
SOME EXTENSIONS TO ALGEBRAIC SPECIFICATIONS

John V. Guttag
USC Computer Sciences Department

Ellis Horowitz
USC Computer Sciences Department

David R. Musser
USC Information Sciences Institute

Abstract: Algebraic specifications of abstract data types are beginning to gain wide currency. In this paper we
discuss an extension to this specification technique which allows the specification of procedures which alter their
parameters, and various ways of handling the specification of error conditions.

Key Words and Phrases: abstract data type, data structures, programming languages, procedure specification,
e r ro r specification, correctness.

CR Categories: 4.22, 4.34, 5.34.

This research was supported in part by the Defense Research Projects Agency under contract
No. DAHCt5 72 C 0308 and by the National Science Foundation under contract No. MCS76-06089. The views
expressed are those of the authors.

1. INTRODUCTION

That abstract data types have a useful role to play in the
development of reliable software, is now a widely accepted
premise. That a formal technique for specifying abstract data
types is an important adjunct to their use, is also widely
accepted. No specification technique, however, has emerged as
dominant. One leading (at least we like to think of it that way)
candidate is the algebraic specification technique espoused in
[Guttag75,76a], [Zilles75], [Goguen75] and [Horowitz76].

The theory behind this technique has been explored to
some depth by the above authors. Zilles and [Guttag76b] have
also devoted considerable attention to studying the application
of algebraic specifications to software design and validation.
Nevertheless, a great deal of work remains to be done before
algebraic specifications can become a truly practical toot for
sof tware developers. Little or no attention has been devoted
to the problems that occur when one tries to integrate the kind
of isolated examples occurring in the literature into real
sof tware wr i t ten in real programming languages. This paper
addresses two such "practical problems." The first of these is
the development of a notation that, while preserving the virtues
of a conventional algebraic specification, allows us to specify
abstract data types that include argument altering procedures.
The second problem is how best to handle operations that may
result in runtime errors.

2. PROCEDURES

The most common example in the literature on algebraic
specif ication is undoubtedly type Stack:

type Stack
interface

NEWSTACK ~ Stack,
PUSH(Stack, Integer) ~ Stack,
POP(Stack) ~ Stack,
TOP(Stack) ~ Integer u {UNDEFINED}.

aziom$
dec~re s:Stack, i:lnteger;

POP(NEWSTACK) = NEWSTACK,
POP(PUSH(s,i)) = s,
TOP(NEWSTACK) - UNDEFINED,
TOP(PUSH(s,i)) - i.

From a pedagogical point of view this example has much
to recommend it: it is consistent, complete (by almost any
definit ion), concise, and easy to understand. It has one major
d rawback- - the operations axiomatized ape not those most
programmers associate with stacks. The operators defined
above are purely functional, that is to say they are mappings
from a cross-product of values to a value. To preserve the
value generated by applying one of the operators to values,
one must use an assignment operator defined outside type
Stack. A typical program segment might look like

63

http://crossmark.crossref.org/dialog/?doi=10.1145%2F390019.808312&domain=pdf&date_stamp=1977-03-01

declare s:Stack, i:lnteger;
s := NEWSTACK;
s := PUSH(s,3);
i := TOP(s);
s := POP(s);

Though the discipline inherent in such a restrictive form
of inter-module communication often leads to the narrow
program interfaces that are so vital in the construction of
rel iable software, this complete dependence on pure functions
and assignment is foreign to the way most people program.
There seems to be a perceived need for procedures that
d i rec t ly alter at least some of their parameters. This
percept ion is reflected in the fact that almost all modern
programming languages, including those designed with the
re l iab i l i ty of pr~ograms writ ten in them as an explicit design goal
(e.8., Alphard [Wulf76] and Euclid [Lampson76]), permit the
def ini t ion of procedures that alter their parameters. Thus we
f ind program segments of the form

declare s:Stack, i:lnteger
s := NEWSTACK
PUSHON(s,3);
i := POPTOP(s);

where PUSHON alters its first parameter and POPTOP not only
re turns a value but also has an effect on its parameter. The
existence of parameter altering procedures cannot be ignored in
the development of specification techniques. One function of a
specif icat ion is to define rigorously and formally interfaces
among program segments. A representation must, therefore,
depict an interface as it will actually occur; not some idealized
vers ion of that interface.

We begin by changing the interface specifications so that
they distinguish between variable and constant parameters.
The interface specification for type Stack will then include

PUSHON(uar Stack, Integer)
POPTOP(uar Stack) --~ Integer

The f irst line tells us that PUSHON is a pure procedure (it does
not have a value) that alters its first argument but not its
second (const is the default). The second line tells us that
POPTOP is a function procedure that accepts a stack as its only
parameter, modifies that parameter, and also has a value of its
own. These lines do not, of course, tell us anything about how
the parameters are altered or what values POPTOP(s) is to have.
Our approach to providing this crucial information is closely
re lated to work on the axiomatic specification of the meaning of
procedures in programming languages.

If one assumes no implicit parameters (i.e., global
var iables), Hoare and Wirth's discussion [Hoare73] of the
meaning of the procedure declaration procedure p(L):S may be
paraphrased:

Let x be the list of explicit parameters declared in L; let
xt,...,x m be those parameters declared in L as variable
parameters. Given the assertion Q{S}R we may deduce the
existence of functions F i satisfying the implication: Q = R with

each x i occurring free in R replaced by Fi. The functions F i
may be regarded as those which map the initial values of x on
en t ry to the procedure onto the final values of xt,...,x m on
complet ion of the execution of S. What the above says is that
the meaning of the procedure p may be expressed in terms of
the simultaneous assignment to its vat parameters of the values
obta ined by applying the functions F i to the parameters passed
to p. The programs computing these functions can be deduced
from S, the body of p.

Taking our cue from this rule, we have extended our
specif icat ion technique by allowing operators that alter their
parameters to be defined in terms of functions that do not. We
thus have axioms such as

PUSHON(s,i) = s (- PUSH(s,i),
POPTOP(s) = s ~ POP(s); TOP(s).

where ~- is a (simultaneous) assignment operator and the
(opt ional) expression to the right of the semicolon (TOP(s) in the
second axiom) is the value returned by the procedure. It is
important to note that the expression to the right of the
semicolon is evaluated at the same time as the simultaneous
assignments. Thus the assignments have no effect on the value
returned. As part of a specification that also includes sufficient
axioms to define PUSH, POP, and TOP the above axioms are
suff icient to ful ly define PUSHON and POPTOP. A sufficiently
complete axiomatization of a type Stack with operations PUSHON
and POPTOP follows:

type Stack
interface

NEWSTACK ~ Stack,
*PUSH(Stack,Integer) ~ Stack,
*POP(Stack) ~ Stack,
*TOP(Stack) --~ Integer u {UNDEFINED},
PUSHON(uar Stack, Integer),
POPTOP(uar Stack) ~ Integer.

a~ciorns
cleclare s:Stack, i:lnteger

POP(NEWSTACK) = NEWSTACK,
POP(PUSH(s,i)) - s,
TOP(NEWSTACK) = UNDEFINED,
TOP(PUSH(s,i,)) = i,
PUSHON(s,i) = s ~ PUSH(s,i),
POPTOP(s) - s ~ POP(s); TOP(s).

The asterisk preceding some of the functions in the
interface specification indicates that those operators are
"h idden" functions which facilitate the definition of the other
operators . They are not available to users of the abstract type
Stack, nor need they be implemented. Note that these hidden
functions, unlike those of [Parnas72], do not involve the
introduct ion of "new" information. That is to say, they do not
p rov ide information that is not attainable through the
non-hidden operations.

Our approach to proving the correctness of
implementations of procedures such as PUSHON and POPTOP
der ives from the proof rule for procedure declarations. The
f i rst step is to derive from the body of the procedure, programs

64

implementing the functions F i. From an implementation for
PUSHON, for example, we derive one F i corresponding to PUSH.

Once this has been done we convert these programs to
recurs ive ly defined functions using techniques described in
{McCarthy63} and {Manna74}. We now need only show that all
of the derived F i are correct implementations of the axiomatized
operat ions they correspond to. We would, for example, have to
show that the derived implementations of PUSH, POP, and TOP
combine with the programmer supplied implementation of
NEWSTACK to form a model for the first four axioms. How to
do this has been discussed at length in [Guttag76b].

3. ERRORS

It is a rare data type that has nothing but "total"
opera tors defined for it. Both the traditionally built-in types
(e.g., Integer) and most user-defined types (e.g., Symboltable)
have operators that are not well defined over all of the values
of the type. Programmers are all too familiar with such
unwelcome messages as "attempt to divide by zero" and
"symbol table overf low." Throughout our work on abstract data
types we have consistently dealt with such "partial" functions
by expl ic i t ly supplying distinguished values, e.g., UNDEFINED for
those instances in which one might normally think of the
function as having no value. This allows us to treat all
opera tors as total, an assumption that simplifies the theory
under ly ing some applications. One could cut down the length of
specif icat ions by allowing unspecified values to default to some
dist inguished value, thus insuring completeness. This, however,
seems to invite errors of omission. By forcing the authors of a
specif icat ion to expl ici t ly deal with all syntactically legal uses of
the operators we cut down the incidence of these errors.

In practice, we often wish to define types in which errors.
p lay a prominent role. Among the most common examples are
data types of limited size (as opposed to those we have used in
most of our earl ier work, which grow without bound). Our
exper ience with types such as these has led us to revise our
specif icat ions to include a special mechanism for handling error
condit ions. The following simple example illustrates some of the
inadequacies of the approach to errors taken in some of the
ear l ier work, e.g., [Gutteg75], on algebraic specifications.

type Bstack
inter{ace

NEWSTACK(Integer) ~ Bstack,
PUSH(Bstack,lnteger) -~ Bstack u {ERROR},
POP(Bstack) -~ Bstack u {ERROR},
TOP(Bstack) -~ Integer u {UNDEFINED} u {ERROR},
SIZE(Bstack) ~ Integer,
LIMIT(Bstack) ~ Integer.

axioms
declo.re i:lnteger,s:Bstack;

POP(NEWSTACK(i)) = NEWSTACK(i),
POP(PUSH(s,i)) = IF SIZE(s) < LIMIT(s)

THEN s
ELSE ERROR,

TOP(NEWSTACK(i)) - UNDEFINED,
TOP(PUSH(s,i)) = IF SIZE(s) < LIMIT(s)

THEN i
ELSE ERROR,

LIMIT(NEWSTACK(i)) = i,
LIM!T(PUSH(s,i)) = LIMIT(s),
SIZE(NEWSTACK(i)) = O,
SIZE(PUSH(s,i)) = SIZE(s)+1.

Notice that the ranges of some of the operations include
the singleton sets {UNDEFINED} or {ERROR}. One could avoid
doing this by assuming that these distinguished values are not
separate types, but rather are implicitly included in all types,
but then one can no longer always assume that the axioms are
universal ly quantif ied over the types. A more fundamental
problem associated with this specification is that it does not
accurately parallel most people's concept of a bounded stack.
Stack over f low occurs not when we try to push one too many
items onto the stack, but rather when we attempt to perform a
POP, TOP, or SIZE operation upon a stack onto which too many
items have been pushed. An obvious inference to be drawn
from the above specification is that the implementations of POP,
TOP and SIZE should include a check for stack overflow, but the
implementation of PUSH need not. The ludicrousness of this
inference need not be explored here.

This problem cannot be cured by the simple expedient of
adding the axiom beginning

PUSH(s,i) = IF SIZE(s) > LIMIT(s) THEN ERROR

First, it is not clear that there is any meaningful value we can
use in the ELSE clause. We might consider merely repeating
the lef t-hand side in the ELSE clause; this would serve to
indicate that PUSH can generate an error. It would not,
however , allow us to eliminate the test in axioms 2 and 4, for if
we did that it would leave us with an inconsistent axiom set.
The introduction of such "circular" axioms would also serve to
complicate the processes of automatic verification and the
generat ion of direct implementations.

One solution to this problem is to introduce intermediate
functions. Rather than let the user directly invoke functions
that may not always be well-defined, we mark these functions
as hidden and interpose some sort of access operation between
them and the user. The purpose of this access operation is to
ensure that any hidden function is invoked only with arguments
for which it will be well-defined. The hidden function may then
be assumed to be "total" in the sense that it is well-defined for
all values to which it can be applied. The following
specif icat ion of type Bstack, for example, may be construed as
suff ic ient ly complete despite the fact that TOP and PUSH are not
eve rywhe re defined.

type Bstack
interface

NEWSTACK(Integer) .-~ Bstack,
*PUSH(Bstack,lnteger) ~ Bstack,

POP(Bstack) .* Bstack,
*TOP(Bstack) a Integer,

SIZE(Bstack) ~ Integer,
LIMIT(Bstack) ~ Integer,
PUSHON(Bstack,lnteger) ~ Bstack u {ERROR},
TOPOF(Bstack) -* Integer u {UNDEFINED}.

65

a x i o m s

declare i:lnteger,s:Bstack;
POP(NEWSTACK(i)) = NEWSTACK(i),
POP(PUSH(s,i)) = s,
TOP(PUSH(s,i)) = i,
LIMIT(NEWSTACK(i)) = i,
LIMIT(PUSH(s,i)) = LIMIT(s),
SIZE(NEWSTACK(i)) = O,
SIZE(PUSH(s,i)) = SIZE(s)+t,
PUSHON(s,i) = IF SIZE(s) < LIMIT(s)

THEN PUSH(s,i)
ELSE ERROR,

TOPOF(s) = IF SIZE(s) = 0
THEN UNDEFINED
ELSE TOP(s).

This approach seems to present no technical problems.
Nevertheless, we do not feel that it is entirely adequate in all
situations. While the extra level of nesting in the last two
axioms and the introduction of the intermediary operations
PUSHON and TOPOF does not seem to have an overly severe
effect on the clari ty of this specification, this is not always the
case. If a large number of operations can cause errors, the
specif icat ion can become large and unwieldy. In order to
understand how the operations behave under normal
circumstances one must first wade through a specification of
what is to happen in the exceptional cases involving errors.
One must t ry to understand too much at once. This problem
has led us to allow for factoring out the exceptional conditions
from the main body of the procedure. One way to do this is to
associate ~vith each operator a pre-condition defining those
values to which it is permissible to apply that operator. We
have adopted a related approach in which every specification
has, in addition to an interface and a semantic specification, a
re s t r i c t i on spec i f i ca t ion that explicitly tells us when the
value of an operat ion will not be well-defined. This leads to
the fol lowing specification of type Bstack:

that the restr ict ion specification is quite short, which reflects
the fact that most operations are permissible; a "permissible
specif ica{ ion" would be longer. The implications in the
restr ic t ion specification have been augmented by a value that is
to be returned if the predicate is true; this allows the author of
a specif icat ion to distinguish among the various types of errors
that may occur.

If this specification notation were embedded in a
programming language, it would be the responsibility of the
compi ler to establish that all invocations of the operations were
legal (cf. the legality assertions of Euclid [Lampson76]). It may
be possible to prove, at compile time, that the restriction
specif icat ion will always be false at the time the operation in
quest ion is invoked. If this is not the case, the compiler must
generate a runtime check. In either case, a verifier attempting
to p rove something about an operation can rely upon the
rest r ic t ion condition being false on entry to the operation.
That is to say, in proving that an implementation of an abstract
data t ype is consistent with an axiom, one need not consider
those cases where the restriction specification doesn't hold.

If the specification is not actually part of the program, the
programmer must check the restriction conditions himself.
Again, he may be able to construct a proof at compile time;
fai l ing this, he will have to program the check himself. Such a
check may be synthesised from the operations of the type, or
one may define a new primitive operation of the type to make
this check. One could, for example, add a new operation to the
type, e.g., PUSH-OK, that corresponds to the restriction
condit ion (or its inverse). The interface specification of type
Bstack might then be augmented by

PUSH-OK(Bstack) ~ E' m

and the axioms by

PUSH-OK(s) = (SIZE(s) < LIMIT(S)).

type Bstack
interface

NEWSTACK(Integer) ~ Bstack,
PUSH(Bstack,lnteger) --~ Bstack u {ERROR},
POP(Bstack) -* Bstack,
TOP(Bstack) --~ Integer U {UNDEFINED},
SIZE(Bstack) ~ Integer,
LIMIT(Bstack) -* Integer.

a x i o m s
declare i:lnteger,s:Bstack;

POP(NEWSTACK(i)) = NEWSTACK(i),
POP(PUSH(s,i)) = s,
TOP(PUSH(s,i)) = i,
LIMIT(NEWSTACK(i)) = i,
LIMIT(PUSH(s,i)) = LIMIT(s),
SIZE(NEWSTACK(i)) = O,
SIZE(PUSH(s,i)) = 1+SIZE(s),

re s t r i c t i ons
SiZE(s) >_ LIMIT(s) ~ PUSH(s,i) = ERROR,
s = NEWSTACK(i) ~ TOP(s) - UNDEFINED.

Note that the main body of this specification is somewhat
simpler than our earl ier specification of this type. Note too

4. C O N C L U S I O N S

This paper discusses two problems encountered while
t r y ing to use algebraic specifications of abstract data types in
the development of software. The solutions posed to these
problems are tentat ive ones. While we have found them useful
in our work, and believe that others will also find them useful, it
is not clear that they represent optimal solutions to the
problems they were designed to circumvent.

Of the two problems attacked in this paper, the
speci f icat ion of error conditions is the more fundamental one.
The introduct ion of a mechanism for the specification of
operat ions that alter their parameters, is merely a reaction to
an unpleasant fact of life. Today, people do program in
languages that support such facilities, and people do use them.
We are current ly in the process of designing a programming
language based on data abstraction that will not include
procedures that alter their parameters.

We have long felt that the use of pure functions and
expl ic i t assignment leads to clearer programs. We have,
however , been unable to reconcile this belief with the obvious

66

inefficiencies involved in the use of multiple function calls
(which often involve the duplication of a significant amount of
computation) and call by value/result. It was clear that the
former problem could be resolved by allowing functions to
return tuples and including in our language a facility for
assigning members of that tuple to different identifiers, e.g.,
x,y ~- f(x,w,z).

The second problem proved a thornier one. It was
obvious that we wanted a language that could be implemented
wi th a call by reference mechanism, but with call by value
semantics. That is to say a language in which call by
value/result and call by reference are semantically
indistinguishable. This is the case if there are no global
variables, but this seemed like an intolerably severe restriction.
A less severe, and sufficient, restriction is to insure that no
function can refer to the object named by a formal parameter
except through the formal. The Euclid language, which allows
no aliasing whatsoever, has demonstrated that such a restriction
is neither prohibitively expensive to enforce nor confining to a
programmer. Therefore, we believe that by combining
non-aliasing with multiple assignment and effect-free
tuple-returning functions as described above, the need for
procedures that alter their parameters can be completely
eliminated.

/ICK NO|IT L E DG E M E NTS

We would like to thank our colleagues at ISI and the paper's
referees for their helpful advice.

REFERENCES

[Boyer75] Boyer, R. S., and J $. Moore, "Proving
theorems about LISP functions," J. ACM, 22, 1,
January 1975, 129-144.

[Goguen75] Goguen, J. A., J. W. Thatcher, E. G. Wagner,
and J. B. Wright, "Abstract data-types as initial algebras
and correctness of data representations, Proceedings,
Conference on Computer Graphics, Pattern Recognition
and Data Structure, May 1975.

[Guttag75] Guttag, J. V., "The specification and application
to programming of absfract data types," Ph.D. Thesis,
University of Toronto, Department of Computer Science,
1975, available as Computer System Research Report
CSRG-59.

[Guttag76a] Guttag, J. V., "Abstract data types and the
development of data structures," Supplement to the
Proceedings of the SIGPLAN/SIGMOD Conference on
Data: Abstraction, Definition, and Structure,
March 1976, pp. 37-46 (to appear CACM).

[Guttag76b] Guttag, J. V., E. Horowitz, and D. Musser,
"Abstract Data Types and Software Validation," USC
Information Sciences Institute Research Report
[SI/RR-76-48, August 1976 (to appear CACM).

[Hoare73] Hoare, C.A.R., and N. Wirth, "An axiomatic
definition of the programming language Pascal," Acta
lnformatica, 2, 1973, pp. 335-355.

[Horowitz76] Horowitz, E., and S. Sahni, Fundamentals of
Data Structures, Computer Science Press, June 1976.

[Lampson76] Lampson, B. W., J. J. Homing, R. L. London,
J. G. Mitchell, and G.J. Popek, "Report on the
programming language Euclid," 1976.

[Manna74] Manna, Z., Mathematical Theory of Computation,
McGraw-Hill, 1974.

[McCarthy63] McCarthy, J., "Basis for a mathematical theory
of computation," in Computer Programming and Formal
Systems, P. Braffort and D. Hirchberg (eds.),
North-Holland Publishing Company, 1963, pp. 33-70.

[Parnas72] Parnas, D. L., "A Technique for Software Module
Specifications with Examples," CACM 15,5, May 1972, pp.
330-336.

[Wulf76] Wulf, W. A., R. L. London, and M. Shaw,
"Abstraction and verification in Alphard: introduction to
language and methodology," Carnegie-MelLon Uniuersity
and USC Information 3ciences Institute Technical
Reports, 1976.

[Zil les75] Zilles, S. N., "Abstract specifications for data
types," IBM Research Laboratory, San Jose, California,
1975.

67

