remove the bundle from the

mailpox, open it, and while the bundle is
not empty remove, open, and read the
letters.

We assume a data structure as illustrated in

composed of a

Figure 2 where each "Bundle" is
; - where each of

“abel" and a sequence of "Letters"

the latter is composed of a "Address® and a
"Message" - and where the latter is composed of a
"Body" and a "Signature". Thus each bundie is

composed of four elementary fields. It is the

3. Two categories of protection are indicated: (N)
access is necessary for the algorithm to function
and (P) access should be prevented as the algorithm
does not need access. For each of the “necessary"
accesses a “/R" or "/W" is included to indicate
that either "read" or "write" access is required.
In the Figure 3 there are several instances where
“P or N/R" access is indicated. For these entries
either choice is allowed because, while the
algorithm does not need access, the information is
already available and a suitable choice will for
certain languages simplify the solution.

Hhat remains to be discussed for our solution
is the flow of control within the proaram. Figure
4 models the interrelationships between the
prisoners, the aquards, and the Postmaster. The
internal communication structure for the guards is

unimportant for our purposes and is left
unspecified.

A simple control solution might be:

program
var Boxes

procedure Pl
procedure Gl

procedure Ml

“selective” protection of these four elementary procedure M2
fields that constitutes the heart of this example procedure G2
problem. procedure P2
loop
P1
By analyzing the six algorithms in terms of Gl
their required access to each of these four f!elds ML
we arrive at the access matrix presented as Figure M2
Label Address Body Signature
P1 N/W N/ N/W N/
Gl N/R P p P
M1 P or N/R N/R P P
M2 N/W P or N/R p p
G2 N/R P P p
P2 P or N/R P or N/R N/R N/R

Figure 3. PMS Access Chart

27

f 1 1]

IPrisonerl ves Prisonerl
L f L1
i 1
(REIR IREE
KRB 11
[¢ b Guards I 1 L
fPrisonerd & # | 1 78 Aprisonert
I L (R 'I (]
- ol
1
_
| !

I Postmaster |

R

Figure 4. PMS Process Structure

G2 - loop ... endis a control statement

p2 that indicates an infinite 1loop.

end A1l the solutions to the PMS problem

presented in this paper will

However, as we will see protection is often tied deliberately not terminate.

explicitly or implicitly to control flow and will
dictate more complex control solutions. These will

be discussed as they are encountered. - for i:= Prisonerld do ... is a finite

loop construct that causes the do

Liberties

*clause to be executed exactly once
for each value of type Prisonerld.

- decoy is a dummy type used solely to
In the solutions that follow we will take obscure a previous definition.
certain liberties to create shorter, more
understandable solutions. We assert that these
liberties merely eliminate detail from our Note: For the purpose of the solutions that

discussion and in no way add to or detract from the
languages' ability to express the essential
properties of this protection problem.

- NPrisoners is an integer constant
specifying the number of prisoners
using the PMS.

- Prisonerld is a range or set of
prisoner names which may be thought

follow, it makes no difference whether we consider
that the Postmaster is also a prisoner or not.

Solution in Pascal

We chose to begin by looking at Pascal [5]
because it 1is representative of the protection
facilities present in most algorithmic programming
languages and because it has had a strong influence

of as integer values in the range on many of the lanquages we will examine
1..NPrisoners. subsequently.

- sequence of ... 1is an allowable type Pascal offers data types, scope rules,
which will be treated as unbounded. parameter passing 1limitations, and routines as-
It has operations append item to parameters for enforcing access protection. Data
sequence, remove item from sequence, type checking assures that the types of all actual
and empty(sequence}. Append inserts parameters to all functions, procedures, and
a new item on the tail of the operators (including assignment) "match" the
sequence and remove removes the head corr‘espondi nqa formal parameters. "Matching" is
item from the sequence {(FCFS). Emp ty interpreted to mean that they have the same
is a boolean function that evaluates structure, not necessarily the same type name.
to true when the sequence is empty. This interpretation has strong implications for

protection. It means that no matter how much

- String is a sequence of character.

28

protection is wrapped around a type it is always
possible to "impersonate" the type by defining a
different type of the same structure. Pascal then
allows assignment of the "protected" object to the!
"impersonating" object. This allows the contents
of the "protected" object to be discovered.

procedure A

type t= yyy

procedure A
var a: t

end;
procedure X8
type t= decoy

procedure 3
var b: t
end;

end;

5b

Figure 5. Scope Protection

type t= yyy
var a: t
end;
procedure B
var b: t
end:
Sa
Pascal has a typical hierarchical program
structure which allows for nested routine
declarations with the accompanying scope rules: 1.
an identifier has scope over the defining routine
and all encompassed routines and 2. where an
identifier is multiply defined in a scope then

references to the identifier are resolved by the
definition with the smallest encompassing scope.
Rule 1 means that objects defined in a particular

scope are protected from references from
unencompassed scopes. Rule 2 means that objects
defined in encompassing scopes can be "hidden" if
they are redefined in smaller, but still
encompassing, scopes. The two scope rules are
illustrated in Figure 5. In 5a type "t" 1is hidden

from procedure "B" by keeping the definition out of
the scope of "B"; while in 5b, type "t" 1is hidden
from "B" by inserting an intervening "decoy"
definition in procedure "XB".

Pascal allows call by value as
passing restriction to prevent
parameter modification.
unable to prevent

a parameter
undesired actual
However, this mechanism is
unwarranted actual parameter
examination. In addition, any parameter which is
also a global variable can be modified directly
without restriction.

Finally, Pascal allows routines to be passed
as parameters to other routines. Unfortunately in
so doing, the need is created for dynamic parameter
type checking. Pascal implementations typically
don't do this dynamic checking, but we will ignore
this bit of 1laziness. The capability to pass
routines as parameters, combined with the scope
rules, allows an object X to be protected from a
routine R by defining X out of the scope of R

{hence, preventing direct access to X) and by
passing R only routines which can manipulate X -
never X 1itself. However, as we shall see 1in the

PMS solution this technique can get awkward.

The complete solution expressed in Pascal is
presented at the end of this section. This
solution has the following form.

program
procedure MIM2
procedure Gl

procedure G2
procedure P1

procedure P2
procedure XMain
var Boxes

1oop

end
XMain
To understand why the solution takes
consider the following arguments:

A. Suppose G1/G2 have direct access to
Boxes either because Boxes is alobal
to G1/G2 or because Boxes is passed
as a parameter to G1/G2. Then :

a. If G1/G2 also have access to all
of the type definitions for
Boxes, then G1/G2 can access
the contents of Boxes and the
Security Constraint is
violated.

b. If G1/G2 have access to only sone

or even none of the type
definitions, they can still
fabricate structuraliy

equivalent declarations for the
missing definitions, then
declare a local variable using
the fabricated types and assign

to that 1local variable the
contents of Boxes; thereby,
being able to violate the

Security Constraint.

Hence Pascal's treatment of types
implies that if G1/G2 have direct
access to Boxes then the Security

29

this form

program Main;
type llessageType =
record Body: String; Signature: Prisonerld; end;
type LetterType =
recerd Address: Prisonerld; Message: MessageType; end;
type BundleType =
record Label: Prisonerld; Letters: sequence of LetterType end;
type Mainbox = sequence of BundleType;
type Mailboxes = array [Prisonerld] of BundleType;
procedure i1M2(function EmptyMasterBox, EmptyScratchBundle: boolean; function
ReadAddressScratchLetter: Prisonerld; procedure RemoveMasterBox, AppendiasterBox,
RemoveScratchBundle, AppendScratchBundles, MoveScratchBundles, WriteLabelScratchBundle);

end MIMZ;
procedure Gl{procedure RemoveBoxes, AppendMasterBox};

end Gl;
procedure G2(function EmptyMasterBox: boolean; function
ReadLabelScratchBundle: PrisonerId; procedure Removetlaster3ox, AppendBoxes):

end G2;
procedure Pl(var b: BundleType);

end P1;
procedure P2(var b: BundleType);

end PZ;
procedure XMain;
var Boxes: Mailboxes;

var MasterBox: Mainbox;
var ScratchBundle: BundleType;
var ScratchBundles: array [Prisonerld] of BundleType:
var ScratchLetter: LetterType;
function EmptyMasterBox: boolean:
begin EmptyMasterBox:= empty(MasterBox); end;
procedure RemoveMasterBox:;
begin remove ScratchBundle from MasterBox end;
procedure AppendvasterBox;
benin append ScratchBundle to MasterBox: end;
procedure ReroveBoxes(i: Prisonerld);
begin ScratchBundle:= Boxes[i]; end;
procedure AppendBoxes(i: Prisonerld);
begin Boxes[i]:= ScratchBundle; end;
function EmptyScratchBundle: boolean;
begin EmptyScratchBundle:= ngtz(ScratchBund]e), end;
procedure RemoveScratchBundle;
begin remove ScratchLetter from ScratchBundle; end;
Qrocedur AppendScratchBundles(i: Prisonerld);
begin append ScratchlLetter to ScratchBund]es[1] end;
procedure MoveScratchBundles(i: Prisonerld);
begin ScratchBundle:= ScratchBundles[i]; end;
function ReadLabelScratchBundle: Prisonerld;
begin ReadLabelScratchBundle:= ScratchBundle.Label; end;
procedure NriteLabe]ScratchBund]e(i: Prisonerld);
begin ScratchBundie.Label: ;_end;
function ReadAddressScratchLetter Pr1soner1d
begin ReadAddressScratchLetter:= ScratchLetter.Address; end;

begin
loop

for i:= Prisonerld do P1(Boxes[il);

GI(RemoveBoxes, AppendMasterBox):

MIM2 (EmptyMasterBox, EmptyScratchBundle, ReadAddressScratchLetter, RemovellasterBox,
AppendMasterBox, RemoveScratchBundle, AppendScratchBundles,
MoveScratchBundles, WritelLabelScratchBundle);

GZ(EmptyMasterBox, ReadLabelScratchBundle, RemoveMasterBox, AppendBoxes);

for i:= Prisonerld do P2(Boxes[i]);

end;
end;

beain XMain; end.

Figure 6. Pascal Solution

30

Constraint can be viclated.

B. Suppose G1/G2 are not allowed direct
access to Boxes, then it must be: 1.

that Boxes is defined in such a way
that its scope does not include
Gl1/G2, 2. that Boxes is not passed

as a parameter to G1/G2, and 3. that
Gl1/G2 are instead passed routines,
as parameters, which can access
Boxes. Then:

a. If Boxes 1is defined outside the
scope of G1/G2 as in Fiqure 5a
the result takes the form
presented here.

b. Otherwise, if Boxes is defined so

that its scope encompasses
G1/G2 then there must be an
intervenina “decoy" definition
as in Figure 5b. This

possibility likewise leads to a
valid solution. The solution
presented for Concurrent Pascal
uses this technique.

In the solution, the Main program simply
functions as a shell and immediately calls XMain
which contains the data declarations safely out of
reach. Since the data within a bundle need not be

protected from the prisoners, P1/P2 are allowed
direct access to their parameters. To prevent ever
passing a letter {(or structure of Tletters) to
G1/MIM2/G2 and yet aliow them to perform their
functions, we were forced to create twelve access
routines. Many of these functions perform the same
operation, but on different objects (e.c.
AppendBoxes and MoveScratchBundles) yet without the

objects being passed as parameters they are all
necessary. Variables that would normally be
declared Tocally (such as ScratchBundles) within

G1/M1M2/G2 are forced to be declared in XMain with
their access protected in the same manner by using
access functions. The net result is that
G1/M1M2/G2 are only synthetic representations of
their intended desian.

Solution in Concurrent Pascal

The next protection mechanism we want to look
at is the abstract data type. In its simplest form
an abstract data type consists of a set of abstract
operations defined on a concrete representation
which is hidden from all references except those of
the abstract operations. Simula 67 [4] provides
a class structure which was initially defined as
described above, excent that the concrete
representation was completely visible. A later
extension [9] allows selective hiding of both
data and routine declarations. The class mechanism
defined in Concurrent Pascal [2] behaves
similarly. In it all names are hidden, except
those explicitly declared as entries. We have
chosen to disptay the PMS solution in only

one of -

31

these Tlanguages as the solution in the other is
similar. Since the rest of the examples in this
paper use a Pascal-like syntax we have chosen
Concurrent Pascal.

Concurrent Pascal offers the same protection
mechanisms available in Pascal plus classes and

monitors. In the current context we will ignore
the possibilities for a concurrent solution, and
hence monitors. As stated above classes consist of
a set of operations defined on a concrete
representation of an object for the purpose of
abstracting its essential properties. An important
fact is that each class is unique, i.e. two classes

"match" if and only 1if they are the same
declaration. The class structure is illustrated in
Figure 7. It defines an abstract IntStack with

operations Push, Pop, and Top (ignoring all error
possibilities). The keyword entry indicates that
the identifier is to be defined in the scope of the
class declaration. The final begin-end npair
provides code which is to be executed whenever the
class 1is allocated and which initializes the
internal structure.

The solution expressed 1in Concurrent Pascal

has the followina form.

var Boxes
procedure XM
procedure
MiM2
procedure XG
procedure Gl
procedure G2
G1
Xid
G2
procedure XP1
procedure P1
Pl

procedure XP2
procedure P2

M1M2

P2
loop
XP1
XG
XP2
end
The solution functions by placing each of
P1/61/11i12/G2/P2 1in an environment where access
functions are selectively screened by defining
decoy definitions 1in 1intervening scopes. Type

MessageType is screened from Gl/MIM2/G2 by XM and
XG, but not from P1/P2 and type LetterType is
screened from G1/G2, but not Pl/MIM2/P2.

In addition, MessageType, LetterType, and
BundleType are defined as classes thereby
restricting access to only the appropriate access
functions. MNote that a bit of cleverness has been
employed here. For LetterType we want that MIM2
can read, but not write, the Address field only.
By grouping the operations on letters such that one
set can be performed without a HMessageType
parameter while the others cannot, access to the

operations is divided into two categories: corplete

type IntStack = class;
var st: array [1:100] of integer;
var pt: integer;
procedure entry Push(i: integer);
begin pt:= pt+l; stlpt]l:= i; end:
procedure entry Pop;
. begin pt:= $t-1; end
unction entry Top: integer;
begin Top:= stlpt]; end;
begin pt:= 0; end;

Figure 7. Concurrent Pascal Class

and partial. Those routines which cannot reference clause which may be attached to type and routine
MessageType have only partial access and with declarations. The effect of an import statement
partial access only ReadAddress is available. In is to extend the scope of those identifiers named
this case M1M2 has partial access and P1/P2 have in the imports clause to include the type or
complete access. The same cleverness is employed routine being defined. Names may only be
in the definition of BundleType to allow G1/G2 imported one scope level; hence, if they are not
partial access while allowina P1/M1M2/P2 corplete imported at each level intervening between their
access. definitions and a particular type or routine,

then they become invisible to that type or
routine. Variables may be imported either with
Solution in Euclid full modification capabilities (as var) or as
- constants (the default). Figure 9 shows the effect
of the pervasive and import rules. The variable

noH

y" is available "'to each of the routines "A",

Euclid [7), also derived from Pascal, was "B, "C", and "D", but only as a constant. The
designed specifically for the expression of systems variable "x" is available as a variable to "A", as
programs that are to be verified. Consequently, a constant to "8", and is unavailable to both "C"
Euclid has specifically included features to and "D" (it is completely hidden from "D" in that
control object accessibility. Many of the problems it could not be imported even if desired).

with which we were presented in Pascal, have been

brought under programmer control. . X L
Euclid's module s a variation of the

abstract data type we found in Simuia and

The treatment of data types in Euclid is Concurrent Pascal. The variables declared within
essentially identical to that of Concurrent Pascal the body are considered to be the concrete
with classes being replaced by modules. Two types representation of the abstract object with the
"match" if they have the same structure, except rout1ngs declared therein ‘be1ng the abstract
that all module types are considered different. operations. Those names which are to represent
Hence, two types which contain modules can “match" the abstract properties are then exported into
only if they contain the identical module types is the scope of the type declaration. Identifiers
corresponding positions of otherwise “matching" which are to be exported are explicitly listed
structures. Thus by using module type definitions in an export clause. Euclid furthers allows
it is now possible to prevent the "impersonation" that variables may be exported as either variables
of types as we found in Pascal. (var) or constants (again the default). Note:

Importing a type identifier imports all identifiers
exported by that type definition.
A transformation has been performed on the
Pascal scope rules. While declarations are still

hierarchically definable, the implied scope of a Euclid does not permit procedures and
declaration 1is only the routine in which it is functions to be passed as parameters, thus
defined and not the encompassed routines as well, precluding the technique used in the Pascal
This means that without additional mechanisms there solution.

would be no non-local definitions (including

routines). However, there are two mechanisms for . . .

extending the scope of declarations. The first is The solution expressed in Euclid has the
a pervasive declaration. If an object is declared following form.

pervasive, then its scope also includes all

routines encompassed by the defining routine. This

is equivalent to the Pascal scope, except that in module main

the extended scope the object may not be modified. module bundletype
For types, routines, and constants there is no module lettertype
means of modifying them anyway, so declaring them PL
pervasive restores the Pascal scope rules. But P2

for variables, while their scope is extended, they M1MZ

may only be referenced as constants in the bundle_P1
extended scope. The second mechanism is an imports bundle_p2

32

type MessageType = class;
var Body: String;
var Signature: Prisonerld;
funct1on entry ReadBody: String;
begin ReadBody:= Body; end;
procedure entry WriteBody(s: Str1ng)
begin Body:= s; end;
function entry ReadS1qnature Prisonerld;
begin ReadSignature:= Signature; end;
procedure entry WriteSignature{a: Prisonerld);
begin Signature:= a; end;
begin end;
type LetterType = class;
var Address: Prisonerld;
var Message: MessageType;
function e entry ReadAddress: Prisonerld;
begin ReadAddress:= Address; end;
procedure ntrx ReadMessage(var m: Messaquype)
begin m:= Message; end;
grocedur entry wr1teLetter(m MessageType; a: Prisonerld);
begin Message:= m; Address:= a; end;
begin end;
type Bund]eType = class;
var Label: Prisonerld;
var Letters: sequence of LetterType;
funct1on entry Readlabel: Prisonerld;
" begin ReadLabel:= Label; end;
procedure entry WritelLabel(1: LetterType; a: Prisonerld);
begin Label:= a; end;
procedure entry EmptyLetters(l LetterType);
begin EmptyLetters:= empty{Letters) end;
Qrocedur entry RemoveLetter var 1: LetterType)
begin remove 1 from Letters; end;
procedure entry AppendLetter(l: LetterType)
begin append 1 to Letters; end;
begin end;
type e Mainbox = sequence of BundleType;
type Mailboxes = array [Prisonerld] of BundleType;
var Boxes: Mailboxes;
procedure XM(var masterbox: Mainbox};
type MessageType = decoy;
var Boxes: deco 3
Qrocedur MIM2(var masterbox: Mainbox); ... end M1MZ;
begin MiM2(masterbox); end;
procedure XG(var boxes: Mailboxes);

type MessageType = decoy;
type LetterType = decoy;
var MasterBox: Mainbox;

procedure Gl(var boxes: Mailboxes; var masterbox: Mainbox); ... end Gl;

procedure G2(var boxes: Mailboxes; var masterbox: Mainbox); ... end G2;

begin init MasterBox; Gl(boxes, MasterBox); XM(MasterBox): G2(boxes, MasterBox); end;
procedure XPl(var box: BundleType);

var Boxes: decoy;

procedure Pi(var b: BundleType); ... end Pl;

begin Pl{box); end;
procedure XP2(var box: BundleType);

var Boxes: deco

rocedure P2{var b BundleType); end P2;
begin PZ{box); end;
begin
init Boxes;
loop
for i:= Prisonerld do XP1(Boxes[il);
XG{Boxes);
for i:= Prisonerld do XP2(Boxes[il]);
end;
end.

Figure 8. Concurrent Pascal Solution

33

var x: integer:

pervasive var y: integer;
procedure A imports (var x)

procedure B imports (x)

procedure C
procedure D imports(?)

Figure 9. Pervasive and Import Rules

procedure Gl
procedure main_M1v2

procedure G2

var boxes
var MasterBox
Toop
bundle_P1
Gl
main_M1#2
G2
bundle_P2
end

This form is dictated by the need to hide certain
identifiers from the quards and the postmaster. By
declaring LetterType inside of BundleTyne, Pl and
P2 inside the LetterType module, and the postmaster
(M1M2) inside the BundleType module, the required
data protection is established.

The data abstraction mechanism in FEuclid
allows a routine access to the internal
representation of at most one instance of a aiven

module type, via importation of module variables.
Thus, a sequence of module instances must be broken
down into the individual instances before an
operation on the module can be done. Pl has access
to the components of a letter by importing the
variables which form an instance of a letter (that
is, address and message). It generates a sequence
of letters by recursive calls to itself. Since Pl
can only be referenced as a component of an
instance of a letter, bundle Pl declares a variable
of type LetterType. Pl would have the following
form.

var letter: LetterType:
set_address;
set message:
if moodstrikes
then
letter.Pl;
append letter to contents;
end.

Similarly, Ml¥2 recursively processes bundies,
being initially called by main MIMZ2 with the head
of MasterBox. Its form would be:

var bundle: BundleType
process_label;
process_contents;
if not empty (MasterBox)
then
remove bundle from MasterBox;

34

bundle . MIM2;
end;
process_label;
process_contents.

Finally P2 recursively consumes letters. It is
initially called by bundle-P2 with the head of
contents. Its form would be:

var letter: LetterType;
consume_address;
consume_message;
if not empty (contents)
then
remove letter from contents;
letter.P2;
end.

An important property of this solution is that
in order to produce the desired data access
control, the control structure of the program is
not really correct. For example, nothing prevents
guards (Gl and G2) from calling the prisoners and
the postmaster, via calls to bundle_Pl, bundle P2,
and M1M2, and the postmaster (MIM2) from calling
the prisoners, via calls to Pl and P2. This is a
consequence of the rule in Euclid that if a module
name is known, all identifiers exported by the
module are known.

Solution in Clu

The language Clu [8] displays significant
departures from the preceding languages while
retaining a Pascal-like syntax and scope rules.
Clu was designed specifically to support the

development of e proaram by successive
decomposition through the usage of abstractions.
An abstraction is for Clu "a mechanism which
permits the expression of relevant details and
the suppression of irrelevant details" [8].

The basic unit in Clu 1is a module. A module
is either a procedure or a cluster. A procedure
provides an abstract operation and a cluster
provides an abstract object. Modules may be
nested similar to Pascal, except that an
identifier may not be redefined in an encompassed
scope as in Pascal.

module Main
pervasive type BundleType =
module exports {:=, label, bundle_P1, MIM2, bundle_P2)
pervasive type LetterType =
module exports (:=, address, P1, P2)
type MessageType =
record
Body: String;
Signature: Prisonerld;
end;
var Address: Prisonerld;
var Message: MessageType;
procedure P1 (var label: Prisonerld, var contents

end;
procedure P2(var label: Prisonerld, var contents:
end;
initially Message.body := ();
end LetterType;
var label: Prisonerld;

var contents: sequence of LetterType;
procedure MIM2 {var MasterBox: seaquence of BundleType)

saee

end;
procedure bundle Pl imports (var label, var contents) =
begin

var letter: LetterType;
letter.P1 {label, contents);
append letter to contents;

end;
procedure bundle_P2 imports (var label, var contents) =
begin

var letter: LetterType;
if not empty (contents)
then
remove letter from contents;
Tetter.P2 (1abel, contents};
end;
end:
initially contents := ();
end BundleType;
pervasive type MainBox = sequence of BundleType;
pervasive type MailBoxes = array (Prisonerld} of BundieType;
var MasterBox: MainBox;
var Boxes: MailBoxes;
procedure Gl (var Boxes: MailBoxes, var MasterBox: MainBox)

end;
procedure G2 (var boxes: MailBoxes, var MasterBox: MainBox)
end;
procedure main_MIM2 (var MasterBox: MainBox) =
begin
var bundle: BundleType;
remove bundle from MasterBox;
bundle.MIM2;
end;
Toop
for i: Prisonerld do Boxes[i].bundle P1;
Gl (Boxes, MasterBox); }
main_MIM2 (MasterBox);
G2 {Boxes, MasterBox);
for i: Prisonerld do Boxes[i].bundle P2;
end;
end Main;

Figure 10, Euclid Solution

35

: sequence of LetterType)

seauence of LetterType)

A cluster is another form of an abstract
data type. It contains an object representation
which 1is used to realize the abstraction along

with a set of operations defined on this
representation, which provide the required
abstract operations. The representation 1is known

only within the cluster and therefore only
referencible by the operations defined within the
cluster. The set of operations to be exported into
the scope of the cluster declaration is explicitly
specified in the cluster heading.

as the
multiple

A routine may return multiple values
routine result and then perform a
assignment. For instance,

stack, element:= Pop(stack)

where

Pop = operation(s: stacktype)
returns (stacktype, elementtype);

would allow the Pop operation to return the top
value as well as the reduced stack.

Summarizing, Clu has Pascal-1ike scope rules
with the restriction that unqualified identifiers
cannot be redefined in an encompassed scope and it
has an abstract data type, called a cluster, with
explicit exportation. Hence, if we look back at
the previous solutions, the solution expressed in
Concurrent Pascal is unusable because redefining
identifiers in encompassed scopes is not
allowed. The solution in Euclid is usable, as is
the solution expressed in Pascal. There is yet a
more interesting solution which is unique to Clu.

A variable in Clu is an identifier capable of
denoting objects of a certain specified type. A
variable is made to denote a particular object
by means of the assignment operation. An object
is a structure capable of possessing a value of the
specified type. Objects are dynamically created by
the create operation defined for each type
(either explicitly or implicitly). Each newly
created object is unique, i.e. it has never before

existed. Thus there are two distinct forms of
"equality” in Clu. Two variables are equal if
and only if they both denote the same object.
Two variables are similar if they both denote
objects which possess the same value. Because

of the uniqueness of objects, if equal(X, Y) then
there exists a Z which created the objéct now
pointed to by both X and Y together with a

sequence of assignments such that X:= ... := 7 and
Y:= ... :=12Z. The significance of this fact is
that it is 1impossible to fabricate an object

and then have it test equal to some other object.
This gives us the ability to construct unique,
unfabricatable protection keys.

The solution presented below takes the

following form.

36

var Boxes

procedure
procedure
procedure
procedure P1
procedure P?
procedure

Toop

end
Main

A1l type definitions
of P1/GLl/MIM2/G2/P2.

are
The

defined within the scope
solution then relies on

two facts: 1. for each of the critical fields
access is available only through access
operations and 2. access to the access operations
is controlled by access keys. If an access

function is presented with a key which matches the
key in the data structure to be accessed, then
the access is allowed. Since keys cannot be
forged, a routine could have the key only if it
had been given the key through proper channels.
There are two keys KeyM and Keyl; they correspond
to being able to access MessageType and
LetterType as 1in the Concurrent Pascal solution.-

The main procedure starts by creating the
two unique keys. All bundle and letter
declarations subsequently are created to contain
these keys which are handed out to
P1/G1/MIM2/G2/P2 in accordance with required
protection.

The . keyword rep is used inside a cluster

definition to denote the internal representation of
the cluster.

Solution in Gypsy

Gypsy [1] s another 1language which is
based on a Pascal syntax. It was specifically
designed for supporting the development of formally
verifiable programs for communications systems.
Like Concurrent Pascal it offers facilities for
writing programs using concurrent processes. It
also provides facilities for writing program
specifications directly in the program code. We
will ignore the presence of these extras in the
current context.

series of

a program
or routine
hence, the
traditional hierarchical structure is missing from
Gypsy. Furthermore, variables can be declared only
inside units. This means that there are only local
and parameter variables.

Gypsy programs are composed of a
units, exactly one of which should be
unit. Units are type, constant, macro,
units. Units may not be nested;

MessageType = record{Body: String, Signature: Prisonerld];
LetterType = cluster is create, ReadAddress, ReadMessage, WritelLetter;
rep = record[Key: KeyType, Address: Prisonerld, Message: MessageTypel;
create = operation(k: KeyType) returns(rep);
1: rep; 1.Key:= k; return (1); end;
ReadAddress = operation(1: rep) returns(Pr1sonerId)
return (1.Address}; end
ReadMessage = operation{T: rep, k: KeyType) returns{MessageType);
if equal(1.Key, k) then return (1. Message); end;
WriteLetter = operation{1: rep, a: Prisonerld, m: MessageType, k: KeyType) returns {rep);
if equal(1.Key, k) then begin 1.Address:= a; 1.Message:= m; return (1); end; end;

end;
BundTeType = cluster is create, ReadLabel, WritelLabel,
EmptyLetters, RemoveLetter, AppendLetter;

rep = record [Key: KeyType, Label: Prisonerld, Letters: sequence of LetterTypel;
create = operation(k KeyType) returns(rep);

: rep; b.Key:= , return (bY; end;
ReadLabel 0 erat1on . rep) returns (Prisonerld);
return (D Cabel); end

WritelLabel = operation{b: rgg a: Prisonerld, k: KeyType) returns(rep);
if equal(b.Key, k) then begin b.Label:= a; return (b); end; end;
EmptyLetters operation(b: : rep, k: KeyType) ret urns(boolea—7~
if equal(b.Key, k) then return (empty(b.Letters)); end;

RemoveLetter = operation(b: rep, k: KeyType) returns(rep, LetterType):
1: LetterType;

if equal(b.Key, k) then begin remove 1 from b.Letters; return (b, 1):
end; end;
Writeletter = operation(b: rep, 1: LetterType, k: KeyType) returns(rep);
if equal(b.Key, k) then begin append 1 to b.Letters; return (b);
end; end;
end;
Mainbox = sequence of BundleType;
Mailboxes = array of BundleType;

MIMZ = procedure(masterbox: Mainbox, k: KeyType) returns(Mainbox);

end MIMZ;
procedur e(boxes: Mailboxes, masterbox: Mainbox) returns(Mailboxes, Mainbox);

end Gl;
G2 = procedure(boxes: Mailboxes, masterbox: Mainbox) retyrns(Mailboxes, Mainbox);

e

end G2;
= procedure(box: BundleType, kb, k1: KeyType) returns(BundleType);

end P1;
P2 = procedure(box: BundleType, kb, k1: KeyType) returns(BundleType);

nd P2;

Main = procedure
KeyM: KeyType();
KeylL: KeyType();
Boxes: Mailboxes:= fill{l, NPrisoners, BundleType$create(KeyL)):
§fi11 creates an array indexed 1..NPrisoners;
each element is initialized by calling the create operation on BundleTypet
MasterBox: Mainbox;
loop
for i:= Prisonerld do Boxes[i]:= P1(Boxes[i], KeyL, KeyM);
Boxes, MasterBox G1l(Boxes, MasterBox);
MasterBox:= MIM2(MasterBox, KeylL);
Boxes, MasterBox:= G2(Boxes, MasterBox);
for i:= Prisonerld do Boxes[iJ:= P2(Boxes[i], KeyL, KeyM);
end;” end;
Main

Figure 11. Solution in Clu

37

type <A, B> IntStack <New, Push, Pop, Top> =
record(st: array [1..100] of inteqger;

pt: integer);

<A, B> new: IntStack;
result.pt:=0; end:

<A> Push{s: IntSTack: i:
s.pt:= s.pt+l: s.stls.ptl:= i; end;
<A> Pop(s: IntStack) =

procedure
beain
procedure
begin
procedure

integer) =

begin s.pt:= s.pt-1; end;
function <A, B> Top{s: IntStack): integer =
beain result:=s.st{s.ptl; end;

Fiqure 12. Gypsy Access Lists

Associated with each
lists. The first (which
before the unit name) lists those units that are
allowed to access the wunit. If this is a routine
unit the list indicates which units are allowed to
invoke the routine. For type units it indicates in
which units objects of that type can be declared.
When the first access 1list is missing, it is
assumed that all units are allowed to reference the
unit. The second access 1list (which is only
meaninaful for types and which syntactically
immediately follows the unit name) indicates those
units that are allowed to reference the internal
structure of the unit. This access list allows for

unit are two access
appears syntactically

the construction of abstract data types. When this
list is missina it is assumed that all units are
allowed access to the internal structure. Figure

11 demonstrates the IntStack example again (Figure
7} - this time in Gypsy. The access lists state
that both units A and B are allowed to declare an
IntStack with Push, Pop, and Top beina the only
routines allowed to vreference the internal
representation of an IntStack. Furthermore, only

A can do Push or Pop operations, but both A and B
are allowed to do the Top operation. It should be
clear that by supplying suitable access 1lists any

graph structured access pattern can be achieved.

A type in Gypsy consists of a mode and a
possibly empty set of restrictions. For instance,
a subrange 1..10 (or integer(1..10]) is of mode

integer with a range restriction requiring that the
value be greater than or equal to one and less than
or equal to ten. Two types "match" if their modes
"match" after repeatedly substituting modes for
their corresponding types. However, type
impersonation is prevented by restricting objects
from gaining access rights either through
assignment or parameter passing.

Gypsy does not allow routines to be passed as
parameters.

The Gypsy solution utilizes

form,

the following

procedure Pl

procedure G1
procedure M1M2
procedure G2
procedure P2

38

program Main
var Boxes

loop

end
end

The form of the solution
explanation. It requires no subtleties, but simply
relies on the properties of its access lists.
Several points are worth noting: 1. WritelLabel
doesn't require a dummy parameter of type
LetterType as some previous solutions have and 2.
we are able to discriminate access to a finer level
without increasing the complexity of the solution.
Examples of the Jlatter are \liriteLetter being
restricted to just Pl and P1/G1/M1M2/G2/P2 being
restricted so that only Main is allowed to invoke
them.

itself requires little

Conclusion

Is this example contrived? Yes and no. The
PMS example was concocted to compress as much as
possible complexity into a small example and at the
same time to motivate as much as possible the
significant protection problems. Hence, the PMS is
contrived, but the protection problems are not.

Most of the protection problems iltlustrated
here occurred to us in the process of constructing
formal proofs for message communication systems.
For the purpose of proofs it is not sufficient to
rely upon programmer discipline. Hence, either the
language guarantees tightly protected routine
interactions or the verification system 1is forced
to expand the scope of its proof process to account
for possible side-effects that should never be
allowed, but that the programmer has no facility of
preventing. Routine specifications can be used to
prohibit undesired routine interactions, but these
“no-effect" type specifications tend to become
voluminous and each instance still requires proof.
We have found that by providing stronger access
control facilities in the language the burdens of
proof can be significantly reduced.

type MessageType = record(
Body: String;
Signature: Prisonerld);
type LetterType<ReadAddress, ReadMessaae, \iriteLetter> = record(
Address: Prisonerld;
Hessage: MessageType);
function <P1, MIM2, P2> ReadAddress{1: LetterType): Prisonerld =
beain result:= 1.Address; end;
function<P1,P2> ReadMessaqge(1: LetterType): MessageType =
begin result:= 1.Message; end;
procedure <P1> WriteLetter(var 1: LetterType; a: Prisonerld; m: MessaaeType) =
begin 1.Address:= a; l.Message:= m; end:
type BundieType<ReadLabel, WritelLabel, EmptylLetters, Removeletter, AppendLetter> = record(
Label: Prisonerld;
Letters: sequence of LetterType);
function ReadLabel{b: BundleType)}: Prisonerld =
begin result:= b.Label; end;
procedure <P1, Mi2> WriteLabel(var b: BundleType; a: Prisonerld) =
begin b.Label:= a; end;
function <P1, Mli2, P2> EmptyLetters(b: BundleType): boolean =
beain result:= empty(b.Letters); end:
procedure <Pl, MI'2, P2> Removeletter{var b: BundleType; var 1: LetterType) =
begin remove 1 from b.Letters; end;
procedure <P1, HM1M2, P2> AppendlLetter{var b: SundleType: 1: LetterType) =
begin append 1 to b.Letters; end;
type Mailboxes = array (Prisonerld) of BundleType;
type Mainbox = sequence of BundleType;
procedure <tain> PI{var b: BundleType) =

end P1;
oprocedure <Main> Gl{var boxes: Mailboxes: var masterbox: Mainbox)

end Gl;
procedure <Main> “lMZ2(var masterbox: Mainbox) =

end r1if:12;
procedure <Main> G2(var boxes: Mailboxes; var masterbox: iainbox)

end G2;
procedure <Main> P2(var b: BundleType) =
end P2;
proagram Main =
begin
var Boxes: Mailboxes;
var MasterBox: HMainbox;
loop
for i:= PrisonerId do P1(Boxes[i]):
Gl{Boxes, MasterBox);
M1M2 (MasterBox);
G2(Boxes, MasterBox);
for i:= Prisonerld do P2(Boxes[i]);

Fiqure 13. Solution in Gypsy

39

We again emphasize that in all fairness most
of these lanaguages were not designed to solve this
type of a problem. We don't pretend that they were
nor are we critical of their performance. Instead,
our point is to illustrate how "existing” lanquages
performed on the subject of protection, and indeed,
they perform surprisingly well.

The solutions demonstrate several points about
protection. First, never pass direct access to a
protected object, but rather pass access to
operations on that object. This point is the basis
for the Pascal solution and the usage of abstract
data types. Second, selective hiding of
declarations is essential to a good solution. In
Pascal, the declarations were hidden in an
encompassed scope; in Concurrent Pascal, they were
hidden by decoy definitions; in Euclid, they were
hidden by selective exportation from modules; and

in Gypsy, they were hidden by explicit access
lists. Third, selective access to operations as
well as data is important. In Concurrent Pascal

and Clu, this was accomplished by constructing an
unforgeable key: while, in Gypsy, we used an
explicit access list. In Euclid, this was
accomplished to some extent by nested definitions.

There are a couple of other works relevant to

this problem, The design of a capability based
protection scheme [6] appears to provide an
elegant solution, as does Alphard [12]. While we
examined both of these, we did not include

solutions because of the lack of adequate lanquage
details required to construct a solution.
Nevertheless, there is hope that in the near future
even better capabilities for protection in
programming languages may exist.

Bibliography

[1] Ambler, Allen L., Good, Donald I., and
Burger, Wilhelm F. Report on the Language
Gypsy. Technical Report ICSCA-CMP-1, Univ. of

Texas, (1976).

(2]

Brinch Hansen, Per. The Purpose of Concurrent
Pascal. Proceedings ICRS (1975).

[31 Dijkstra, E.W. Notes on Structured
Programming. Structured Programming, Academic

Press, (1972).

{4] Hoare, C.A.R. Hierarchical Program
Structures. Structured Programming, Academic

Press, (1972).

[5]

Niklaus.
Springer

Jensen, Kathleen, and Wirth,
User Manual and Report.
(1974).

Pascal
Verlag

40

£6]

71

(8l

[9]

[10]

(111

f12]

Jones, A. K., and Liskov, B. H. A Language
Extension for Controlling Access to Shared
Data. International Conference on Software
Engineering (1976).

Lampson, B.W. et al. Euclid Report. Xerox
Research Center, Palo Alto {1976).

Liskov, Barbara, and Zilles, Stephen. An
Approach to Abstraction. Computation
Structures Group Memo 88, MIT (1973).

Palme, Jacob. New Feature for Module
Protection in Simula. SIGPLAN Notices, 11, 5,
(1976).

Parnas, D. L. A Technique for Software Module
Specification with Examples. Comm. ACM 15, 5

(1972).
Wirth, N. Program Development by Stepwise
Refinement. Comm. ACM, 14, 4, (1971).

Wulf, W.A., London, R. L., and Shaw, Mary.
Abstraction and Verification in Alphard:
Introduction to Language and Methodoloay.

Research Report ISI/RR-76-46, ARPA (1976).

