
A STUDY OF PROTECTION
IN PROGRAMMING LANGUAGES

Allen L. Ambler
Amdahl Corporation

and
Charles G. Hoch

The University of Texas at Austin

The concept of "protection" in programming languages refers to the ab i l i ty to express directly in
the language the desired access control relationships for al l objects defined in the language. The
use of such mechanisms as data types, scope, parameter passinQ mechanisms, routines as parameters,
abstract data types, and capabilities in Pascal, Concurrent Pascal, Euclid, Clu, and Gypsy are
explored via a simple example which embodies many protection problems. The usefulness of language
defined and enforced protection mechanisms to the process of formal verif ication is discussed.

Keywords and Phrases: Protection, Pascal, Concurrent Pascal, Euclid, Clu, Gypsy, abstract data
types, module

CR Catagories: 4.22, 4.34

Introduction

The concept of "protection" in programming
languages refers to the ab i l i ty to express directly
in the language the desired access control
relationships for al l objects defined in the
language. While in operating systems protection
has received extensive attention, only recently
have we recognized the need for similar protection
fac i l i t i es in programming languages. There are
several factors which have contributed to this
recent realization. First, the emphasis being
placed on producing better software has generally
supported the concept of highly modular programs
with well-defined and tightly-enforced module
interfaces. Parnas modules [10], step-wise
refinement [11], structured programming [3],
etc. al l employ modules with r igid interface
conventions which whenever possible are enforced by
the language and which when unenforceable rely on
self-imposed programmer discipline. Second, formal
program verification either by hand or by semi-
automated techniques must rely on information
about object accessibility in order to prove
assertions about manipulations on objects. These
object access restrictions necessary for formal
verif ication need to be expressed directly in the
language and to be enforceable by compilers of
that language.

As various protection needs have arisen new
protection n~chanisms have been introduced to
handle them. Data types have been introduced to
protect objects f rom misinterpretation across
module interfaces. Scope of variables allows
selective "hiding" of objects; thereby, l imitinq
access. Independent compilation provides another
means of selectively "hiding" objects. Parameter
passin 9 mechanisms provide for "partial" access to
variables passed across module interfaces.
Routines as parameters provide a means of passing
indirect access to an object without allowing
direct, uncontrolled access. The implementations
of abstract data types provide new mechanisms for
selectively - ~ d i ~ - - - o b j e c t s and for allowing
"partial" access. Finally, there have been
proposals for introducing "capabilities" into
programming languages [6].

In the course of this paper we wi l l explore
the usage of these protection mechanisms as
presented in specific existing and/or future
languages. The vehicle for our discussions wi l l be
an example, referred to as the Prison Hail System.

Prison Mail System Problem

The Prison Mail System. (PHS) Problem is
described as follows:

25

http://crossmark.crossref.org/dialog/?doi=10.1145%2F390019.808309&domain=pdf&date_stamp=1977-03-01

writes
letters

P1

bundles
picked up

Gi

sorts
letters

M1

re-bundl es
letters

,I il
M2

bundles
del i vered

Jl
G2

reads
letters

P2

Figure 1. Bundle Cycle

1.

2.

Prisoners are confined to individual
cells unable to communicate directly
or indirect ly with any of the other
prisoners, except via the Prison Mail
System.

Prisoners communicate through the
Prison ~lail System by exchanqing
messaqes which are picked-uI) and
delivered by the prison Quards.

Hence, during each delivery cycle each
prisoner sends to and receives from the Postmaster
exactly one bundle. Thus the guards are thwarted
from discovering which prisoners are communicating.
We choose to ignore any further possibi l i t ies of
discovery such as weighing the bundles, measuring
their thickness, etc.

A PI,IS Solution

3. Each message consists of a body and a
§ignature and is placed inside an
envelope which is then sealed and to
which an address is affixed.

The Prison ~lail System resembles the Post
Office System except that the guards and the
prisoners are mutually suspicious of each other.
The guards are afraid that the prisoners inay be
planning a prison break and consequently, are
constantly alert for any information that might
reveal the prisoners' plans. The prisoners, on the
other hand, resent this snooping by the guards and
do everything in their power to make i t impossible
for the guards to obtain information. By mutual
agreement there is one and only one security
constraint which is always observed.

Th_.e Security Constraint:
addressee is allowed to open
once sealed.

Only the
an envelope

However, the guards are allowed to remember
any information that is discernible by examination
including froln whom and to whom messages are
carried. Cognizant of this fact, the prisoners
worked out the following convention for reducing
the significance of the information obtainable by
the guards.

4. For each prisoner al l messages
(possiDly none) to be mailed during
some t ime period are placed inside
another envelope, referred t o as a
bundle, which is t hen sealed and
labelled for a non-partisan
Postmaster.

5. The Postmaster receives bundles, opens
them, sorts the letters contained
inside (without opening them), rewraps
them into a single bundle (possibly
empty) for each prisoner, and relabels
them for the correct recipient.

In the remainder of this paper we w i l l discuss
a solution to the PMS problem as i t is expressible
in the languages Pascal [5], Concurrent Pascal
[2], Euclid [7], Clu [8], and Gypsy
[1]. For each language we w i l l analyze the
effectiveness of i ts protection mechanisms at
enforcing the Security Constraint. We note from
the outset that none of these languages, except
Gypsy, was specif ical ly designed for protection. I t
is not our intention to c r i t i c i ze them in any way,
but rather to contrast the various existing
protection mechanisms. I t is our contention that
protection in programming languages is an old, but
real, issue that has often been buried in other
constructs and that only recently has been
addressed directly. We begin by characterizing the
general properties of the solution.

I f we l im i t our thoughts to a single "bundle"
cycle, we observe that (Pi) the prisoners write
letter5 wrapping them in a bundle, (G1) the guards
pick up the bundles and deliver them to the
Postmaster, (M1) the Postmaster opens the bundles
and sorts the mail, (M2) the Postmaster then re-
bundles the letters and hands them back to the
guards, (G2) the guards deliver the bundles to the
prisoners, and (P2) the prisoners open the bundles
and read their mail. The "bundle" cycle is
i l lustrated in Figure I . We now write individual
algorithms for each phase of the "bundle" cycle.

Algorithm PI: Start with an empty bundle
and while the mood strikes compose
letters signing each before placing i t
into an envelope and addressing i t . When
the mood no longer persists, seal the
bundle, a f f i x the Postmaster's name to
the label, and place the bundle in the
mailbox.

Algorithm G l : From each prisoner pick up
one bundle from his mailbox addressed to
the Postmaster and deliver them to the
Postmaster's mailbox.

26

Bundle:
Label:

Letters:

C[
Address:

Message:

~-.3-

Body: F-I I
Signature: I~[

f . . '

Figure 2. PMS Bundle/Letter/Message Structure

Algorithm MI: While there are bundles in
the Postmaster's mailbox remove one and
sort the letters into piles - one pi le
for each prisoner.

Algorithm M2: For each prisoner, place
his pile o r l e t te rs into an empty bundle,
seal the bundle, a f f ix the prisoner's
name to the label, and place i t in the
Postmaster's mailbox.

Algorithm G2: Pick up the bundles from
the Postmas-ter's mailbox and deliver them
to the labelled prisoner's mailbox.

Al~ri thm P2: Remove the bundle from the
mailbox, open i t , and while the bundle is
not empty remove, open, and read the
letters.

We assume a data structure as i l lustrated in
Figure 2 where each "Bundle" is composed of a
"Label" and a sequence of "Letters" - where each of
the lat ter is composed of a "Address" and a
"Message" - and where the lat ter is composed of a
"Body" and a "Signature". Thus each bundle is
composed of four elementary f ields. I t is the
"selective" protection of these four elementary
fields that constitutes the heart of this example
problem.

By analyzing the six algorithms in terms of
their required access to each of these four f ields
we arrive at the access matrix presented as Figure

3. Two categories of protection are indicated: (N)
access is necessary for the algorithm to function
and (P) access should be prevented as the algorithm
does not need access. For each of the "necessary"
accesses a "/R" or "/W" is included to indicate
that either "read" or "write" access is required.
In the Figure 3 there are several instances where
"P or N/R" access is indicated. For these entries
either choice is allowed because, while the
algorithm does not need access, the information is
already available and a suitable choice w i l l for
certain lanquages simplify the solution.

What remains to be discussed for our solution
is the flow of control within the program. Figure
4 models the interrelationships between the
prisoners, the guards, and the Postmaster. The
internal communication structure for the guards is
unimportant for our purposes and is l e f t
unspecified.

A simple control solution might be:

program
var Boxes
procedure Pi
procedure G1
procedure M1
procedure M2
procedure G2
procedure P2

PI
Gi
M1
M2

Label Address Body

PI N/W N/W N/W
G1 N/R P P
M1 P or N/R N/R P
M2 N/W P or N/R P
G2 N/R P P
P2 P or N/R P or N/R N/R

Signature

NIW
P
P
P
P

N/R

Figure 3. PMS Access Chart

27

I I
IPrisonerl
I I

I 'l
IPrisonerl

i
!
'1 f - ' l !

7 i - - IT
- Ii

* - t i
Guards

l I
i P r i soner l
I I

I

t - - I 1 -
1 I !
I | - i 'IPrisoner!

| I
| ' I

1'1
I
I P o s ~ a s t e r I
I '!

Figure 4. PMS Process Structure

G2
P2

end

However, as we wi l l see protection is often tied
expl ic i t ly or impl ic i t ly to control flow and wi l l
dictate more complex control solutions. These wi l l
be discussed as they are encountered.

Liberties

- loop . . . end is a control statement
that indicates an in f in i te loop.
All the solutions to the PMS problem
presented in this paper wi l l
deliberately not terminate.

- for i : = Prisonerld do . . . is a f i n i te
loop construct that causes the d.__o

• clause to be executed exactly once
for each value of type Prisonerld.

In the solutions that follow we wi l l take
certain l ibert ies to create shorter, more
understandable solutions. We assert that these
l ibert ies merely eliminate detail f rom our
discussion and in no way add to or detract from the
languages' ab i l i ty to express the essential
properties of this protection problem.

NPrisoners is an integer constant
specifying the number of prisoners
using the PMS.

- PrisonerId is a range or set of
prisoner names which may be thought
of as integer values in the range
l..NPrisoners.

- sequence of_ . . . is an allowable type
which wi l l be treated as unbounded.
I t has operations append item t_o
sequence, remove item from sequence,
and empty(sequence). Append inserts
a new item on the ta i l of the
sequence and remove removes the head
item from the sequence (FCFS). Empty
is a boolean function that evaluates
to true when the sequence is empty.

- String is a sequence of character.

- decoy is a dummy type used solely to
obscure a previous definit ion.

Note: For the purpose of the solutions that
follow, i t makes no difference whether we consider
that the Postmaster is also a prisoner or not.

Solution in Pascal

We chose to begin by looking at Pascal [5]
because i t is representative of the protection
fac i l i t i es present in most algorithmic programming
languages and because i t has had a strong influence
on many of the languages we wi l l examine
subsequently.

Pascal offers da ta types, scope rules,
parameter passing limitations, and routines as
parameters for enforcing access protection. Data
type checking assures that the types of a l l actual
parameters to a l l functions, procedures, and
operators (including assignment) "match" the
corresponding formal parameters. "Matching" is
interpreted to mean that they have the same
structure, not necessarily the same type name.
This interpretation has strong implications for
protection. I t means that no matter how much
protection is wrapped around a type i t is always~
possible to "impersonate" the type by defining a
different type of the same structure. Pascal then
allows assignment of the "protected" object to the ~
"impersonating" object. This allows the contents
of the "protected" object to be discovered.

28

procedure A
t~pe t= yyy
var a: t
en__d;

procedure B
var b: t
end~

type t= yyy

procedure A
var a: t

end;
procedure XB

type t = decoy

procedure ,3
var b: t
end;

end;

5a

Figure 5. Scope Protection

5b

Pascal has a typical hierarchical program
structure wh ich allows for nested routine
declarations with the accompanying scope rules: 1.
an ident i f ier has scope over the defining routine
and al l encompassed routines and 2. where an
ident i f ie r is multiply defined in a scope then
references to the ident i f ie r are resolved by the
definit ion with the smallest encompassing scope.
Rule 1 means that objects defined in a particular
scope are protected f r o m references from
unencompassed scopes. Rule 2 means that objects
defined in encompassing scopes can be "hidden" i f
they are redefined in smaller, but s t i l l
encompassing, scopes. The two scope rules are
i l lustrated in Figure 5. In 5a type "t" is hidden
from procedure "B" by keeping the definit ion out of
the scope of "B"; while in 5b, type "t" is hidden
from "B" by inserting an intervening "decoy"
definit ion in procedure "XB".

Pascal allows call by value as a parameter
passing restrict ion to prevent undesired actual
parameter modification. However, this mechanism is
unable to prevent unwarranted actual parameter
examination. In addition, any parameter which is
also a global variable can be modified directly
without restr ict ion.

Finally, Pascal allows routines to be passed
as parameters to other routines. Unfortunately in
so doing, the need is created for dynamic parameter
type checking. Pascal implementations typical ly
don't do this dynamic checking, but we w i l l ignore
this b i t of laziness. The capability to pass
routines as parameters, combined with the scope
rules, allows an object X to be protected from a
routine R by defining X out of the scope of R
(hence, preventing direct access to X) and by
passing R only routines which can manipulate X -
never X i t se l f . However, as we shall see in the
PHS solution this technique can get awkward.

The complete solution expressed in Pascal is
presented at the end of this section. This
solution has the following form.

Program
Drocedure H1.~12
procedure G1
procedure G2
procedure P1
procedure P2
procedure XF1ai n

var Boxes
1 oop

P1
G1
MIM2
G2
P2

end
XMa i n

To understand why the solution
consider the following arguments:

takes this form

A. Suppose G1/G2 have direct access to
Boxes either because Boxes is global
to G1/G2 or because Boxes is passed
as a parameter to Gi/G2. Then :

a. I f G1/G2 also have access to a l l
of the type definitions for
Boxes, then G1/G2 can access
the contents of Boxes and the
Security Constraint is
violated.

b. I f G1/G2 have access to only some
or even none of the type
definit ions, they can s t i l l
fabricate structurally
equivalent declarations for the
missing definit ions, then
declare a local variable using
the fabricated types and assign
to that local variable the
contents of Boxes; thereby,
being able to violate the
Security Constraint.

Hence Pascal's treatment of types
implies that i f G1/G2 have direct
access to Boxes then the Security

29

p ro~ral~ ~Ta i n;
type r!essa0eType =

record Body: Str ine; Signature: Prisonerld; end;
type LetterType =

record Address: Prisonerld; Hessage: ~lessageType: en___d;
type BundleType =

record Label: Prisonerld; Letters: sequence of LetterType end;
type Mainbox = sequence o_f_ BundleType;
type Mailboxes = array [Prisonerld] o_f_ BundleType;
procedure HiM2(function EmptyMasterBox, EmptyScratchBundle: boolean; function

ReadAddressScratchLetter: Prisonerld; procedure RemoveHasterBox, AppendMasterBox,
RemoveScratchBundle, AppendScratch~undles, MoveScratchBundles, WriteLabelScratchBundle);

end {~1M2 ;
procedure Gl(procedure RemoveBoxes, AppendHasterBox);

end Gll
procedure G2(function EmptyMasterBox: boolean; function

ReadLabeIScratchBundle: Prisonerld; procedure RemoveHasterBox, AppendBoxes):

end
procedure Pl(var b: BundleType);

end Pil
procedure P2(va_r b: BundleType);

end
procedure XMain;

var Boxes: Mailboxes;
var MasterBox: Mainbox;
var ScratchBundle: BundleType;
va__r. ScratchBundles: array [Prisonerld] o._f_ BundleType:
var ScratchLetter: LetterType;
function EmptyMasterBox: boolean:

begin EmptyMasterBox: = empty(HasterBox); end;
procedure RemoveMasterBox:

begin remove ScratchBundle from HasterBox en.~;
procedure AppendMasterBox;

begin append ScratchBundle to MasterBox: end;
procedure RemoveBoxes(i: Prisone~Id);

begin ScratchBundle:= Boxes[i]; end;
procedure AppendBoxes(i: Prisonerld);

begin Boxes[i]:= ScratchBundle; end;
function EmptyScratchBundle: boolea_~;

begin EmptyScratchBundle:= em~(ScratchBundle); end;
procedure RemoveScratchBundle;

begin remove ScratchLetter from ScratchBundle; end;
procedure AppendScratchBundles(i: Prisonerld);

begin append ScratchLetter to ScratchBundles[i]; end;
procedure HoveScratchBundles(i: Prisonerld);

begin ScratchBundle: = ScratchBundles[i]; end;
function ReadLabeIScratchBundle: Prisonerld;

begin ReadLabeIScratchBundle:= ScratchBundle.Label; end;
procedure ~riteLabeIScratchBundle(i: Prisonerld);

begin ScratchBundle.Label:= i ; end;
function ReadAddressScratchLetter: Prisonerld;

begin ReadAddressScratchLetter: = ScratchLetter.Address; en__d;
beQi.__~

loop
for i : = Prisonerld do Pl(Boxes[i]);
Gl(RemoveBoxes, App~dMasterBox):
MIM2(EmptyMasterBox, EmptyScratchBundle, ReadAddressScratchLetter, RemoveMasterBox,

AppendMasterBox, RemoveScratchBundle, AppendScratchBundles,
1,1oveScratchBundles, WriteLabeIScratchBundle);

G2(EmptyMasterBox, ReadLabeIScratchBundle, RemoveMasterBox, AppendBoxes);
for i:= Prisonerld do P2(Boxes[i]);

end;
e n__d_;

begin XMain; end.

Figure 6. Pascal Solution

30

Constraint can be violated.

B. Suppose Gi/G2 are not allowed direct
access to Boxes, then i t must be: 1.
that Boxes is defined in such a way
that i ts scope does not include
G1/G2, 2. that Boxes is not passed
as a parameter to G1/G2, and 3. that
G1/G2 are instead passed routines,
as parameters, which can access
Boxes. Then:

a. I f Boxes is defined outside the
scope of G1/G2 as in Figure 5a
the result takes the form
presented here.

b. Otherwise, i f Boxes is defined so
that i ts scope encompasses
G1/G2 then there must be an
intervening "decoy" definit ion
as in Figure 5b. This
possibil ity likewise leads to a
valid solution. The solution
presented for Concurrent Pascal
uses this technique.

In the solution, the Main program simply
functions as a shell and immediately calls XMain
which contains the data declarations safely out of
reach. Since the data within a bundle need not be
protected from the prisoners, PI/P2 are allowed
direct access to their parameters. To prevent ever
passing a let ter (or structure of letters) to
G1/Mi~2/G2 and yet allow them to perform their
functions, we were forced to create twelve access
routines. Many of these functions perform the same
operation, but on different objects (e.g.
AppendBoxes and MoveScratchBundles) yet without the
objects being passed as parameters they are al l
necessary. Variables that would normally be
declared locally (such as ScratchBundles) within
GI/MIM2/G2 are forced to be declared in XMain with
their access protected in the same manner by using
access functions. The net result is that
G1/MiM2/G2 are only synthetic representations of
their intended design.

Solution in Concurrent Pascal

The next protection mechanism we want to look
at is the abstract data type. In its simplest form
an abstract data type consists of a set of abstract
operations defined on a concrete representation
which is hidden from al l references except those of
the abstract operations. Simula 67 [4] provides
a class structure which was i n i t i a l l y defined as
described above, except that the concrete
representation was completely visible. A later
extension [9] allows selective hiding of both
data and routine declarations. The class mechanism
defined in Concurrent Pascal [2] behaves
similarly. In i t al l names are hidden, except
those expl ic i t ly declared as entries. We have
chosen to display the PMS solution in only one o f

these languages as the solution in the other is
similar. Since the rest of the examples in this
paper use a Pascal-like syntax we have chosen
Concurrent Pascal.

Concurrent Pascal offers the same protection
mechanisms available in Pascal plus classes and
monitors. In the current context we wi l l ignore
the possibi l i t ies for a concurrent soluti.on, and
hence monitors. As stated above classes consist of
a set of operations defined on a concrete
representation of an object for the purpose of
abstracting i ts essential properties. An important
fact is that each class is unique, i.e. two classes
"match" i f and only i f t hey are the same
declaration. The class structure is i11ustrated in
Figure 7. I t defines an abstract IntStack with
operations Push, Pop, and Top (ignoring al l error
possibi l i t ies). The keyword entry indicates that
the ident i f ier is to be defined in the scope of the
class declaration. The final begin-end pair
provides code which is to be executed whenever the
class is allocated and which in i t ia l izes the
internal structure.

The solution expressed in Conoarrent Pascal
has the following form.

var Boxes
procedure XM

procedure {11~12
M1>12

_procedure XG
procedure GI
procedure G2
Gi
XM
G2

procedure XPI
procedure Pi
P1

procedure XP2
Procedure P2
P2

1 oop
XPI
XG
XP2

end

The solution functions by placing each of
P1/G1/H1i,12/G2/P2 in an environment where access
functions are selectively screened by defining
decoy definitions in intervening scopes. Type
HessageType is screened from G1/M1~I2/G2 by XFI and
XG, but not from P1/P2 and type LetterTyDe is
screened from G1/G2, but not P1/M1~I2/P2.

In addition, MessageType, LetterType, and
BundleType are defined as classes thereby
restricting access to only the appropriate access
functions. Note that a bi t of cleverness has been
employed here. For LetterType we want that ~,11r42
can read, but not write, the Address f ield only.
By grouping the operations on letters such that one
set can be performed wi thout a MessageType
parameter whi le the others cannot, access to the
operations is d iv ided in to two categories: complete

31

type IntStack = class;
var st: a r ray~ . lO0] o_f_ integer;
var pt: integer;
procedure entry Push(i: inte e~) ;

begin pt: = pt+l; st[pt~:= i ; end:
procedure entry Pop:

be~in pt: = p t - l ; end
function entry Top: i n t ~ ;

begin Top:= s t [p t] ; end;
begin p t : : O; end;

Figure 7. Concurrent Pascal Class

and partial. Those routines which cannot reference
Messa9eType have only partial access and with
partial access only ReadAddress is available. In
this case MIM2 has partial access and P1/P2 have
complete access. The same cleverness is employed
in the def in i t ion of BundleType to allow G1/G2
part ial access while allowing Pi/Mi~I2/P2 complete
access.

Solution in EucliQ

Euclid [7], also derived from Pascal, was
designed specifically for the expression of systems
programs that are to be verified. Consequently,
Euclid has specifically included features to
control object accessibility. Many of the problems
with which we were presented in Pascal, have been
brought under programmer control.

The treatment of data types in Euclid is
essentially identical to that of Concurrent Pascal
with classes being replaced by modules. Two types
"match" i f they have the same structure, except
that al l module types are considered different.
Hence, two types which contain modules can "match"
only i f they contain the identical module types is
corresponding positions of otherwise "matching"
structures. Thus by using module type definitions
i t is now possible to prevent the "impersonation"
of types as we found in Pascal.

A transformation has been performed on the
Pascal scope rules. While declarations are s t i l l
hierarchically definable, the implied scope of a
declaration is only the routine in which i t is
defined and not the encompassed routines as well.
This means that without additional mechanisms there
would be no non-local definitions (including
routines). However, there are two mechanisms for
extending the scope of declarations. The f i r s t is
a pervasive declaration. I f an object is declared
pervasive, then i ts scope also includes al l
routines encompassed by tile defining routine. This
is equivalent to the Pascal scope, except that in
the extended scope the object may not be modified.
For types, routines, and constants there is no
means of modifying them anyway, so declaring them
pervasive restores the Pascal scope rules. But
for variables, while their scope is extended, they
may only be referenced as constants in the
extended scope. The second mechanism is an imports

clause which may be attached to type and routine
declarations. The effect of an import statement
is to extend the scope of those identif iers named
in the imports clause to include the type or
routine being defined. Names may only be
imported one scope level; hence, i f they are not
imported at each level intervening between their
definitions and a particular type or routine,
then they become invisible to that type or
routine. Variables may be imported either with
fu l l ~odification capabilities (as var) or as
constants (the default). Figure 9 shows the effect
of the pervasive and import rules. The variable
"y" is available t o each of the routines "A",
"B", "C", and "D", but only as a constant. The
variable "x" is available as a variable to "A", as
a constant to "B", and is unavailable to both "C"
and "D" (i t is completely hidden from "D" in that
i t could not be imported even i f desired).

Euclid's module is a variation of the
abstract da ta type we Found in Simula and
Concurrent Pascal. The variables declared within
the body are considered to be the concrete
representation of the abstract object with the
routines declared therein being the abstract
operations. Those names which are to represent
the abstract properties are then exported into
the scope of the type declaration. Identif iers
which are to be exported are expl ic i t ly l isted
in an export clause. Euclid furthers allows
that variables may be exported as either variables
(var) or constants (again the default). Note:
Importing a type ident i f ier imports al l identif iers
exported by that type definit ion.

Euclid does not permit procedures and
functions to be passed as parameters, thus
precluding the technique used in the Pascal
solution.

The solution expressed in Euclid has the
following form.

module main
module bundletype

module let tertype
Pi
P2

Mi M2
bundle Pi
bundle-P2

32

type MessageType = class;
va__._r Body: String;
va___.r Signature: Prisonerld;
function entry ReadBody: String;

begin ReadBody:= Body; end;
procedure entry WriteBody(s: String);

begin Body:= s; end;
function entry ReadSignature: Prisonerld;

begin ReadSignature:= Signature; end;
procedure entry WriteSignature(a: Prisonerld);

begin Signature:= a; end;
begin end;

type LetterType = class;
var Address: Prisonerld;
var Message: MessageType;
function entry ReadAddress: Prisonerld;

begin ReadAddress:= Address; end;
procedure entry Rea~,lessage(var m: MessageType);

begin m:= Message; end;
procedure entry WriteLe~r(m: MessageType; a: Prisonerld);

begin Message:= m; Address:= a; end;
begin en_d;

type BundleType = class;
var Label: Prisonerld;
var Letters: sequence o.f_ LetterType;
function entry ReadLabel: Prisonerld;

begin ReadLabel:= Label; end;
procedure e n ~ WriteLabel(l: LetterType; a: Prisonerld);

be91n Label: = a; end;
procedure entry EmptyLetters(l: LetterType);

begin EmptyLetters:= e ~ (L e t t e r s) end;
procedure .entry RemoveLetter(var I: Le t t~ype) ;

begin remove l from Letters; end;
procedure entry AppendLetter(l: LetterType);

begin append l t_o Letters; end;
begin en_.d;

type Mainbox = sequence of BundleType;
type Mailboxes = array [Prisonerld] o__f BundleType;
var Boxes: Mailboxes;
procedure XM(var masterbox: Mainbox);

type MessageType = decoy;
var Boxes: d e ~ ;
procedure MIM2(var masterbox: Mainbox); . . . end MIM2;
begin MiM2(masterbox); end;

procedure XG(var boxes: MaiT~xes);
type MessageType = decoy;
type LetterType = decoy;
var MasterBox: Mainbox;
procedure Gl(va__r boxes: Mailboxes; var masterbox: Mainbox); . . . end G1;
procedure G2(var boxes: Mailboxes; var masterbox: Mainbox); . . . end G2;
begin i n i t MasterBox; Gl(boxes, MasterBox); XM(MasterBox): G2(boxes, MasterBox); end;

procedure XPl(var box: BundleType);
var Boxes: d e N ;
procedure Pl(var b: BundleType); . . . end P1;
begin Pl(box); end;

procedure XP2(var box: BundleType);
var Boxes: d e ~ ;
procedure P2(var b: BundleType); . . . end P2;
begin P2(box)T-end;

begin
in i t Boxes;
loop

for i:= Prisonerld do XPl(Boxes[i]);
XG(Boxes);
for i : = Prisonerld do XP2(Boxes[i]);

end;
end.

Figure 8. Concurrent Pascal Solution

33

var x: inteQer;
pervasive var y: integer:
procedure A imports (var x)

procedure B imports (x)
procedure C

procedure D imports(?)

Figure 9. Pervasive and Import Rules

procedure G1
procedure main MIM2
procedure G2
var boxes
var MasterBox
loop

bundle P1
G1
main Mi F,12
G2
bundle P2

end

This form is d ic ta ted by the need to hide cer ta in
i d e n t i f i e r s from the guards and the postmaster. ~y
dec lar ing LetterTyDe ins ide of BundleType, PI and
P2 ins ide the LetterType module, and the postmaster
(~I>12) ins ide the BundleType module, the required
data pro tec t ion is establ ished.

The data abstraction mechanism in Euclid
allows a routine access to the internal
representation of at most one instance of a given
module type, via importation of module variables.
Thus, a sequence of module instances must be broken
down into the individual instances before an
operation on the module can be done. P1 has access
to the components of a let ter by importing the
variables which form an instance of a let ter (that
is, address and message). I t generates a sequence
of letters by recursive calls to i t se l f . Since P1
can only be referenced as a component of an
instance of a let ter, bundle Pi declares a variable
of type LetterType. P1 would have the following
form.

var letter: LetterType;
set address;
set message:
i f ~oodstrikes

then
letter.P1;
append let ter t.._o contents;

end.

Similarly, MIM2 recursively processes bundles,
being i n i t i a l l y Called by main MiM2 with the head
of MasterBox. I ts form would bet

va_.r bundle: BundleType
process_label;
process_contents;
i f not enpty (MasterBox)

then
remove bundle from i4asterBox;

bundle.MIM2;
end;

process_label;
process_contents.

Finally P2 recursively consumes letters. I t is
i n i t i a l l y called by bundle-P2 with the head of
contents. I ts form would be:

va...~ letter: LetterType;
consume_address;
consume message;
i f not empty (contents)

then
remove let ter from contents;
letter.P2;

end.

An important property of this solution is that
in order to produce the desired da ta access
control, the control structure of the Drooram is
not really correct. For example, nothing prevents
guards (G1 and G2) from cal l ing the prisoners and
the postmaster, via calls to bundle P1, bundle P2,
and MiM2, and the postmaster (MIM2) from caITing
the prisoners, via calls to P1 and P2. This is a
consequence of the rule in Euclid that i f a module
name is known, all ident i f iers exported by the
module are known.

Solution in Clu

The language Clu [8] displays signif icant
departures from the preceding languages while
retaining a Pascal-like syntax and scope rules.
Clu was designed specif ical ly to support the
development of a program by successive
decomposition through tile usage of abstractions.
An abstraction is for Clu "a mechanism which
permits the expression of relevant details and
the suppression of irrelevant details" [8].

The basic unit in Clu is a module. A module
is either a procedure or a cluster. A procedure
provides an abstract operation and a cluster
provides an abstract object. Modules may be
nested similar to Pascal , except that an
ident i f ie r may not be redefined in an encompassed
scope as in Pascal.

34

module Main
pervasive type BundleType =

module exports (:=, label, bundle_P1, MIM2, bundle P2)
pervasive type LetterType =

module exports (:=, address, Pl, P2)
type MessageType =

record
Body: String;
Signature: Prisonerld;

end;
vat Address: Prisonerld;
var Message: MessageType;
procedure P1 (va__.r. label: Prisonerld, var contents: sequence of LetterType)

. . . o

end;
procedure P2(var label: Prisonerld, var contents: seauence of LetterType)

. . . .

end;
i n i t i a l I z Message.body := ();

end LetterType;
var label: Prisonerld;
var contents: seance of LetterType;
p~cedure MIM2 (var F~s~rBox: seauence of BundleType)

. ° o o

end;
procedure bundle P1 imports (var label, var contents) =

begin
var le t ter : LetterType;

letter.P1 (label, contents);
append le t te r t__o contents;

end;
procedure bundle_P2 imports (va_r_ label, var contents) =

begin
var let ter : LetterType;
- - - i f not empt~ (contents)

then
remove le t te r from contents;
letter.P2 (label, contents);

en__.d;
end:

i n i t i a l l y contents := ();
end BundleType;

pervasive type MainBox = sequence of BundleType;
pervasive type MailBoxes = array (~isonerld) o._f_ BundleType;
vat MasterBox: MainBox;
vat Boxes: MailBoxes;
procedure G1 (var Boxes: MailBoxes, va.__r MasterBox: MainBox)

. o . .

end;
procedure G2 (var boxes: MailBoxes, va_.__r MasterBox: MainBox)

end;
procedure main_MiM2 (var MasterBox: MainBox) =

begin
var bundle: BundleType;

remove bundle from MasterBox;
bundle.MiM2;

end;
loop

for i : Prisonerld do Boxes[i].bundle_P1;
G1 (Boxes, MasterB~);
main MIM2 (MasterBox);
G2 (Boxes, MasterBox);
for i : Prisonerld d___o Boxes[i].bundle_P2;

end;
end Main;

~ _ _

Figure i0. Euclid Solution

35

A cluster is another form of an abstract
data type. I t contains an object representation
which is used to realize the abstraction along
with a set of operations defined on this
representation, w h i c h provide the required
abstract operations. The representation is known
only within the cluster and therefore only
referencible by the operations defined within the
cluster. The set of operation s to be exported into
the scope of the cluster declaration is exp l ic i t l y
specified in the cluster heading.

A routine may return multiple values as the
routine result and then perform a multiple
assignment. For instance,

stack, element:= Pop(stack)

where

Pop = o~eration(s: stacktype)
returns (stacktype, elementtype);

would allow the Pop operation to return the top
value as well as the reduced stack.

Summarizing, Clu has Pascal-like scope rules
with the restr ict ion that unqualified ident i f iers
cannot be redefined in an encompassed scope and i t
has an abstract data type, called a cluster, with
exp l ic i t exportation. Hence, i f we look back at
the previous solutions, the solution expressed in
Concurrent Pascal is unusable because redefining
ident i f iers in encompassed scopes is not
allayed. The solution in Euclid is usable, as is
the solution expressed in Pascal. There is yet a
~lore interesting solution which is unique to Clu.

A variable in Clu is an ident i f ie r capable of
denoting objects of a certain specified type. A
variable is made to denote a particular object
by means of the assignment operation. An object
is a structure capable of possessing a value of the
specified type. Objects are dynamically created by
the create operation defined for each type
(either exp l ic i t l y or imp l ic i t l y) . Each newly
created object is unique, i .e. i t has never before
existed. Thus there are two dist inct forms of
"equality" in Clu. Two variables are e~ual i f
and only i f they both denote the same object.
Two variables are similar i f they both denote
objects which possess the same value. Because
of the uniqueness of objects, i f equal(X, Y) then
there exists a Z which created the object now
pointed to by both X and Y together with a
sequence of assignments such that X: = . . . := Z and
Y:= . . . := Z. The significance of this fact is
that i t is impossible to fabricate an object
and then have i t test equal to some other object.
This gives us the ab i l i t y to construct unique,
unfabricatable protection keys.

The solution presented below takes the
following form.

var Boxes
procedure MIM2
procedure G1
procedure G2
procedure P1
procedure P2
procedure Main

loop
P1
G1
MIM2
G2
P2

end
Main

All type definitions are defined within the scope
of P1/G1/MiM2/G2/P2. The solution then relies on
two facts: I . for each of the c r i t i ca l f ields
access is available only through access
operations and 2. access to the access operations
is controlled by access keys. I f an access
function is presented with a key which matches the
key in the data structure to be accessed, then
the access is allowed. S ince keys cannot be
forged, a routine could have the key only i f i t
had been given the key through proper channels.
There are two keys KeyM and KeyL; they correspond
to b e i n g able to access MessageType and
LetterType as in the Concurrent Pascal solution.-

The main procedure starts by creatinq the
two un ique keys. All bundle and let ter
declarations subsequently are created to contain
these keys which are handed out to
P1/G1/HIM2/G2/P2 in accordance with required
protection.

The keyword r_~ Z is used inside a cluster
defini t ion to denote the internal representation of
the cluster.

Solution in Gypsy

Gypsy [1] is another language which is
based on a Pascal syntax. I t was specif ical ly
designed for supporting the development of formally
verif iable programs for communications systems.
Like Concurrent Pascal i t offers fac i l i t i es for
writ ing programs using concurrent processes. I t
also provides fac i l i t i es for writ ing program
specifications directly in the program code. We
w i l l ignore the presence of these extras in the
current context.

Gypsy programs are composed of a series of
units, exactly one of which should be a program
unit. Units are type, constant, macro, or routine
units. Units may not be nested; hence, the
tradit ional hierarchical structure is missing from
Gypsy. Furthermore, variables can be declared only
inside units. This means that there are only local
and parameter variables.

36

MessageType = record[Body: String, Signature: Prisonerld];
LetterType = cluster is create, ReadAddress, Rea~lessage, WriteLetter;

re~ = record[~y: KeyType, Address: Prisonerld, Message: MessageType];
create = operation(k: KeyType) returns(rep);

l: r ~ ;].Key:= k; return (1); en___d;
ReadAddress = operation(l: rep) returns(Prisonerld);

return (l.Address); end;
Reac~lessage = o e r a ~ (l : rep, k: KeyType) returns(MessageType);

i f equal(].Key, k) then return (l.Message~i ~ ;
WriteLetter = operation~1: rep, a: Prisonerld, m: MessageType, k: KeyType) returns (r ~) ;

i f equal(l.Key, k) then beqin].Address:= a; l.Messaqe:= m; return (I) ; end; end;
en..._d;

BundleType = cluster is create, ReadLabel, WriteLabel,
EmptyLetters, RemoveLetter, AppendLetter;
= record [Key: KeyType, Label: Prisonerld, Letters: sequence o.! LetterType];

create = operation(k: KeyType) returns(red);
b: r ~ ; b.Key:= k; return (~ ; end;

ReadLabel = o p e r a t i o n (b - ~ returns(Prisonerld);
return (b.Label); end;

WriteLabel = operation b~: rep, a: Prisonerld, k: KeyType) returns(rep);
i f equal(b.Key, k) then begin b.Label:= a; return (b); end; end;

Empt~etters = operat ion~: rep, k: KeyType) returns(boolean~,
i f equal(b.Key, k) then return (empty(b.Letters)); en__d_;

RemoveLetter = opera t ion~ rep, k: KeyType) returns(rep, LetterType):
I: LetterType;
i f equal(b.Key, k) then beqin remove l from b.Letters; return (b, I) :
end; end;

WriteLetter = o e r a S (b : rep, l: LetterType, k: KeyType) re turns(r~) ;
i__f_ equal(b.Key, k) then begin _~_pend l t_o b.Letters; return (b);
end; end;

end;
Mainbox = sequence o_.f_ BundleType;
Hal]boxes = array of BundleType;
MiM2 = procedure(~-sterbox: Mainbox, k: KeyType) returns(Mainbox);

end
G1 =~ocedure(boxes: Mailboxes, masterbox: Mainbox) returns(Mailboxes, Mainbox);

end Li1
G2 = procedure(boxes: Mailboxes, masterbox: Mainbox) returns(Mai]boxes, Mainbox);

end
P1 = procedure(box: BundleType, kb, k1: KeyType) returns(BundleType);

end
P2 = procedure(box: BundleType, kb, kl: KeyType) returns(BundleType);

end
Main = procedure

KeyM: KeyType();
KeyL: KeyType();
Boxes: Mailboxes:: f i t1(1, NPrisoners, BundleType$create(KeyL)):
§ f i l l creates an array indexed l..NPrisoners;
each element is in i t ia l i zed by ca]ling the create operation on BundleType¢
MasterBox: Mainbox;
loop

for i : = Prisonerld do Boxes[i]: = Pl(Boxes[i], KeyL, KeyM);
Boxes, MasterBox:= ~(Boxes, MasterBox);
MasterBox:= MIM2(MasterBox, KeyL);
Boxes, MasterBox:= G2(Boxes, MasterBox);
for i : = Prisonerld do Boxes[i]:= P2(Boxes[i], KeyL, KeyM);

end; end;
Main

Figure 11. Solution in C1u

37

ty_p_e <A, B> IntStack <New, Push, Pop, Top> =
record(st: array [1..100] of inteaer;

pt: integer);
procedure <A, B> new: IntStack;

beain result.pt:=O; end:
procedure <A> Push(s: IntSTack: i : inteaer) =

begin s.pt: = s.pt+1: s.st[s.pt]: = i ; end:
procedure <A> Pop(s: IntStack) =

begin s.pt: = s.pt-1; end~
function <A, B> Top(s: IntStack): inteaer =

beain result:=s.st[s.pt]; en__d;

Figure 12. Gypsy Access Lists

Associated with each unit are two access
l is ts. The f i r s t (which appears syntactically
before the unit name) l is ts those units that are
allowed to access the unit. I f this is a routine
unit the l i s t indicates which units are allowed to
invoke the routine. For type units i t indicates in
which units objects of that type can be declared.
When the f i r s t access l i s t is missing, i t is
assumed that al l units are allowed to reference the
unit. The second access l i s t (which is only
meaningful for types and which syntactically
immediately follows the unit name) indicates those
units that are allowed to reference the internal
structure of the unit. This access l i s t allows for
the construction of abstract data types. When this
l i s t is missing i t is assumed that al l units are
allowed access to the internal structure. Figure
11 demonstrates the IntStack example again (Figure
7) - this time in Gypsy. The access l ists state
that both units A and B are allowed to declare an
IntStack with Push, Pop, and Top being the only
routines a11owed to reference the internal
representation of an IntStack. Furthermore, only
A can do Push or Pop operations, but both A and B
are allowed to do the Top operation. I t should be
clear that by supplying suitable access l is ts any
graph structured access pattern can be achieved.

program Main
var Boxes
loop

PI
G1
MIM2
G2
P2

end
end

The form of the solution i t se l f requires l i t t l e
explanation. I t requires no subtleties, but simply
relies on the properties of i ts access l is ts.
Several points are worth noting: 1. WriteLabel
doesn't reQuire a dummy parameter of type
LetterType as some previous solutions have and 2.
we are able to discriminate access to a f iner level
without increasing the complexity of the solution.
Examples of the lat ter are £$riteLetter being
restricted to just P1 and P1/G1/MIM2/G2/P2 being
restricted so that only Main is allowed to invoke
them.

Conclusion

A type in Gypsy consists of a mode and a
possibly empty set of restrictions. For instance,
a subrange 1..10 (or integer[1..lO]) is of mode
integer with a range restriction requiring that the
value be greater than or equal to one and less than
or equal to ten. Two types "match" i f their modes
"match" after repeatedly substituting modes for
their corresponding t y p e s . However, type
impersonation is prevented by restricting objects
from gaining access rights either through
assignment or parameter passing.

Gypsy does not a11ow routines to be passed as
parameters.

The Gypsy solution ut i l izes the following
form.

procedure PI
procedure GI
procedure MiM2
procedure G2
procedure P2

Is this example contrived? Yes and no. The
PMS example was concocted to compress as much as
possible complexity into a small example and at the
same time to motivate as much as possible the
significant protection problems. Hence, the PMS is
contrived, but the protection problems are not.

Most of the protection problems i l lustrated
here occurred to us in the process of constructing
formal proofs for message communication systems.
For the purpose of proofs i t is not sufficient to
rely upon programmer discipline. Hence, either the
language guarantees t ight ly protected routine
interactions or the verif ication system is forced
to expand the scope of i ts proof process to account
for possible side-effects that should never be
allowed, but that the programmer has no fac i l i t y of
preventing. Routine specifications can be used to
prohibit undesired routine interactions, but these
"no-effect" type specifications tend to become
voluminous and each instance s t i l l requires proof.
We have found that by providing stronger access
control fac i l i t i es in the language the burdens of
proof can be signif icantly reduced.

38

type HessageType = record(
Body: String;
Signature: Prisonerld);

type LetterType<ReadAddress, ReadI, iessage, WriteLetter> = record(
Address: Prisonerld;
#lessaoe: MessageType);

function <P1, M1>12, P2> ReadAddress(l: LetterType): Prisonerld =
benin result:= l.Address; end;

function<P1,P2> ReadMessage(l: LetterType): MessageType =
beqin result:= l.hlessage; end;

procedure <Pi> VlriteLetter(var l : LetterType; a: Prisonerld; m: ~.lessa#eType) =
begin l.Address:= a; l.~lessage:= ~; end:

type BundleType<ReadLabel, WriteLabel, EmptyLetters, RemoveLetter, AppendLetter> = record(
Label: Prisonerld;
Letters: seouence of LetterType);

function ReadLabel~'b: BundleType): Prisonerld =
be~in result:= b.Label; end;

procedure <P1, r',il~i2> WriteLabel(var b: BundleType; a: Prisonerld) =
begin b.Labe]:= a; end;

function <P1, M1~,i2, P2> EmptyLetters(b: BundleTybe): boolean =
beain result:= el~pt~(b.Letters); end;

procedure <P1, N1!,I2, P2> Rer~oveLetter(va___~ b: BundleType; va___~_ I: LetterType) =
beQin remove I from b.Letters; end;

procedure <PI, Mi~'T2, P2> AppendLetter(va__~ b: BundleType; I : LetterType) =
begin append I to b.Letters; end;

type I,iailboxes = arr-ay (Prisonerld~o__f_ BundleType;
tj~__eF1ainbox = sequence of BundleType;
-procedure <~.iain> P [v ~ b: BundleType) :

end
procedure <Main> Gl(var boxes: FIailboxes; var masterbox: Mainbox) =

end Gil
procedure <Main> ~,!11~i2(var masterbox: Mainbox) =

end Hi£12 ;
procedure <Main> G2(va__[boxes: I,iailboxes; va_._r masterbox: FIainbox) =

end
procedure <Fiain> P2(var b: BundleType) =

end P)i
program ~]ain =

begin
var Boxes: llailboxes;
var ~!asterBox: ~,lainbox;
loop

for i := Prisonerld do P1(Boxes[i]):
Gl(Boxes, MasterBox);
MIM2(MasterBox);
G2(Boxes, MasterBox);
for i := Prisonerld do P2(8oxes[i]);

end;
end;

Figure 13. Solution in Gypsy

39

We again emphasize that in al l fairness most
of these languages were not designed to solve this
type of a problem. We don't pretend that they were
nor are we cr i t ica l of their performance. Instead,
our point is to i] lustrate how "existing" languages
performed on the subject of protection, and indeed,
they perform surprisingly well.

The solutions demonstrEte several points about
protection. First, never pass direct access to a
protected object, but rather pass access to
operations on that object. This point is the basis
for the Pascal solution and the usage of abstract
data types. Second, selective hiding of
declarations is essential to a good solution. In
Pascal, the declarations were hidden in an
encompassed scope; in Concurrent Pascal, they were
hidden by decoy definitions; in Euclid, they were
hidden by selective exportation from modules: and
in Gypsy, they were hidden by expl ic i t access
l is ts . Third, selective access to operations as
well as data is important. In Concurrent Pascal
and Clu, this was accomplished by constructing an
unforgeable key: while, in Gypsy, we used an
expl ic i t access l i s t . In Euclid, this was
accomplished to some extent by nested definitions.

There are a couple of other works relevant to
this problem. The design of a capability based
protection scheme [6] appears to provide an
elegant solution, as does Alphard [12]. While we
examined both of these, we did not include
solutions because of the lack of adequate language
details required to construct a solution.
Nevertheless, there is hope that in the near future
even better capabilities for protection in
programming languages may exist.

[63

[7]

[B]

[9]

[i0]

[11]

[12]

Jones, A. K., and Liskov, B.H. A Language
Extension for Controlling Access to Shared
Data. International Conference on Software
Engineering (1976).

Lampson, B.W. et al. Euclid Report. Xerox
Research Center, Palo Alto (1976).

Liskov, Barbara, and Zi l les, Stephen. An
Approach to Abstraction. Computation
Structures Group Memo 88, MIT (1973).

Palme, Jacob. New Feature for Module
Protection in Simula. SIGPLAN Notices, 11, 5,
(1976).

Parnas, D. L. A Technique for Software Module
SpecificatiOn with Examples. Comm. ACM 15, 5
(1972).

Wirth, N. Program Development by Stepwise
Refinement. Comm. ACM, 14, 4, (1971).

Wulf, W.A., London, R. L., and Shaw, Mary.
Abstraction and Verification in Alphard:
Introduction to Language and Methodology.
Research Report ISI/RR-76-46, ARPA (1976).

Bibliography

[I] Ambler, Allen L., Good, Donald I . , and
Burger, Wilhelm F. Report on the Language
Gypsy. Technical Report ICSCA-CMP-1, Univ. of
Texas, (1976).

[2]

[3]

Brinch llansen, Per. The Purpose of Concurrent
Pascal. Proceedings ICRS (1975).

Dijkstra, E.W. Notes on Structured
Programming. Structured Programming, Academic
Press, (1972).

[4] Hoare, C . A . R . Hierarchical Program
Structures. Structured Programming, Academic
Press, (1972).

[5] Jensen, Kathleen, and Wirth, Niklaus. Pascal
User Manual and Report. Springer Verlag
(1T~4).

40

