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1. INTRODUCTION 

That abstract data types have a useful role to play in the 
development of reliable software, is now a widely accepted 
premise. That a formal technique for specifying abstract data 
types is an important adjunct to their use, is also widely 
accepted. No specification technique, however, has emerged as 
dominant. One leading (at least we like to think of it that way) 
candidate is the algebraic specification technique espoused in 
[Guttag75,76a], [Zilles75], [Goguen75] and [Horowitz76]. 

The theory behind this technique has been explored to 
some depth by the above authors. Zilles and [Guttag76b] have 
also devoted considerable attention to studying the application 
of algebraic specifications to software design and validation. 
Nevertheless, a great deal of work remains to be done before 
algebraic specifications can become a truly practical toot for 
sof tware developers. Little or no attention has been devoted 
to the problems that occur when one tries to integrate the kind 
of isolated examples occurring in the literature into real 
sof tware wr i t ten in real programming languages. This paper 
addresses two such "practical problems." The first of these is 
the development of a notation that, while preserving the virtues 
of a conventional algebraic specification, allows us to specify 
abstract data types that include argument altering procedures. 
The second problem is how best to handle operations that may 
result  in runtime errors. 

2. PROCEDURES 

The most common example in the literature on algebraic 
specif ication is undoubtedly type Stack: 

type Stack 
interface 

NEWSTACK ~ Stack, 
PUSH(Stack, Integer) ~ Stack, 
POP(Stack) ~ Stack, 
TOP(Stack) ~ Integer u {UNDEFINED}. 

aziom$ 
dec~re s:Stack, i:lnteger; 

POP(NEWSTACK) = NEWSTACK, 
POP(PUSH(s,i)) = s, 
TOP(NEWSTACK) - UNDEFINED, 
TOP(PUSH(s,i)) - i. 

From a pedagogical point of view this example has much 
to recommend it: it is consistent, complete (by almost any 
definit ion), concise, and easy to understand. It has one major 
d rawback- - the  operations axiomatized ape not those most 
programmers associate with stacks. The operators defined 
above are purely functional, that is to say they are mappings 
from a cross-product of values to a value. To preserve the 
value generated by applying one of the operators to values, 
one must use an assignment operator defined outside type 
Stack. A typical program segment might look like 
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declare s:Stack, i:lnteger; 
s := NEWSTACK; 
s := PUSH(s,3); 
i := TOP(s); 
s := POP(s); 

Though the discipline inherent in such a restrictive form 
of inter-module communication often leads to the narrow 
program interfaces that are so vital in the construction of 
rel iable software, this complete dependence on pure functions 
and assignment is foreign to the way most people program. 
There seems to be a perceived need for procedures that 
d i rec t ly  alter at least some of their parameters. This 
percept ion is reflected in the fact that almost all modern 
programming languages, including those designed with the 
re l iab i l i ty  of pr~ograms writ ten in them as an explicit design goal 
(e.8., Alphard [Wulf76] and Euclid [Lampson76]), permit the 
def ini t ion of procedures that alter their parameters. Thus we 
f ind program segments of the form 

declare s:Stack, i:lnteger 
s := NEWSTACK 
PUSHON(s,3); 
i := POPTOP(s); 

where  PUSHON alters its first parameter and POPTOP not only 
re turns a value but also has an effect on its parameter. The 
existence of parameter altering procedures cannot be ignored in 
the development of specification techniques. One function of a 
specif icat ion is to define rigorously and formally interfaces 
among program segments. A representation must, therefore, 
depict  an interface as it will actually occur; not some idealized 
vers ion of that interface. 

We begin by changing the interface specifications so that 
they  distinguish between variable and constant parameters. 
The interface specification for type Stack will then include 

PUSHON(uar Stack, Integer) 
POPTOP(uar Stack) --~ Integer 

The f irst line tells us that PUSHON is a pure procedure (it does 
not have a value) that alters its first argument but not its 
second (const is the default). The second line tells us that 
POPTOP is a function procedure that accepts a stack as its only 
parameter,  modifies that parameter, and also has a value of its 
own. These lines do not, of course, tell us anything about how 
the parameters are altered or what values POPTOP(s) is to have. 
Our approach to providing this crucial information is closely 
re lated to work on the axiomatic specification of the meaning of 
procedures in programming languages. 

If one assumes no implicit parameters (i.e., global 
var iables),  Hoare and Wirth's discussion [Hoare73] of the 
meaning of the procedure declaration procedure p(L):S may be 
paraphrased: 

Let x be the list of explicit parameters declared in L; let 
xt,...,x m be those parameters declared in L as variable 
parameters. Given the assertion Q{S}R we may deduce the 
existence of functions F i satisfying the implication: Q = R with 

each x i occurring free in R replaced by Fi. The functions F i 
may be regarded as those which map the initial values of x on 
en t ry  to the procedure onto the final values of xt,...,x m on 
complet ion of the execution of S. What the above says is that 
the meaning of the procedure p may be expressed in terms of 
the simultaneous assignment to its vat parameters of the values 
obta ined by applying the functions F i to the parameters passed 
to p. The programs computing these functions can be deduced 
from S, the body of p. 

Taking our cue from this rule, we have extended our 
specif icat ion technique by allowing operators that alter their 
parameters to be defined in terms of functions that do not. We 
thus have axioms such as 

PUSHON(s,i) = s (- PUSH(s,i), 
POPTOP(s) = s ~ POP(s); TOP(s). 

where  ~- is a (simultaneous) assignment operator and the 
(opt ional)  expression to the right of the semicolon (TOP(s) in the 
second axiom) is the value returned by the procedure. It is 
important  to note that the expression to the right of the 
semicolon is evaluated at the same time as the simultaneous 
assignments. Thus the assignments have no effect on the value 
returned.  As part of a specification that also includes sufficient 
axioms to define PUSH, POP, and TOP the above axioms are 
suff icient to ful ly define PUSHON and POPTOP. A sufficiently 
complete axiomatization of a type Stack with operations PUSHON 
and POPTOP follows: 

type Stack 
interface 

NEWSTACK ~ Stack, 
*PUSH(Stack,Integer) ~ Stack, 
*POP(Stack) ~ Stack, 
*TOP(Stack) --~ Integer u {UNDEFINED}, 
PUSHON(uar Stack, Integer), 
POPTOP(uar Stack) ~ Integer. 

a~ciorns 
cleclare s:Stack, i:lnteger 

POP(NEWSTACK) = NEWSTACK, 
POP(PUSH(s,i)) - s, 
TOP(NEWSTACK) = UNDEFINED, 
TOP(PUSH(s,i,)) = i, 
PUSHON(s,i) = s ~ PUSH(s,i), 
POPTOP(s) - s ~ POP(s); TOP(s). 

The asterisk preceding some of the functions in the 
interface specification indicates that those operators are 
"h idden" functions which facilitate the definition of the other 
operators .  They are not available to users of the abstract type 
Stack, nor need they be implemented. Note that these hidden 
functions, unlike those of [Parnas72], do not involve the 
introduct ion of "new" information. That is to say, they do not 
p rov ide  information that is not attainable through the 
non-hidden operations. 

Our approach to proving the correctness of 
implementations of procedures such as PUSHON and POPTOP 
der ives from the proof rule for procedure declarations. The 
f i rst  step is to derive from the body of the procedure, programs 
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implementing the functions F i. From an implementation for 
PUSHON, for example, we derive one F i corresponding to PUSH. 

Once this has been done we convert these programs to 
recurs ive ly  defined functions using techniques described in 
{McCarthy63} and {Manna74}. We now need only show that all 
of the derived F i are correct implementations of the axiomatized 
operat ions they correspond to. We would, for example, have to 
show that the derived implementations of PUSH, POP, and TOP 
combine with the programmer supplied implementation of 
NEWSTACK to form a model for the first four axioms. How to 
do this has been discussed at length in [Guttag76b]. 

3. ERRORS 

It is a rare data type that has nothing but "total" 
opera tors  defined for it. Both the traditionally built-in types 
(e.g., Integer) and most user-defined types (e.g., Symboltable) 
have operators  that are not well defined over all of the values 
of the type. Programmers are all too familiar with such 
unwelcome messages as "attempt to divide by zero" and 
"symbol table overf low." Throughout our work on abstract data 
types we have consistently dealt with such "partial" functions 
by  expl ic i t ly  supplying distinguished values, e.g., UNDEFINED for 
those instances in which one might normally think of the 
function as having no value. This allows us to treat all 
opera tors  as total, an assumption that simplifies the theory 
under ly ing some applications. One could cut down the length of 
specif icat ions by allowing unspecified values to default to some 
dist inguished value, thus insuring completeness. This, however, 
seems to invite errors of omission. By forcing the authors of a 
specif icat ion to expl ici t ly deal with all syntactically legal uses of 
the operators  we cut down the incidence of these errors. 

In practice, we often wish to define types in which errors.  
p lay a prominent role. Among the most common examples are 
data types of limited size (as opposed to those we have used in 
most of our earl ier work, which grow without bound). Our 
exper ience with types such as these has led us to revise our 
specif icat ions to include a special mechanism for handling error 
condit ions. The following simple example illustrates some of the 
inadequacies of the approach to errors taken in some of the 
ear l ier  work, e.g., [Gutteg75], on algebraic specifications. 

type Bstack 
inter{ace 

NEWSTACK(Integer) ~ Bstack, 
PUSH(Bstack,lnteger) -~ Bstack u {ERROR}, 
POP(Bstack) -~ Bstack u {ERROR}, 
TOP(Bstack) -~ Integer u {UNDEFINED} u {ERROR}, 
SIZE(Bstack) ~ Integer, 
LIMIT(Bstack) ~ Integer. 

axioms 
declo.re i:lnteger,s:Bstack; 

POP(NEWSTACK(i)) = NEWSTACK(i), 
POP(PUSH(s,i)) = IF SIZE(s) < LIMIT(s) 

THEN s 
ELSE ERROR, 

TOP(NEWSTACK(i)) - UNDEFINED, 
TOP(PUSH(s,i)) = IF SIZE(s) < LIMIT(s) 

THEN i 
ELSE ERROR, 

LIMIT(NEWSTACK(i)) = i, 
LIM!T(PUSH(s,i)) = LIMIT(s), 
SIZE(NEWSTACK(i)) = O, 
SIZE(PUSH(s,i)) = SIZE(s)+1. 

Notice that the ranges of some of the operations include 
the singleton sets {UNDEFINED} or {ERROR}. One could avoid 
doing this by assuming that these distinguished values are not 
separate types, but rather are implicitly included in all types, 
but then one can no longer always assume that the axioms are 
universal ly  quantif ied over the types. A more fundamental 
problem associated with this specification is that it does not 
accurately parallel most people's concept of a bounded stack. 
Stack over f low occurs not when we try to push one too many 
items onto the stack, but rather when we attempt to perform a 
POP, TOP, or SIZE operation upon a stack onto which too many 
items have  been pushed. An obvious inference to be drawn 
from the above specification is that the implementations of POP, 
TOP and SIZE should include a check for stack overflow, but the 
implementation of PUSH need not. The ludicrousness of this 
inference need not be explored here. 

This problem cannot be cured by the simple expedient of 
adding the axiom beginning 

PUSH(s,i) = IF SIZE(s) > LIMIT(s) THEN ERROR 

First, it is not clear that there is any meaningful value we can 
use in the ELSE clause. We might consider merely repeating 
the lef t-hand side in the ELSE clause; this would serve to 
indicate that PUSH can generate an error. It would not, 
however ,  allow us to eliminate the test in axioms 2 and 4, for if 
we did that it would leave us with an inconsistent axiom set. 
The introduction of such "circular" axioms would also serve to 
complicate the processes of automatic verification and the 
generat ion of direct implementations. 

One solution to this problem is to introduce intermediate 
functions. Rather than let the user directly invoke functions 
that may not always be well-defined, we mark these functions 
as hidden and interpose some sort of access operation between 
them and the user. The purpose of this access operation is to 
ensure that any hidden function is invoked only with arguments 
for  which it will be well-defined. The hidden function may then 
be assumed to be "total" in the sense that it is well-defined for 
all values to which it can be applied. The following 
specif icat ion of type Bstack, for example, may be construed as 
suff ic ient ly complete despite the fact that TOP and PUSH are not 
eve rywhe re  defined. 

type Bstack 
interface 

NEWSTACK(Integer) .-~ Bstack, 
*PUSH(Bstack,lnteger) ~ Bstack, 

POP(Bstack) .* Bstack, 
*TOP(Bstack) a Integer, 

SIZE(Bstack) ~ Integer, 
LIMIT(Bstack) ~ Integer, 
PUSHON(Bstack,lnteger) ~ Bstack u {ERROR}, 
TOPOF(Bstack) -* Integer u {UNDEFINED}. 
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a x i o m s  

declare i:lnteger,s:Bstack; 
POP(NEWSTACK(i)) = NEWSTACK(i), 
POP(PUSH(s,i)) = s, 
TOP(PUSH(s,i)) = i, 
LIMIT(NEWSTACK(i)) = i, 
LIMIT(PUSH(s,i)) = LIMIT(s), 
SIZE(NEWSTACK(i)) = O, 
SIZE(PUSH(s,i)) = SIZE(s)+t, 
PUSHON(s,i) = IF SIZE(s) < LIMIT(s) 

THEN PUSH(s,i) 
ELSE ERROR, 

TOPOF(s) = IF SIZE(s) = 0 
THEN UNDEFINED 
ELSE TOP(s). 

This approach seems to present no technical problems. 
Nevertheless, we do not feel that it is entirely adequate in all 
situations. While the extra level of nesting in the last two 
axioms and the introduction of the intermediary operations 
PUSHON and TOPOF does not seem to have an overly severe 
effect on the clari ty of this specification, this is not always the 
case. If a large number of operations can cause errors, the 
specif icat ion can become large and unwieldy. In order to 
understand how the operations behave under normal 
circumstances one must first wade through a specification of 
what is to happen in the exceptional cases involving errors. 
One must t ry  to understand too much at once. This problem 
has led us to allow for factoring out the exceptional conditions 
from the main body of the procedure. One way to do this is to 
associate ~vith each operator a pre-condition defining those 
values to which it is permissible to apply that operator. We 
have adopted a related approach in which every specification 
has, in addition to an interface and a semantic specification, a 
re s t r i c t i on  spec i f i ca t ion  that explicitly tells us when the 
value of an operat ion will not be well-defined. This leads to 
the fol lowing specification of type Bstack: 

that the restr ict ion specification is quite short, which reflects 
the fact that most operations are permissible; a "permissible 
specif ica{ ion" would be longer. The implications in  the 
restr ic t ion specification have been augmented by a value that is 
to be returned if the predicate is true; this allows the author of 
a specif icat ion to distinguish among the various types of errors 
that may occur. 

If this specification notation were embedded in a 
programming language, it would be the responsibility of the 
compi ler  to establish that all invocations of the operations were 
legal (cf. the legality assertions of Euclid [Lampson76]). It may 
be possible to prove, at compile time, that the restriction 
specif icat ion will always be false at the time the operation in 
quest ion is invoked. If this is not the case, the compiler must 
generate a runtime check. In either case, a verifier attempting 
to p rove something about an operation can rely upon the 
rest r ic t ion condition being false on entry to the operation. 
That is to say, in proving that an implementation of an abstract 
data t ype  is consistent with an axiom, one need not consider 
those cases where the restriction specification doesn't hold. 

If the specification is not actually part of the program, the 
programmer must check the restriction conditions himself. 
Again, he may be able to construct a proof at compile time; 
fai l ing this, he will have to program the check himself. Such a 
check may be synthesised from the operations of the type, or 
one may define a new primitive operation of the type to make 
this check. One could, for example, add a new operation to the 
type,  e.g., PUSH-OK, that corresponds to the restriction 
condit ion (or its inverse). The interface specification of type 
Bstack might then be augmented by 

PUSH-OK(Bstack) ~ E' m 

and the axioms by 

PUSH-OK(s) = (SIZE(s) < LIMIT(S)). 

type Bstack 
interface 

NEWSTACK(Integer) ~ Bstack, 
PUSH(Bstack,lnteger) --~ Bstack u {ERROR}, 
POP(Bstack) -* Bstack, 
TOP(Bstack) --~ Integer U {UNDEFINED}, 
SIZE(Bstack) ~ Integer, 
LIMIT(Bstack) -* Integer. 

a x i o m s  
declare i:lnteger,s:Bstack; 

POP(NEWSTACK(i)) = NEWSTACK(i), 
POP(PUSH(s,i)) = s, 
TOP(PUSH(s,i)) = i, 
LIMIT(NEWSTACK(i)) = i, 
LIMIT(PUSH(s,i)) = LIMIT(s), 
SIZE(NEWSTACK(i)) = O, 
SIZE(PUSH(s,i)) = 1+SIZE(s), 

re s t r i c t i ons  
SiZE(s) >_ LIMIT(s) ~ PUSH(s,i) = ERROR, 
s = NEWSTACK(i) ~ TOP(s) - UNDEFINED. 

Note that the main body of this specification is somewhat 
simpler than our earl ier specification of this type. Note too 

4. C O N C L U S I O N S  

This paper discusses two problems encountered while 
t r y ing  to use algebraic specifications of abstract data types in 
the development of software. The solutions posed to these 
problems are tentat ive ones. While we have found them useful 
in our work,  and believe that others will also find them useful, it 
is not clear that they represent optimal solutions to the 
problems they were designed to circumvent. 

Of the two problems attacked in this paper, the 
speci f icat ion of error  conditions is the more fundamental one. 
The introduct ion of a mechanism for the specification of 
operat ions that alter their parameters, is merely a reaction to 
an unpleasant fact of life. Today, people do program in 
languages that support  such facilities, and people do use them. 
We are current ly  in the process of designing a programming 
language based on data abstraction that will not include 
procedures that alter their parameters. 

We have long felt that the use of pure functions and 
expl ic i t  assignment leads to clearer programs. We have, 
however ,  been unable to reconcile this belief with the obvious 
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inefficiencies involved in the use of multiple function calls 
(which often involve the duplication of a significant amount of 
computation) and call by value/result. It was clear that the 
former problem could be resolved by allowing functions to 
return tuples and including in our language a facility for 
assigning members of that tuple to different identifiers, e.g., 
x,y ~- f(x,w,z). 

The second problem proved a thornier one. It was 
obvious that we wanted a language that could be implemented 
wi th a call by reference mechanism, but with call by value 
semantics. That is to say a language in which call by 
value/result and call by reference are semantically 
indistinguishable. This is the case if there are no global 
variables, but this seemed like an intolerably severe restriction. 
A less severe, and sufficient, restriction is to insure that no 
function can refer to the object named by a formal parameter 
except through the formal. The Euclid language, which allows 
no aliasing whatsoever, has demonstrated that such a restriction 
is neither prohibitively expensive to enforce nor confining to a 
programmer. Therefore, we believe that by combining 
non-aliasing with multiple assignment and effect-free 
tuple-returning functions as described above, the need for 
procedures that alter their parameters can be completely 
eliminated. 
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