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Introduction 

The concept of "protection" in programming 
languages refers to the ab i l i ty  to express directly 
in the language the desired access control 
relationships for al l  objects defined in the 
language. While in operating systems protection 
has received extensive attention, only recently 
have we recognized the need for similar protection 
fac i l i t i es  in programming languages. There are 
several factors which have contributed to this 
recent realization. First, the emphasis being 
placed on producing better software has generally 
supported the concept of highly modular programs 
with well-defined and tightly-enforced module 
interfaces. Parnas modules [10], step-wise 
refinement [11], structured programming [3], 
etc. al l  employ modules with r igid interface 
conventions which whenever possible are enforced by 
the language and which when unenforceable rely on 
self-imposed programmer discipline. Second, formal 
program verification either by hand or by semi- 
automated techniques must rely on information 
about object accessibility in order to prove 
assertions about manipulations on objects. These 
object access restrictions necessary for formal 
verif ication need to be expressed directly in the 
language and to be enforceable by compilers of 
that language. 

As various protection needs have arisen new 
protection n~chanisms have been introduced to 
handle them. Data types have been introduced to 
protect objects f rom misinterpretation across 
module interfaces. Scope of variables allows 
selective "hiding" of objects; thereby, l imitinq 
access. Independent compilation provides another 
means of selectively "hiding" objects. Parameter 
passin 9 mechanisms provide for "partial" access to 
variables passed across module interfaces. 
Routines as parameters provide a means of passing 
indirect access to an object without allowing 
direct, uncontrolled access. The implementations 
of abstract data types provide new mechanisms for 
selectively - ~ d i ~ - - - o b j e c t s  and for allowing 
"partial" access. Finally, there have been 
proposals for introducing "capabilities" into 
programming languages [6]. 

In the course of this paper we wi l l  explore 
the usage of these protection mechanisms as 
presented in specific existing and/or future 
languages. The vehicle for our discussions wi l l  be 
an example, referred to as the Prison Hail System. 

Prison Mail System Problem 

The Prison Mail System. (PHS) Problem is 
described as follows: 
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Prisoners are confined to individual 
cells unable to communicate directly 
or indirect ly with any of the other 
prisoners, except via the Prison Mail 
System. 

Prisoners communicate through the 
Prison ~lail System by exchanqing 
messaqes which are picked-uI) and 
delivered by the prison Quards. 

Hence, during each delivery cycle each 
prisoner sends to and receives from the Postmaster 
exactly one bundle. Thus the guards are thwarted 
from discovering which prisoners are communicating. 
We choose to ignore any further possibi l i t ies of 
discovery such as weighing the bundles, measuring 
their  thickness, etc. 

A PI,IS Solution 

3. Each message consists of a body and a 
§ignature and is placed inside an 
envelope which is then sealed and to 
which an address is affixed. 

The Prison ~lail System resembles the Post 
Office System except that the guards and the 
prisoners are mutually suspicious of each other. 
The guards are afraid that the prisoners inay be 
planning a prison break and consequently, are 
constantly alert for any information that might 
reveal the prisoners' plans. The prisoners, on the 
other hand, resent this snooping by the guards and 
do everything in their  power to make i t  impossible 
for the guards to obtain information. By mutual 
agreement there is one and only one security 
constraint which is always observed. 

Th_.e Security Constraint: 
addressee is allowed to open 
once sealed. 

Only the 
an envelope 

However, the guards are allowed to remember 
any information that is discernible by examination 
including froln whom and to whom messages are 
carried. Cognizant of this fact, the prisoners 
worked out the following convention for reducing 
the significance of the information obtainable by 
the guards. 

4. For each prisoner al l  messages 
(possiDly none) to be mailed during 
some t ime period are placed inside 
another envelope, referred t o  as a 
bundle, which is t hen  sealed and 
labelled for a non-partisan 
Postmaster. 

5. The Postmaster receives bundles, opens 
them, sorts the letters contained 
inside (without opening them), rewraps 
them into a single bundle (possibly 
empty) for each prisoner, and relabels 
them for the correct recipient. 

In the remainder of this paper we w i l l  discuss 
a solution to the PMS problem as i t  is expressible 
in the languages Pascal [5], Concurrent Pascal 
[2],  Euclid [7], Clu [8], and Gypsy 
[1]. For each language we w i l l  analyze the 
effectiveness of i ts  protection mechanisms at 
enforcing the Security Constraint. We note from 
the outset that none of these languages, except 
Gypsy, was specif ical ly designed for protection. I t  
is not our intention to c r i t i c i ze  them in any way, 
but rather to contrast the various existing 
protection mechanisms. I t  is our contention that 
protection in programming languages is an old, but 
real, issue that has often been buried in other 
constructs and that only recently has been 
addressed directly. We begin by characterizing the 
general properties of the solution. 

I f  we l im i t  our thoughts to a single "bundle" 
cycle, we observe that (Pi) the prisoners write 
letter5 wrapping them in a bundle, (G1) the guards 
pick up the bundles and deliver them to the 
Postmaster, (M1) the Postmaster opens the bundles 
and sorts the mail, (M2) the Postmaster then re- 
bundles the letters and hands them back to the 
guards, (G2) the guards deliver the bundles to the 
prisoners, and (P2) the prisoners open the bundles 
and read their mail. The "bundle" cycle is 
i l lustrated in Figure I .  We now write individual 
algorithms for each phase of the "bundle" cycle. 

Algorithm PI: Start with an empty bundle 
and while the mood strikes compose 
letters signing each before placing i t  
into an envelope and addressing i t .  When 
the mood no longer persists, seal the 
bundle, a f f i x  the Postmaster's name to 
the label, and place the bundle in the 
mailbox. 

Algorithm G l :  From each prisoner pick up 
one bundle from his mailbox addressed to 
the Postmaster and deliver them to the 
Postmaster's mailbox. 
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Figure 2. PMS Bundle/Letter/Message Structure 

Algorithm MI: While there are bundles in 
the Postmaster's mailbox remove one and 
sort the letters into piles - one pi le 
for each prisoner. 

Algorithm M2: For each prisoner, place 
his pile o r l e t te rs  into an empty bundle, 
seal the bundle, a f f ix  the prisoner's 
name to the label, and place i t  in the 
Postmaster's mailbox. 

Algorithm G2: Pick up the bundles from 
the Postmas-ter's mailbox and deliver them 
to the labelled prisoner's mailbox. 

Al~ri thm P2: Remove the bundle from the 
mailbox, open i t ,  and while the bundle is 
not empty remove, open, and read the 
letters. 

We assume a data structure as i l lustrated in 
Figure 2 where each "Bundle" is composed of a 
"Label" and a sequence of "Letters" - where each of 
the lat ter  is composed of a "Address" and a 
"Message" - and where the lat ter  is composed of a 
"Body" and a "Signature". Thus each bundle is 
composed of four elementary f ields. I t  is the 
"selective" protection of these four elementary 
fields that constitutes the heart of this example 
problem. 

By analyzing the six algorithms in terms of 
their required access to each of these four f ields 
we arrive at the access matrix presented as Figure 

3. Two categories of protection are indicated: (N) 
access is necessary for the algorithm to function 
and (P) access should be prevented as the algorithm 
does not need access. For each of the "necessary" 
accesses a "/R" or "/W" is included to indicate 
that either "read" or "write" access is required. 
In the Figure 3 there are several instances where 
"P or N/R" access is indicated. For these entries 
either choice is allowed because, while the 
algorithm does not need access, the information is 
already available and a suitable choice w i l l  for 
certain lanquages simplify the solution. 

What remains to be discussed for our solution 
is the flow of control within the program. Figure 
4 models the interrelationships between the 
prisoners, the guards, and the Postmaster. The 
internal communication structure for the guards is 
unimportant for our purposes and is l e f t  
unspecified. 

A simple control solution might be: 

program 
var Boxes 
procedure Pi 
procedure G1 
procedure M1 
procedure M2 
procedure G2 
procedure P2 

PI 
Gi 
M1 
M2 

Label Address Body 

PI N/W N/W N/W 
G1 N/R P P 
M1 P or N/R N/R P 
M2 N/W P or N/R P 
G2 N/R P P 
P2 P or N/R P or N/R N/R 

Signature 

NIW 
P 
P 
P 
P 

N/R 

Figure 3. PMS Access Chart 
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end 

However, as we wi l l  see protection is often tied 
expl ic i t ly  or impl ic i t ly to control flow and wi l l  
dictate more complex control solutions. These wi l l  
be discussed as they are encountered. 

Liberties 

- loop . . .  end is a control statement 
that indicates an in f in i te  loop. 
All the solutions to the PMS problem 
presented in this paper  wi l l  
deliberately not terminate. 

- for i :  = Prisonerld do . . .  is a f i n i te  
loop construct that causes the d.__o 

• clause to be executed exactly once 
for each value of type Prisonerld. 

In the solutions that follow we wi l l  take 
certain l ibert ies to create shorter, more 
understandable solutions. We assert that these 
l ibert ies merely eliminate detail f rom our 
discussion and in no way add to or detract from the 
languages' ab i l i ty  to express the essential 
properties of this protection problem. 

NPrisoners is an integer constant 
specifying the number of prisoners 
using the PMS. 

- PrisonerId is a range or set of 
prisoner names which may be thought 
of as integer values in the range 
l..NPrisoners. 

- sequence of_ . . .  is an allowable type 
which wi l l  be treated as unbounded. 
I t  has operations append item t_o 
sequence, remove item from sequence, 
and empty(sequence). Append inserts 
a new item on the ta i l  of the 
sequence and remove removes the head 
item from the sequence (FCFS). Empty 
is a boolean function that evaluates 
to true when the sequence is empty. 

- String is a sequence of character. 

- decoy is a dummy type used solely to 
obscure a previous definit ion. 

Note: For the purpose of the solutions that 
follow, i t  makes no difference whether we consider 
that the Postmaster is also a prisoner or not. 

Solution in Pascal 

We chose to begin by looking at Pascal [5] 
because i t  is representative of the protection 
fac i l i t i es  present in most algorithmic programming 
languages and because i t  has had a strong influence 
on many of the languages we wi l l  examine 
subsequently. 

Pascal offers da ta  types, scope rules, 
parameter passing limitations, and routines as 
parameters for enforcing access protection. Data 
type checking assures that the types of a l l  actual 
parameters to a l l  functions, procedures, and 
operators (including assignment) "match" the 
corresponding formal parameters. "Matching" is 
interpreted to mean that they have the same 
structure, not necessarily the same type name. 
This interpretation has strong implications for 
protection. I t  means that no matter how much 
protection is wrapped around a type i t  is always~ 
possible to "impersonate" the type by defining a 
different type of the same structure. Pascal then 
allows assignment of the "protected" object to the ~ 
"impersonating" object. This allows the contents 
of the "protected" object to be discovered. 
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procedure A 
t~pe t= yyy 
var a: t 
en__d; 

procedure B 
var b: t 
end~ 

type t= yyy 

procedure A 
var a: t 

end; 
procedure XB 

type t = decoy 

procedure ,3 
var b: t 
end; 

end; 

5a 

Figure 5. Scope Protection 

5b 

Pascal has a typical hierarchical program 
structure wh ich  allows for nested routine 
declarations with the accompanying scope rules: 1. 
an ident i f ier  has scope over the defining routine 
and al l  encompassed routines and 2. where an 
ident i f ie r  is multiply defined in a scope then 
references to the ident i f ie r  are resolved by the 
definit ion with the smallest encompassing scope. 
Rule 1 means that objects defined in a particular 
scope are protected f r o m  references from 
unencompassed scopes. Rule 2 means that objects 
defined in encompassing scopes can be "hidden" i f  
they are redefined in smaller, but s t i l l  
encompassing, scopes. The two scope rules are 
i l lustrated in Figure 5. In 5a type "t" is hidden 
from procedure "B" by keeping the definit ion out of 
the scope of "B"; while in 5b, type "t" is hidden 
from "B" by inserting an intervening "decoy" 
definit ion in procedure "XB". 

Pascal allows call by value as a parameter 
passing restrict ion to prevent undesired actual 
parameter modification. However, this mechanism is 
unable to prevent unwarranted actual parameter 
examination. In addition, any parameter which is 
also a global variable can be modified directly 
without restr ict ion. 

Finally, Pascal allows routines to be passed 
as parameters to other routines. Unfortunately in 
so doing, the need is created for dynamic parameter 
type checking. Pascal implementations typical ly 
don't do this dynamic checking, but we w i l l  ignore 
this b i t  of laziness. The capability to pass 
routines as parameters, combined with the scope 
rules, allows an object X to be protected from a 
routine R by defining X out of the scope of R 
(hence, preventing direct access to X) and by 
passing R only routines which can manipulate X - 
never X i t se l f .  However, as we shall see in the 
PHS solution this technique can get awkward. 

The complete solution expressed in Pascal is 
presented at the end of this section. This 
solution has the following form. 

Program 
Drocedure H1.~12 
procedure G1 
procedure G2 
procedure P1 
procedure P2 
procedure XF1ai n 

var Boxes 
1 oop 

P1 
G1 
MIM2 
G2 
P2 

end 
XMa i n 

To understand why the solution 
consider the following arguments: 

takes this form 

A. Suppose G1/G2 have direct access to 
Boxes either because Boxes is global 
to G1/G2 or because Boxes is passed 
as a parameter to Gi/G2. Then : 

a. I f  G1/G2 also have access to a l l  
of the type definitions for 
Boxes, then G1/G2 can access 
the contents of Boxes and the 
Security Constraint is 
violated. 

b. I f  G1/G2 have access to only some 
or even none of the type 
definit ions, they can s t i l l  
fabricate structurally 
equivalent declarations for the 
missing definit ions, then 
declare a local variable using 
the fabricated types and assign 
to that local variable the 
contents of Boxes; thereby, 
being able to violate the 
Security Constraint. 

Hence Pascal's treatment of types 
implies that i f  G1/G2 have direct 
access to Boxes then the Security 
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p ro~ral~ ~Ta i n; 
type r!essa0eType = 

record Body: Str ine; Signature: Prisonerld; end; 
type LetterType = 

record Address: Prisonerld; Hessage: ~lessageType: en___d; 
type BundleType = 

record Label: Prisonerld; Letters: sequence of LetterType end; 
type Mainbox = sequence o_f_ BundleType; 
type Mailboxes = array [Prisonerld] o_f_ BundleType; 
procedure HiM2(function EmptyMasterBox, EmptyScratchBundle: boolean; function 

ReadAddressScratchLetter: Prisonerld; procedure RemoveHasterBox, AppendMasterBox, 
RemoveScratchBundle, AppendScratch~undles, MoveScratchBundles, WriteLabelScratchBundle); 

end {~1M2 ; 
procedure Gl(procedure RemoveBoxes, AppendHasterBox); 

end Gll 
procedure G2(function EmptyMasterBox: boolean; function 

ReadLabeIScratchBundle: Prisonerld; procedure RemoveHasterBox, AppendBoxes): 

end 
procedure Pl(var b: BundleType); 

end Pil 
procedure P2(va_r b: BundleType); 

end 
procedure XMain; 

var Boxes: Mailboxes; 
var MasterBox: Mainbox; 
var ScratchBundle: BundleType; 
va__r. ScratchBundles: array [Prisonerld] o._f_ BundleType: 
var ScratchLetter: LetterType; 
function EmptyMasterBox: boolean: 

begin EmptyMasterBox: = empty(HasterBox); end; 
procedure RemoveMasterBox: 

begin remove ScratchBundle from HasterBox en.~; 
procedure AppendMasterBox; 

begin append ScratchBundle to MasterBox: end; 
procedure RemoveBoxes(i: Prisone~Id); 

begin ScratchBundle:= Boxes[i]; end; 
procedure AppendBoxes(i: Prisonerld); 

begin Boxes[i]:= ScratchBundle; end; 
function EmptyScratchBundle: boolea_~; 

begin EmptyScratchBundle:= em~(ScratchBundle); end; 
procedure RemoveScratchBundle; 

begin remove ScratchLetter from ScratchBundle; end; 
procedure AppendScratchBundles(i: Prisonerld); 

begin append ScratchLetter to ScratchBundles[i]; end; 
procedure HoveScratchBundles(i: Prisonerld); 

begin ScratchBundle: = ScratchBundles[i]; end; 
function ReadLabeIScratchBundle: Prisonerld; 

begin ReadLabeIScratchBundle:= ScratchBundle.Label; end; 
procedure ~riteLabeIScratchBundle(i: Prisonerld); 

begin ScratchBundle.Label:= i ;  end; 
function ReadAddressScratchLetter: Prisonerld; 

begin ReadAddressScratchLetter: = ScratchLetter.Address; en__d; 
beQi.__~ 

loop 
for i :  = Prisonerld do Pl(Boxes[i]); 
Gl(RemoveBoxes, App~dMasterBox): 
MIM2(EmptyMasterBox, EmptyScratchBundle, ReadAddressScratchLetter, RemoveMasterBox, 

AppendMasterBox, RemoveScratchBundle, AppendScratchBundles, 
1,1oveScratchBundles, WriteLabeIScratchBundle); 

G2(EmptyMasterBox, ReadLabeIScratchBundle, RemoveMasterBox, AppendBoxes); 
for i:= Prisonerld do P2(Boxes[i]); 

end; 
e n__d_; 

begin XMain; end. 

Figure 6. Pascal Solution 
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Constraint can be violated. 

B. Suppose Gi/G2 are not allowed direct 
access to Boxes, then i t  must be: 1. 
that Boxes is defined in such a way 
that i ts scope does not include 
G1/G2, 2. that Boxes is not passed 
as a parameter to G1/G2, and 3. that 
G1/G2 are instead passed routines, 
as parameters, which can access 
Boxes. Then: 

a. I f  Boxes is defined outside the 
scope of G1/G2 as in Figure 5a 
the result takes the form 
presented here. 

b. Otherwise, i f  Boxes is defined so 
that i ts scope encompasses 
G1/G2 then there must be an 
intervening "decoy" definit ion 
as in Figure 5b. This 
possibil ity likewise leads to a 
valid solution. The solution 
presented for Concurrent Pascal 
uses this technique. 

In the solution, the Main program simply 
functions as a shell and immediately calls XMain 
which contains the data declarations safely out of 
reach. Since the data within a bundle need not be 
protected from the prisoners, PI/P2 are allowed 
direct access to their parameters. To prevent ever 
passing a let ter (or structure of letters) to 
G1/Mi~2/G2 and yet allow them to perform their 
functions, we were forced to create twelve access 
routines. Many of these functions perform the same 
operation, but on different objects (e.g. 
AppendBoxes and MoveScratchBundles) yet without the 
objects being passed as parameters they are al l  
necessary. Variables that would normally be 
declared locally (such as ScratchBundles) within 
GI/MIM2/G2 are forced to be declared in XMain with 
their access protected in the same manner by using 
access functions. The net result is that 
G1/MiM2/G2 are only synthetic representations of 
their intended design. 

Solution in Concurrent Pascal 

The next protection mechanism we want to look 
at is the abstract data type. In its simplest form 
an abstract data type consists of a set of abstract 
operations defined on a concrete representation 
which is hidden from al l  references except those of 
the abstract operations. Simula 67 [4] provides 
a class structure which was i n i t i a l l y  defined as 
described above, except  that the concrete 
representation was completely visible. A later 
extension [9] allows selective hiding of both 
data and routine declarations. The class mechanism 
defined in Concurrent Pascal [2] behaves 
similarly. In i t  al l  names are hidden, except 
those expl ic i t ly  declared as entries. We have 
chosen to display the PMS solution in only one o f  

these languages as the solution in the other is 
similar. Since the rest of the examples in this 
paper use a Pascal-like syntax we have chosen 
Concurrent Pascal. 

Concurrent Pascal offers the same protection 
mechanisms available in Pascal plus classes and 
monitors. In the current context we wi l l  ignore 
the possibi l i t ies for a concurrent soluti.on, and 
hence monitors. As stated above classes consist of 
a set of operations defined on a concrete 
representation of an object for the purpose of 
abstracting i ts essential properties. An important 
fact is that each class is unique, i.e. two classes 
"match" i f  and only i f  t hey  are the same 
declaration. The class structure is i11ustrated in 
Figure 7. I t  defines an abstract IntStack with 
operations Push, Pop, and Top (ignoring al l  error 
possibi l i t ies). The keyword entry indicates that 
the ident i f ier  is to be defined in the scope of the 
class declaration. The final begin-end pair 
provides code which is to be executed whenever the 
class is allocated and which in i t ia l izes the 
internal structure. 

The solution expressed in Conoarrent Pascal 
has the following form. 

var Boxes 
procedure XM 

procedure {11~12 
M1>12 

_procedure XG 
procedure GI 
procedure G2 
Gi 
XM 
G2 

procedure XPI 
procedure Pi 
P1 

procedure XP2 
Procedure P2 
P2 

1 oop 
XPI 
XG 
XP2 

end 

The solution functions by placing each of 
P1/G1/H1i,12/G2/P2 in an environment where access 
functions are selectively screened by defining 
decoy definitions in intervening scopes. Type 
HessageType is screened from G1/M1~I2/G2 by XFI and 
XG, but not from P1/P2 and type LetterTyDe is 
screened from G1/G2, but not P1/M1~I2/P2. 

In addition, MessageType, LetterType, and 
BundleType are defined as classes thereby 
restricting access to only the appropriate access 
functions. Note that a bi t  of cleverness has been 
employed here. For LetterType we want that ~,11r42 
can read, but not write, the Address f ield only. 
By grouping the operations on letters such that one 
set can be performed wi thout  a MessageType 
parameter whi le the others cannot, access to the 
operations is d iv ided in to  two categories: complete 

31 



type IntStack = class; 
var st: a r ray~ . lO0 ]  o_f_ integer; 
var pt: integer; 
procedure entry Push(i: inte e~) ;  

begin pt: = pt+l;  st[pt~:= i ;  end: 
procedure entry Pop: 

be~in pt: = p t - l ;  end 
function entry Top: i n t ~ ;  

begin Top:= s t [ p t ] ;  end; 
begin p t : :  O; end; 

Figure 7. Concurrent Pascal Class 

and partial. Those routines which cannot reference 
Messa9eType have only partial access and with 
partial access only ReadAddress is available. In 
this case MIM2 has partial access and P1/P2 have 
complete access. The same cleverness is employed 
in the def in i t ion of BundleType to allow G1/G2 
part ial access while allowing Pi/Mi~I2/P2 complete 
access. 

Solution in EucliQ 

Euclid [7], also derived from Pascal, was 
designed specifically for the expression of systems 
programs that are to be verified. Consequently, 
Euclid has specifically included features to 
control object accessibility. Many of the problems 
with which we were presented in Pascal, have been 
brought under programmer control. 

The treatment of data types in Euclid is 
essentially identical to that of Concurrent Pascal 
with classes being replaced by modules. Two types 
"match" i f  they have the same structure, except 
that al l  module types are considered different. 
Hence, two types which contain modules can "match" 
only i f  they contain the identical module types is 
corresponding positions of otherwise "matching" 
structures. Thus by using module type definitions 
i t  is now possible to prevent the "impersonation" 
of types as we found in Pascal. 

A transformation has been performed on the 
Pascal scope rules. While declarations are s t i l l  
hierarchically definable, the implied scope of a 
declaration is only the routine in which i t  is 
defined and not the encompassed routines as well. 
This means that without additional mechanisms there 
would be no non-local definitions (including 
routines). However, there are two mechanisms for 
extending the scope of declarations. The f i r s t  is 
a pervasive declaration. I f  an object is declared 
pervasive, then i ts scope also includes al l  
routines encompassed by tile defining routine. This 
is equivalent to the Pascal scope, except that in 
the extended scope the object may not be modified. 
For types, routines, and constants there is no 
means of modifying them anyway, so declaring them 
pervasive restores the Pascal scope rules. But 
for variables, while their scope is extended, they 
may only be referenced as constants in the 
extended scope. The second mechanism is an imports 

clause which may be attached to type and routine 
declarations. The effect of an import statement 
is to extend the scope of those identif iers named 
in the imports clause to include the type or 
routine being defined. Names may only be 
imported one scope level; hence, i f  they are not 
imported at each level intervening between their 
definitions and a particular type or routine, 
then they become invisible to that type or 
routine. Variables may be imported either with 
fu l l  ~odification capabilities (as var) or as 
constants (the default). Figure 9 shows the effect 
of the pervasive and import rules. The variable 
"y" is available t o  each of the routines "A", 
"B", "C", and "D", but only as a constant. The 
variable "x" is available as a variable to "A", as 
a constant to "B", and is unavailable to both "C" 
and "D" ( i t  is completely hidden from "D" in that 
i t  could not be imported even i f  desired). 

Euclid's module is a variation of the 
abstract da ta  type we Found in Simula and 
Concurrent Pascal. The variables declared within 
the body are considered to be the concrete 
representation of the abstract object with the 
routines declared therein being the abstract 
operations. Those names which are to represent 
the abstract properties are then  exported into 
the scope of the type declaration. Identif iers 
which are to be exported are expl ic i t ly  l isted 
in an export clause. Euclid furthers allows 
that variables may be exported as either variables 
(var) or constants (again the default). Note: 
Importing a type ident i f ier  imports al l  identif iers 
exported by that type definit ion. 

Euclid does not permit procedures and 
functions to be passed as parameters, thus 
precluding the technique used in the Pascal 
solution. 

The solution expressed in Euclid has the 
following form. 

module main 
module bundletype 

module let tertype 
Pi 
P2 

Mi M2 
bundle Pi 
bundle-P2 
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type MessageType = class; 
va__._r Body: String; 
va___.r Signature: Prisonerld; 
function entry ReadBody: String; 

begin ReadBody:= Body; end; 
procedure entry WriteBody(s: String); 

begin Body:= s; end; 
function entry ReadSignature: Prisonerld; 

begin ReadSignature:= Signature; end; 
procedure entry WriteSignature(a: Prisonerld); 

begin Signature:= a; end; 
begin end; 

type LetterType = class; 
var Address: Prisonerld; 
var Message: MessageType; 
function entry ReadAddress: Prisonerld; 

begin ReadAddress:= Address; end; 
procedure entry Rea~,lessage(var m: MessageType); 

begin m:= Message; end; 
procedure entry WriteLe~r(m: MessageType; a: Prisonerld); 

begin Message:= m; Address:= a; end; 
begin en_d; 

type BundleType = class; 
var Label: Prisonerld; 
var Letters: sequence o.f_ LetterType; 
function entry ReadLabel: Prisonerld; 

begin ReadLabel:= Label; end; 
procedure e n ~  WriteLabel(l: LetterType; a: Prisonerld); 

be91n Label: = a; end; 
procedure entry EmptyLetters(l: LetterType); 

begin EmptyLetters:= e ~ ( L e t t e r s )  end; 
procedure .entry RemoveLetter(var I: Le t t~ype) ;  

begin remove l from Letters; end; 
procedure entry AppendLetter(l: LetterType); 

begin append l t_o Letters; end; 
begin en_.d; 

type Mainbox = sequence of BundleType; 
type Mailboxes = array [Prisonerld] o__f BundleType; 
var Boxes: Mailboxes; 
procedure XM(var masterbox: Mainbox); 

type MessageType = decoy; 
var Boxes: d e ~ ;  
procedure MIM2(var masterbox: Mainbox); . . .  end MIM2; 
begin MiM2(masterbox); end; 

procedure XG(var boxes: MaiT~xes); 
type MessageType = decoy; 
type LetterType = decoy; 
var MasterBox: Mainbox; 
procedure Gl(va__r boxes: Mailboxes; var masterbox: Mainbox); . . .  end G1; 
procedure G2(var boxes: Mailboxes; var masterbox: Mainbox); . . .  end G2; 
begin i n i t  MasterBox; Gl(boxes, MasterBox); XM(MasterBox): G2(boxes, MasterBox); end; 

procedure XPl(var box: BundleType); 
var Boxes: d e N ;  
procedure Pl(var b: BundleType); . . .  end P1; 
begin Pl(box); end; 

procedure XP2(var box: BundleType); 
var Boxes: d e ~ ;  
procedure P2(var b: BundleType); . . .  end P2; 
begin P2(box)T-end; 

begin 
in i t  Boxes; 
loop 

for i:= Prisonerld do XPl(Boxes[i]); 
XG(Boxes); 
for i :  = Prisonerld do XP2(Boxes[i]); 

end; 
end. 

Figure 8. Concurrent Pascal Solution 
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var x: inteQer; 
pervasive var y: integer: 
procedure A imports (var x) 

procedure B imports (x) 
procedure C 

procedure D imports(?) 

Figure 9. Pervasive and Import Rules 

procedure G1 
procedure main MIM2 
procedure G2 
var boxes 
var MasterBox 
loop 

bundle P1 
G1 
main Mi F,12 
G2 
bundle P2 

end 

This form is  d ic ta ted by the need to hide cer ta in  
i d e n t i f i e r s  from the guards and the postmaster. ~y 
dec lar ing LetterTyDe ins ide of BundleType, PI and 
P2 ins ide the LetterType module, and the postmaster 
(~I>12) ins ide the BundleType module, the required 
data pro tec t ion  is  establ ished.  

The data abstraction mechanism in Euclid 
allows a routine access to the internal 
representation of at most one instance of a given 
module type, via importation of module variables. 
Thus, a sequence of module instances must be broken 
down into the individual instances before an 
operation on the module can be done. P1 has access 
to the components of a let ter  by importing the 
variables which form an instance of a let ter  (that 
is, address and message). I t  generates a sequence 
of letters by recursive calls to i t se l f .  Since P1 
can only be referenced as a component of an 
instance of a let ter,  bundle Pi declares a variable 
of type LetterType. P1 would have the following 
form. 

var letter: LetterType; 
set address; 
set message: 
i f  ~oodstrikes 

then 
letter.P1; 
append let ter  t.._o contents; 

end. 

Similarly, MIM2 recursively processes bundles, 
being i n i t i a l l y  Called by main MiM2 with the head 
of MasterBox. I ts form would bet 

va_.r bundle: BundleType 
process_label; 
process_contents; 
i f  not enpty (MasterBox) 

then 
remove bundle from i4asterBox; 

bundle.MIM2; 
end; 

process_label; 
process_contents. 

Finally P2 recursively consumes letters. I t  is 
i n i t i a l l y  called by bundle-P2 with the head of 
contents. I ts form would be: 

va...~ letter:  LetterType; 
consume_address; 
consume message; 
i f  not empty (contents) 

then 
remove let ter  from contents; 
letter.P2; 

end. 

An important property of this solution is that 
in order to produce the desired da ta  access 
control, the control structure of the Drooram is 
not really correct. For example, nothing prevents 
guards (G1 and G2) from cal l ing the prisoners and 
the postmaster, via calls to bundle P1, bundle P2, 
and MiM2, and the postmaster (MIM2) from caITing 
the prisoners, via calls to P1 and P2. This is a 
consequence of the rule in Euclid that i f  a module 
name is known, all ident i f iers exported by the 
module are known. 

Solution in Clu 

The language Clu [8] displays signif icant 
departures from the preceding languages while 
retaining a Pascal-like syntax and scope rules. 
Clu was designed specif ical ly to support the 
development of a program by successive 
decomposition through tile usage of abstractions. 
An abstraction is for Clu "a mechanism which 
permits the expression of relevant details and 
the suppression of irrelevant details" [8]. 

The basic unit in Clu is a module. A module 
is either a procedure or a cluster. A procedure 
provides an abstract operation and a cluster 
provides an abstract object. Modules may be 
nested similar to Pascal ,  except that an 
ident i f ie r  may not be redefined in an encompassed 
scope as in Pascal. 
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module Main 
pervasive type BundleType = 

module exports (:=, label, bundle_P1, MIM2, bundle P2) 
pervasive type LetterType = 

module exports (:=, address, Pl, P2) 
type MessageType = 

record 
Body: String; 
Signature: Prisonerld; 

end; 
vat Address: Prisonerld; 
var Message: MessageType; 
procedure P1 (va__.r. label: Prisonerld, var contents: sequence of LetterType) 

. . . o  

end; 
procedure P2(var label: Prisonerld, var contents: seauence of LetterType) 

. . . .  

end; 
i n i t i a l I z  Message.body := (); 

end LetterType; 
var label: Prisonerld; 
var contents: seance  of LetterType; 
p~cedure MIM2 (var F~s~rBox: seauence of BundleType) 

. ° o o  

end; 
procedure bundle P1 imports (var label, var contents) = 

begin 
var le t ter :  LetterType; 

letter.P1 (label, contents); 
append le t te r  t__o contents; 

end; 
procedure bundle_P2 imports (va_r_ label, var contents) = 

begin 
var let ter :  LetterType; 
- - -  i f  not empt~ (contents) 

then 
remove le t te r  from contents; 
letter.P2 (label, contents); 

en__.d; 
end: 

i n i t i a l l y  contents := ();  
end BundleType; 

pervasive type MainBox = sequence of BundleType; 
pervasive type MailBoxes = array (~isonerld) o._f_ BundleType; 
vat MasterBox: MainBox; 
vat Boxes: MailBoxes; 
procedure G1 (var Boxes: MailBoxes, va.__r MasterBox: MainBox) 

. o . .  

end; 
procedure G2 (var boxes: MailBoxes, va_.__r MasterBox: MainBox) 

end; 
procedure main_MiM2 (var MasterBox: MainBox) = 

begin 
var bundle: BundleType; 

remove bundle from MasterBox; 
bundle.MiM2; 

end; 
loop 

for i :  Prisonerld do Boxes[i].bundle_P1; 
G1 (Boxes, MasterB~); 
main MIM2 (MasterBox); 
G2 (Boxes, MasterBox); 
for i :  Prisonerld d___o Boxes[i].bundle_P2; 

end; 
end Main; 

~ _ _  

Figure i0. Euclid Solution 
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A cluster is another form of an abstract 
data type. I t  contains an object representation 
which is used to realize the abstraction along 
with a set of operations defined on this 
representation, w h i c h  provide the required 
abstract operations. The representation is known 
only within the cluster and therefore only 
referencible by the operations defined within the 
cluster. The set of operation s to be exported into 
the scope of the cluster declaration is exp l ic i t l y  
specified in the cluster heading. 

A routine may return multiple values as the 
routine result and then perform a multiple 
assignment. For instance, 

stack, element:= Pop(stack) 

where 

Pop = o~eration(s: stacktype) 
returns (stacktype, elementtype); 

would allow the Pop operation to return the top 
value as well as the reduced stack. 

Summarizing, Clu has Pascal-like scope rules 
with the restr ict ion that unqualified ident i f iers 
cannot be redefined in an encompassed scope and i t  
has an abstract data type, called a cluster, with 
exp l ic i t  exportation. Hence, i f  we look back at 
the previous solutions, the solution expressed in 
Concurrent Pascal is unusable because redefining 
ident i f iers in encompassed scopes is not 
allayed. The solution in Euclid is usable, as is 
the solution expressed in Pascal. There is yet a 
~lore interesting solution which is unique to Clu. 

A variable in Clu is an ident i f ie r  capable of 
denoting objects of a certain specified type. A 
variable is made to denote a particular object 
by means of the assignment operation. An object 
is a structure capable of possessing a value of the 
specified type. Objects are dynamically created by 
the create operation defined for each type 
(either exp l ic i t l y  or imp l ic i t l y ) .  Each newly 
created object is unique, i .e. i t  has never before 
existed. Thus there are two dist inct forms of 
"equality" in Clu. Two variables are e~ual i f  
and only i f  they both denote the same object. 
Two variables are similar i f  they both denote 
objects which possess the same value. Because 
of the uniqueness of objects, i f  equal(X, Y) then 
there exists a Z which created the object now 
pointed to by both X and Y together with a 
sequence of assignments such that X: = . . .  := Z and 
Y:= . . .  := Z. The significance of this fact is 
that i t  is impossible to fabricate an object 
and then have i t  test equal to some other object. 
This gives us the ab i l i t y  to construct unique, 
unfabricatable protection keys. 

The solution presented below takes the 
following form. 

var Boxes 
procedure MIM2 
procedure G1 
procedure G2 
procedure P1 
procedure P2 
procedure Main 

loop 
P1 
G1 
MIM2 
G2 
P2 

end 
Main 

All type definitions are defined within the scope 
of P1/G1/MiM2/G2/P2. The solution then relies on 
two facts: I .  for each of the c r i t i ca l  f ields 
access is available only through access 
operations and 2. access to the access operations 
is controlled by access keys. I f  an access 
function is presented with a key which matches the 
key in the data structure to be accessed, then 
the access is allowed. S ince keys cannot be 
forged, a routine could have the key only i f  i t  
had been given the key through proper channels. 
There are two keys KeyM and KeyL; they correspond 
to b e i n g  able to access MessageType and 
LetterType as in the Concurrent Pascal solution.- 

The main procedure starts by creatinq the 
two un ique keys. All bundle and let ter  
declarations subsequently are created to contain 
these keys which are handed out to 
P1/G1/HIM2/G2/P2 in accordance with required 
protection. 

The keyword r_~ Z is used inside a cluster 
defini t ion to denote the internal representation of 
the cluster. 

Solution in Gypsy 

Gypsy [1] is another language which is 
based on a Pascal syntax. I t  was specif ical ly 
designed for supporting the development of formally 
verif iable programs for communications systems. 
Like Concurrent Pascal i t  offers fac i l i t i es  for 
writ ing programs using concurrent processes. I t  
also provides fac i l i t i es  for writ ing program 
specifications directly in the program code. We 
w i l l  ignore the presence of these extras in the 
current context. 

Gypsy programs are composed of a series of 
units, exactly one of which should be a program 
unit. Units are type, constant, macro, or routine 
units. Units may not be nested; hence, the 
tradit ional hierarchical structure is missing from 
Gypsy. Furthermore, variables can be declared only 
inside units. This means that there are only local 
and parameter variables. 
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MessageType = record[Body: String, Signature: Prisonerld]; 
LetterType = cluster is create, ReadAddress, Rea~lessage, WriteLetter; 

re~ = record[~y: KeyType, Address: Prisonerld, Message: MessageType]; 
create = operation(k: KeyType) returns(rep); 

l: r ~ ;  ].Key:= k; return (1); en___d; 
ReadAddress = operation(l: rep) returns(Prisonerld); 

return (l.Address); end; 
Reac~lessage = o e r a ~ ( l :  rep, k: KeyType) returns(MessageType); 

i f  equal(].Key, k) then return (l.Message~i ~ ;  
WriteLetter = operation~1: rep, a: Prisonerld, m: MessageType, k: KeyType) returns ( r ~ ) ;  

i f  equal(l.Key, k) then beqin ].Address:= a; l.Messaqe:= m; return ( I ) ;  end; end; 
en..._d; 

BundleType = cluster is create, ReadLabel, WriteLabel, 
EmptyLetters, RemoveLetter, AppendLetter; 
= record [Key: KeyType, Label: Prisonerld, Letters: sequence o.! LetterType]; 

create = operation(k: KeyType) returns(red); 
b: r ~ ;  b.Key:= k; return ( ~ ;  end; 

ReadLabel = o p e r a t i o n ( b - ~  returns(Prisonerld); 
return (b.Label); end; 

WriteLabel = operation b~: rep, a: Prisonerld, k: KeyType) returns(rep); 
i f  equal(b.Key, k) then begin b.Label:= a; return (b); end; end; 

Empt~etters = operat ion~: rep, k: KeyType) returns(boolean~, 
i f  equal(b.Key, k) then return (empty(b.Letters)); en__d_; 

RemoveLetter = opera t ion~  rep, k: KeyType) returns(rep, LetterType): 
I: LetterType; 
i f  equal(b.Key, k) then beqin remove l from b.Letters; return (b, I ) :  
end; end; 

WriteLetter = o e r a S ( b :  rep, l: LetterType, k: KeyType) re turns( r~) ;  
i__f_ equal(b.Key, k) then begin _~_pend l t_o b.Letters; return (b); 
end; end; 

end; 
Mainbox = sequence o_.f_ BundleType; 
Hal]boxes = array of BundleType; 
MiM2 = procedure(~-sterbox: Mainbox, k: KeyType) returns(Mainbox); 

end 
G1 =~ocedure(boxes: Mailboxes, masterbox: Mainbox) returns(Mailboxes, Mainbox); 

end Li1 
G2 = procedure(boxes: Mailboxes, masterbox: Mainbox) returns(Mai]boxes, Mainbox); 

end 
P1 = procedure(box: BundleType, kb, k1: KeyType) returns(BundleType); 

end 
P2 = procedure(box: BundleType, kb, kl: KeyType) returns(BundleType); 

end 
Main = procedure 

KeyM: KeyType(); 
KeyL: KeyType(); 
Boxes: Mailboxes:: f i t1(1,  NPrisoners, BundleType$create(KeyL)): 
§ f i l l  creates an array indexed l..NPrisoners; 
each element is in i t ia l i zed by ca]ling the create operation on BundleType¢ 
MasterBox: Mainbox; 
loop 

for i :  = Prisonerld do Boxes[i]: = Pl(Boxes[i], KeyL, KeyM); 
Boxes, MasterBox:= ~(Boxes, MasterBox); 
MasterBox:= MIM2(MasterBox, KeyL); 
Boxes, MasterBox:= G2(Boxes, MasterBox); 
for i :  = Prisonerld do Boxes[i]:= P2(Boxes[i], KeyL, KeyM); 

end; end; 
Main 

Figure 11. Solution in C1u 
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ty_p_e <A, B> IntStack <New, Push, Pop, Top> = 
record(st: array [1..100] of inteaer; 

pt: integer); 
procedure <A, B> new: IntStack; 

beain result.pt:=O; end: 
procedure <A> Push(s: IntSTack: i :  inteaer) = 

begin s.pt: = s.pt+1: s.st[s.pt]: = i ;  end: 
procedure <A> Pop(s: IntStack) = 

begin s.pt: = s.pt-1; end~ 
function <A, B> Top(s: IntStack): inteaer = 

beain result:=s.st[s.pt]; en__d; 

Figure 12. Gypsy Access Lists 

Associated with each unit are two access 
l is ts.  The f i r s t  (which appears syntactically 
before the unit name) l is ts  those units that are 
allowed to access the unit. I f  this is a routine 
unit the l i s t  indicates which units are allowed to 
invoke the routine. For type units i t  indicates in 
which units objects of that type can be declared. 
When the f i r s t  access l i s t  is missing, i t  is 
assumed that al l  units are allowed to reference the 
unit. The second access l i s t  (which is only 
meaningful for types and which syntactically 
immediately follows the unit name) indicates those 
units that are allowed to reference the internal 
structure of the unit. This access l i s t  allows for 
the construction of abstract data types. When this 
l i s t  is missing i t  is assumed that al l  units are 
allowed access to the internal structure. Figure 
11 demonstrates the IntStack example again (Figure 
7) - this time in Gypsy. The access l ists state 
that both units A and B are allowed to declare an 
IntStack with Push, Pop, and Top being the only 
routines a11owed to reference the internal 
representation of an IntStack. Furthermore, only 
A can do Push or Pop operations, but both A and B 
are allowed to do the Top operation. I t  should be 
clear that by supplying suitable access l is ts any 
graph structured access pattern can be achieved. 

program Main 
var Boxes 
loop 

PI 
G1 
MIM2 
G2 
P2 

end 
end 

The form of the solution i t se l f  requires l i t t l e  
explanation. I t  requires no subtleties, but simply 
relies on the properties of i ts access l is ts.  
Several points are worth noting: 1. WriteLabel 
doesn't reQuire a dummy parameter of type 
LetterType as some previous solutions have and 2. 
we are able to discriminate access to a f iner level 
without increasing the complexity of the solution. 
Examples of the lat ter  are £$riteLetter being 
restricted to just P1 and P1/G1/MIM2/G2/P2 being 
restricted so that only Main is allowed to invoke 
them. 

Conclusion 

A type in Gypsy consists of a mode and a 
possibly empty set of restrictions. For instance, 
a subrange 1..10 (or integer[1..lO]) is of mode 
integer with a range restriction requiring that the 
value be greater than or equal to one and less than 
or equal to ten. Two types "match" i f  their modes 
"match" after repeatedly substituting modes for 
their corresponding t y p e s .  However, type 
impersonation is prevented by restricting objects 
from gaining access rights either through 
assignment or parameter passing. 

Gypsy does not a11ow routines to be passed as 
parameters. 

The Gypsy solution ut i l izes the following 
form. 

procedure PI 
procedure GI 
procedure MiM2 
procedure G2 
procedure P2 

Is this example contrived? Yes and no. The 
PMS example was concocted to compress as much as 
possible complexity into a small example and at the 
same time to motivate as much as possible the 
significant protection problems. Hence, the PMS is 
contrived, but the protection problems are not. 

Most of the protection problems i l lustrated 
here occurred to us in the process of constructing 
formal proofs for message communication systems. 
For the purpose of proofs i t  is not sufficient to 
rely upon programmer discipline. Hence, either the 
language guarantees t ight ly protected routine 
interactions or the verif ication system is forced 
to expand the scope of i ts proof process to account 
for possible side-effects that should never be 
allowed, but that the programmer has no fac i l i t y  of 
preventing. Routine specifications can be used to 
prohibit undesired routine interactions, but these 
"no-effect" type specifications tend to become 
voluminous and each instance s t i l l  requires proof. 
We have found that by providing stronger access 
control fac i l i t i es  in the language the burdens of 
proof can be signif icantly reduced. 
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type HessageType = record( 
Body: String; 
Signature: Prisonerld); 

type LetterType<ReadAddress, ReadI, iessage, WriteLetter> = record( 
Address: Prisonerld; 
#lessaoe: MessageType); 

function <P1, M1>12, P2> ReadAddress(l: LetterType): Prisonerld = 
benin result:= l.Address; end; 

function<P1,P2> ReadMessage(l: LetterType): MessageType = 
beqin result:= l.hlessage; end; 

procedure <Pi> VlriteLetter(var l :  LetterType; a: Prisonerld; m: ~.lessa#eType) = 
begin l.Address:= a; l.~lessage:= ~; end: 

type BundleType<ReadLabel, WriteLabel, EmptyLetters, RemoveLetter, AppendLetter> = record( 
Label: Prisonerld; 
Letters: seouence of LetterType); 

function ReadLabel~'b: BundleType): Prisonerld = 
be~in result:= b.Label; end; 

procedure <P1, r',il~i2> WriteLabel(var b: BundleType; a: Prisonerld) = 
begin b.Labe]:= a; end; 

function <P1, M1~,i2, P2> EmptyLetters(b: BundleTybe): boolean = 
beain result:= el~pt~(b.Letters); end; 

procedure <P1, N1!,I2, P2> Rer~oveLetter(va___~ b: BundleType; va___~_ I: LetterType) = 
beQin remove I from b.Letters; end; 

procedure <PI, Mi~'T2, P2> AppendLetter(va__~ b: BundleType; I :  LetterType) = 
begin append I to b.Letters; end; 

type I,iailboxes = arr-ay (Prisonerld~o__f_ BundleType; 
tj~__eF1ainbox = sequence of BundleType; 
-procedure <~.iain> P [ v ~  b: BundleType) : 

end 
procedure <Main> Gl(var boxes: FIailboxes; var masterbox: Mainbox) = 

end Gil 
procedure <Main> ~,!11~i2(var masterbox: Mainbox) = 

end Hi£12 ; 
procedure <Main> G2(va__[ boxes: I,iailboxes; va_._r masterbox: FIainbox) = 

end 
procedure <Fiain> P2(var b: BundleType) = 

end P)i 
program ~]ain = 

begin 
var Boxes: llailboxes; 
var ~!asterBox: ~,lainbox; 
loop 

for i := Prisonerld do P1(Boxes[i]): 
Gl(Boxes, MasterBox); 
MIM2(MasterBox); 
G2(Boxes, MasterBox); 
for i := Prisonerld do P2(8oxes[i]); 

end; 
end; 

Figure 13. Solution in Gypsy 
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We again emphasize that in al l  fairness most 
of these languages were not designed to solve this 
type of a problem. We don't pretend that they were 
nor are we cr i t ica l  of their performance. Instead, 
our point is to i ] lustrate how "existing" languages 
performed on the subject of protection, and indeed, 
they perform surprisingly well. 

The solutions demonstrEte several points about 
protection. First, never pass direct access to a 
protected object, but rather pass access to 
operations on that object. This point is the basis 
for the Pascal solution and the usage of abstract 
data types. Second, selective hiding of 
declarations is essential to a good solution. In 
Pascal, the declarations were hidden in an 
encompassed scope; in Concurrent Pascal, they were 
hidden by decoy definitions; in Euclid, they were 
hidden by selective exportation from modules: and 
in Gypsy, they were hidden by expl ic i t  access 
l is ts .  Third, selective access to operations as 
well as data is important. In Concurrent Pascal 
and Clu, this was accomplished by constructing an 
unforgeable key:  while, in Gypsy, we used an 
expl ic i t  access l i s t .  In Euclid, this was 
accomplished to some extent by nested definitions. 

There are a couple of other works relevant to 
this problem. The design of a capability based 
protection scheme [6] appears to provide an 
elegant solution, as does Alphard [12]. While we 
examined both of these, we did not include 
solutions because of the lack of adequate language 
details required to construct a solution. 
Nevertheless, there is hope that in the near future 
even better capabilities for protection in 
programming languages may exist. 
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