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I n t r o d u c t i o n  

The c o n v e n t i o n a l  p rogram o p t i m i z a t i o n  
t e c h n i q u e s  e m p l o y e d  by the  ILLIAC FORTRAN c o m -  
p i l e r  a r e  g e n e r a l  p u r p o s e ,  e f f e c t i v e ,  and e f f i c i e n t .  
The u n d e r l y i n g  t h e o r y  is  a p p l i c a b l e  to FORTRAN 
and to o t h e r  h igh  l e v e l  l a n g u a g e s .  A u n i q u e  a p -  
p r o a c h  to the g a t h e r i n g  o f  g l o b a l  s e t  and u s e  i n f o r -  
ma t ion  a b o u t  v a r i a b l e s  a s  w e l l  a s  c a r e f u l  s o f t w a r e  
e n g i n e e r i n g  o f  the a l g o r i t h m s  has  led to the  c o n -  
s t r u c t i o n  of  an  e f f e c t i v e  s o u r c e - t o - s o u r c e  o p t i m i -  
z e r  w h i c h  pe r fo rms  c o n s t a n t  p r o p a g a t i o n ,  c o n s t a n t  
c o m p u t a t i o n ,  c o m m o n  s u b e x p r e s s i o n  e l i m i n a t i o n ,  
r e d u c t i o n  in s t r e n g t h ,  and i n v a r i a n t  c o d e  m o t i o n .  

We  w i l l  f i r s t  c o n s i d e r  the  type  o f  i n f o r m a -  
t ion  w h i c h  mus t  be g a t h e r e d  a b o u t  a p r o g r a m ,  and 
how th i s  i n f o r m a t i o n  is  u s e d  to per form o p t i m i z a -  
t i o n .  Then we s h a l l  s t a t e  the  a l g o r i t h m  for g l o b a l -  
ly c o m p u t i n g  the  s e t  and u s e  i n f o r m a t i o n  for  p r o -  
gram v a r i a b l e s .  H a v i n g  d i s c u s s e d  the  s c i e n c e  o f  
o p t i m i z a t i o n  we s h a l l  turn to the  e n g i n e e r i n g  a s -  
p e c t s  and c o n s i d e r  s u c h  t o p i c s  a s  r e p r e s e n t a t i o n  
of  p r o g r a m s ,  o rde r  o f  o p t i m i z a t i o n  t r a n s f o r m a t i o n s ,  
and e f f i c i e n t  c o m p u t a t i o n  o f  g l o b a l  u s e  and s e t  
information. 

In fo rma t ion  N e e d e d  

In o rde r  to per form o p t i m i z a t i o n  we  mus t  
h a v e  c e r t a i n  i n f o r m a t i o n  a v a i l a b l e  to u s .  This  is  
o f  two t y p e s :  i n f o r m a t i o n  d i r e c t l y  r e l a t i n g  to the  
s o u r c e  t e x t  o f  the program and l o c a l  p i e c e s  of  the 
p rogram,  and i n f o r m a t i o n  a b o u t  the g l o b a l  s t r u c t u r e  
o f  the p rogram.  The l o c a l  i n f o r m a t i o n  we  n e e d  i s :  

• The program t e x t  in s o m e  r e p r e s e n t a t i o n  
c o n v e n i e n t  for m a n i p u l a t i o n ,  s u c h  a s  a 
l i s t  o f  s t a t e m e n t s  w i th  e x p r e s s i o n s  in a 
t r ee  form,  

• E x p r e s s i o n s  p l a c e d  in a c o n v e n i e n t  
p a r t l y  c a n o n i c a l  form,  ( o p ,  k ,  
s 1 . . . . .  s n,  e 1 . . . . .  e m ) w h e r e  " o p "  

is the  o p e r a t i o n ,  "k"  is  a c o n s t a n t  
o p e r a n d ,  "s  " to "s  " a re  the  s c a l a r  

1 n 
o p e r a n d s  in s y m b o l  t a b l e  o r d e r ,  and 

H , ,  "e 1 to "e a r e  the  r e m a i n i n g  o p e r -  m 
a n d s  w h i c h  may be e x p r e s s i o n s ,  a r r a y  
r e f e r e n c e s ,  e t c . ,  in a n y  o r d e r .  Note  
tha t  l o c a l  c o n s t a n t  c o m p u t a t i o n  w i l l  be 
pe r fo rmed  in p r o d u c i n g  th i s  fo rm.  For 
e x a m o l e ,  3+X*4+2+Y w i l l  be r e p r e -  
s e n t e d  a s  ( .+,5,Y,  (* ,4 ,X) )  . 

• Conventional symbol table information 
such as whether a variable X is de- 
clared local or global, 

• The l a n g u a g e  s p e c i f i e d  loop  s t r u c t u r e  o f  
the p rogram (in FORTRAN we a re  i n t e r -  
e s t e d  in DO l o o p s  and not  i n t e r e s t e d  in 
l o o p s  c o n s t r u c t e d  from IF and  G O T O ) ,  
and  

• F low o f  c o n t r o l  i n f o r m a t i o n ;  a s t r u c t u r i n g  
o f  t he  program in to  f low b l o c k s  and t h e i r  
i n t e r c o n n e c t i o n s .  S t a t e m e n t s  a r e  t a g g e d  
w i t h  f low b l o c k  number  and s t a t e m e n t  
n u m b e r  (in l e x i c a l  o r d e r ) .  

This  l o c a l  i n f o r m a t i o n  is  q u i t e  c o n v e n t i o n a l  and 
e a s y  to g a t h e r .  

The g l o b a l  i n f o r m a t i o n  r e q u i r e d  is  more  
i n t e r e s t i n g :  

• The " d o m i n a t e s "  r e l a t i o n  b e t w e e n  f low 
b l o c k s  m u s t  be d e t e r m i n e d .  For  t w o  
f l o w  b l o c k s  i a n d  j , i d o m i n a t e s  j 
if  and  o n l y  if  e v e r y  pa th  from the  p r o -  
gram e n t r y  po in t  to f low b l o c k  j mus t  
p a s s  t h rough  f low b l o c k  i . This  i s  a 
c o n v e n t i o n a l  d e f i n i t i o n  o f  a c o n v e n t i o n a l  
p rogram g r a p h  r e l a t i o n  w h i c h  c a n  be 
c o m p u t e d  in a s t r a i g h t f o r w a r d  m a n n e r .  

• The f low b l o c k s  a r e  o r d e r e d  in " f l o w -  
s e q u e n c e "  o r d e r  a s  d e t e r m i n e d  by the  
Earnest, Balke, and Anderson algorithm 
[ 9 ]. This algorithm assigns sequence 
numbers to flow blocks so that: 
i) every block will have a higher num- 

ber than its predecessors, except 
for true backward transfers, 

2) every block will have a lower number 
than every other block which it 
dominates, and 

3) for any program looping structure, 
all and only those blocks in the loop 
will have numbers between those of 
the first and last blocks in the loop: 
thus to test whether a given flow 
b l o c k  is  w i t h i n  a g i v e n  loop s t r u c t u r e  
r e q u i r e s  o n l y  two s e q u e n c e  number  
c o m p a r i s o n s .  

• G e n e r a t i o n  and u s e  i n f o r m a t i o n  a b o u t  
v a r i a b l e s  m u s t  be d e t e r m i n e d .  For a 
v a r i a b l e  X , we  r e f e r  to " the  p - g r a p h  of  
X" a s  the  sum of i n f o r m a t i o n  a b o u t  u s e s  
and  g e n e r a t i o n s  o f  X . In a l a t e r  s e c -  
t i o n ,  we w i l l  p r e s e n t  the  a l g o r i t h m  to 
c o m p u t e  p - g r a p h s .  For now we p r e s e n t  

~ T  

http://crossmark.crossref.org/dialog/?doi=10.1145%2F390015.808407&domain=pdf&date_stamp=1975-01-01


a g e n e r a l  d i s c u s s i o n  of the  i n f o r m a t i o n  
w h i c h  is  n e e d e d .  

The f u n d a m e n t a l  c a t e g o r y  of  i n f o r m a t i o n  
w h i c h  r e s u l t s  from p - g r a p h  a n a l y s i s  of  a program 
i s  the d e t e r m i n a t i o n  of  the  " g e n e r a t i o n - c l a s s "  
m e m b e r s h i p  of  e a c h  a p p e a r a n c e  of e a c h  v a r i a b l e  in  
the p rogram.  A " g e n e r a t i o n - c l a s s "  of  a v a r i a b l e  
in  a program is the  s e t  o f  a l l  t h o s e  a p p e a r a n c e s  of  
the v a r i a b l e  wh ich  mus t  r e p r e s e n t  the  s a m e  v a l u e :  
t h i s  s e t  w i l l ,  of  c o u r s e ,  c o n s i s t  of  o n e  a p p e a r a n c e  
a t  w h i c h  the v a r i a b l e  r e c e i v e s  i t s  v a l u e  ( this  a p -  
p e a r a n c e  i s  c a l l e d  " the  g e n e r a t i o n " ) ,  a n d  a n u m -  
ber  of a p p e a r a n c e s  whe re  the  v a l u e  is  u s e d ,  w i t h -  
out  b e i n g  c h a n g e d .  

C o n s i d e r  a p o i n t  i n  a program where  two 
p a t h s  of c o n t r o l  f low t o g e t h e r ,  a f t e r  w h i c h  some  
variable is used one or more times, and assume 
that this variable receives values on each of the 
merging paths, before the merge. Each use after 
the merge will indeed belong to one or the other of 
the two generation-classes initiated by the gener- 
ations before the merge, but in general it is im- 
possible, at compile time, to tell which one; none- 
theless, whichever one it is, all uses of the same 
variable after the merge, up until the next gener- 
ation for that variable, must belong to the same 
generation-class (for any one passage of control 
at run time). For this reason, merge points are 
considered to be generations for any variable 
whose value is used after the merge before being 
reset, and a new generation-class is constructed 
for this pseudo-generation and the uses which de- 
pend from it. These merge generations are not, of 
course, represented by any code in the program. 

We assume that p-graph information is 
represented in the program as follows: 

• Every assignment to a variable is tagged 
with 
I) its generation class, which is a 

unique identification of this particu- 
lar generation, and 

2) a list of all instances of the variable 
in the program which are uses of this 
generation. 

• Every use of a variable is tagged with a 
pointer to its generation, and 

• At appropriate merge points, pseudo- 
generations are produced which have the 
same characteristics as assignments, 
but which don't actually appear in the 
source program. 

O p t i m i z a t i o n  

Wi th  the a v a i l a b l e  i n f o r m a t i o n ,  a n u m b e r  of 
program o p t i m i z a t i o n s  a re  pe r fo rmed .  We  p r e s e n t  
them here  in a l o g i c a l  o r d e r ,  no t  n e c e s s a r i l y  the  
mos t  e f f i c i e n t  p r o c e s s i n g  o rder :  

• L i n e a r i z e  Array R e f e r e n c e s .  M u l t i d i -  
m e n s i o n a l  a r r a y s  a re  r e p l a c e d  by a p p r o -  
p r i a t e l y  s i z e d  v e c t o r s  and  the a d d r e s s -  
ing c a l c u l a t i o n  is  made e x p l i c i t .  For 
e x a m p l e ,  a s s u m i n g  r o w - w i s e  s t o r a g e ,  
if A is d e c l a r e d  to be a 5 × 4 × 3 a r r a y ,  

1 A wi l l  be r e p l a c e d  by a v e c t o r  A of 
60 e l e m e n t s  a n d  e a c h  r e f e r e n c e  to A of 
the  form A(I,  J, K) w 11 be r e p l a c e d  by 

AI(([-i) * 12 + (J-l) * 3 + K) , or 

A i ( 1 2 * I  + 3 * J + K -  15) . In mak ing  
the a d d r e s s i n g  c a l c u l a t i o n s  e x p l i c i t ,  
t h e y  a re  e x p o s e d  for l a t e r  o p t i m i z a t i o n s .  

• C o n s t a n t  P r o p a g a t i o n  a n d  C o m p u t a t i o n .  
For any assignment of a constant to a 
scalar variable X , all uses of this gen- 
eration of X can be replaced by the 
constant. If the scalar X is a local 
variable and the assignment is not need- 
ed for a merge pseudo-generation, the 
assignment statement may be deleted. 
If all references to the scalar X are 
deleted, its definition may be removed 
from the symbol table. Some constant 
computation was performed when expres- 
sions were placed into canonical form. 
Constant computation is again performed 
during constant propagation whenever a 
variable use is replaced by a constant. 
Note that if this reduces the right hand 
side of an assignment to a constant, 
another constant propagation is neces- 
sary. It appears that constant propaga- 
tion is a recursive process; in fact if the 
program is searched for assignments in 
block order we almost never produce a 
requirement for a new constant propaga- 
tion where the assignment is "upstream" 
of where we now are. The occasional 
exception is stacked for processing when 
the primary scan is complete. It is im- 
portant to note that, in a cross compiler, 
constant computation must be done using 
target machine arithmetic and not using 
host machine arithmetic. 

• Dead Code Elimination. As a result of 
constant propagation some assignment 
statements and data declarations may be 
eliminated. It may be that after con- 
stant computation some DO loops can be 
determined as having exactly one itera- 
tion. In this case, the extraneous loop 
structure is eliminated (and also, per- 
haps, the loop variable), in some [F 
statements, the value of the predicate 
will now be TRUE or FALSE. This allows 
pruning of unreachable portions of the 
program. Since these transformations 
destroy the collected global information, 
they are all done together and the global 
information is recomputed. 

• Scalar Propagation. Assignments of the 
form "X ~- Y" for which only one gener- 
ation of Y exists in the program can be 
eliminated and all uses of that gener- 
ation of X can be replaced by Y . 

• [nvariant Code Motion. Computations 
which are invariant within a loop are 
moved to a point immediately before the 
loop entry. Loops are processed in lex- 
ical order and nests of loops are proces- 
sed inside out: in other words in the 
lexical order of their end statements. A 
computation represented canonically as 
(op, X, Y) is loop invariant if the gen- 
erators of X and Y are not within the 
loop. This test is simple because of the 
block order: find the block number i of 
the first block in the loop, the block 
number j of the last block in the loop, 
and the block number k of the block 



c o n t a i n i n g  the  g e n e r a t i o n  o f  A . The 
g e n e r a t i o n  o f  X is  not  w i t h i n  the  loop  
if  k < l  or  k > j  . 
S t r e n g t h  R e d u c t i o n .  C o m p u t a t i o n s  o f  t h e  
form I * L w h e r e  I is  the  loop  v a r i a b l e  
and  L is  loop  i n v a r i a n t  a r e  c a n d i d a t e s  
for s t r e n g t h  r e d u c t i o n .  The a s s i g n m e n t  
t +- l i n i t  * L , w h e r e  l i n i t  is  the  v a l u e  

I t a k e s  on the  f i r s t  i t e r a t i o n  o f  the  l o o p ,  
is  p l a c e d  b e f o r e  t he  l o o p ,  the  u s e  o f  
I * L is r e p l a c e d  by t , a n d  the  a s s i g n -  
men t  t~- t + L  i s  i n s e r t e d  a t  the end  o f  
the  l o o p .  
T e s t R e p l a c e m e n t .  Af t e r  s t r e n g t h  r e d u c -  
t i o n ,  if  the  loop  v a r i a b l e  h a s  no e x p l i c -  
i t  u s e s  w i t h i n  the  l oop ,  r e p l a c e  the  loop  
v a r i a b l e  in the  l o o p  s t a t e m e n t  w i t h  t h e  
m o s t  f r e q u e n t l y  u s e d  v a r i a b l e  g e n e r a t e d  
by s t r e n g t h  r e d u c t i o n .  I n c o r p o r a t e  i t s  
i n i t i a l ,  i n c r e m e n t ,  a n d  f i n a l  v a l u e s  in to  
the  loop  s t a t e m e n t .  
F o l d i n g .  If for  a g e n e r a t i o n  "X ~- e x -  
p r e s s i o n "  t h e r e  i s  o n l y  one  u s e  o f  X , 
and  if  the  v a r i a b l e s  o f  " e x p r e s s i o n "  do 
not  h a v e  g e n e r a t i o n s  b e f o r e  the  u s e  of  
X , the  g e n e r a t i o n  c a n  be d e l e t e d  and  
the  u s e  o f  X r e p l a c e d  by the  e x p r e s -  
s i o n .  This  is  d o n e  o n l y  w i t h i n  a f low 
b l o c k  s i n c e  t e s t i n g  the c o n d i t i o n s  g l o -  
b a l l y  is  d i f f i c u l t  and  the  p a y o f f ,  g l o -  
b a l l y ,  i s  l o w .  
Common S u b e x p r e s s i o n  E l i m i n a t i o n .  The 
program is  s c a n n e d  in b l o c k  o r d e r ,  and  
s t a t e m e n t s  a r e  s c a n n e d  bo t tom up l o o k -  
ing for  c a n d i d a t e  c o m p u t a t i o n s ,  h c a n -  
d i d a t e  c o m p u t a t i o n  is  an  o p e r a t i o n  w i t h  
at least one scalar operand X . Given 
a candidate, the set of uses of the gen- 
erator of the variable X is searched to 
find a set of possible common subex- 
presslons; these are computations con- 
taining a use of the generator of the 
variable X , and with the same operator 
as the candidate computation. The set 
of possible common subexpressions is 
pruned by comparing the second oper- 
ands with the second operand of the 
candidate computation. We have now 
found a set of common subexpresslons. 
All of these are eliminated in favor of 
the generated variable t and the com- 
putation "t 4- cse", where cse is the 
candidate computation, is placed in an 
appropriate place. This assignment is 
placed in a block which is dominated by 
the generators of every variable in the 
cse, and which dominates every occur- 
rence of the cse. There must be at 
least one such block, there may be 
several. The computation is put in the 
latest one (in block order) which Is of 
lowest frequency (as measured by 
depth of loop nesting). The operations 
for which common subexpresslons are 
computed are the common arithmetic, 
relational and logical ones, as well as 
functions (such as trigonometric) about 
which the system has knowledge. 
Since division is expensive, it Is rep- 
resented in the canonical form as a 
unary inversion operator. Thus common 

s u b e x p r e s s i o n  e l i m i n a t i o n  w i l l  t r a n s -  
form " . . . A / D  . . .  B / D . . . "  in to  
"t 4- i / D  . . .  A*t  . . .  B*t . . . "  . The 
r e q u i r e m e n t  for  i d e n t i c a l  m a t c h  is  r e -  
l a x e d  for  t he  o p e r a t i o n s  + a n d  * . In 
t h e s e  c a s e s  p a r t i a l  m a t c h e s  a r e  a l l o w e d  
a l s o .  The s e a r c h  for a p a r t i a l  m a t c h  is  
a i d e d  by the  c a n o n i c a l  form r e q u i r e m e n t  
t h a t  s c a l a r  a p p e a r a n c e s  a r e  o r d e r e d .  
C a r e f u l  s i g n  c o n v e n t i o n s  in t he  c a n o n -  
i c a l  for  m a11ows c s e  to r e c o g n i z e ,  for 
example, that "... A-B ... B-A ..." 
can be written "t 4-A-B ... t ... 
-t ... " . Because the check for iden- 
tity occurs first, it is necessary to 
check generated statements for cse also. 
Consider the example: 

... A+B+C ... 

... A+B+C ... 

... A+B+D ... 

... A+B+D ... 

t 3 4- A+B 

t I 4-A+B+C t I ~- t3+C 

t 2 ~-A+B+D t 2 ~ t3+D 

. . .  t I . . .  = . . .  t I . . .  

. . .  t I . . . . . .  t I . . .  

. . .  t 2 . . . . . .  t 2 • . .  

• . .  t 2 . . . . . .  t 2 . . .  

The second transformation would not 
occur unless the generated statements 
were also processed. 

The P - G r a p h  A l q o r i t h m  

The p-graph algorithm is essential to the 
optimization process. This algorithm provides 
the generation class information for a given pro- 
gram variable. We shall first give an example of 
the algorithm applied to a variable in a simple 
program graph, then state the complete algorithm: 

I Area I 
/ \ 

A,- [ A 
A A~- 

L><2! 
A 

' k / 

We logically expand thls graph so that our atten- 
tion Is focused only on the variable A and flow 
structure specific to A . The program entry and 
exit nodes are made explicit (I and 17), flow of 
control merge nodes are made expiiclt (7, 12, 15), 
block exit nodes (when there is more than one 
block successor) are made explicit (4, 9, 14), 
and each instance of A is made explicit (2, 3, 5, 
6, 8, I0, ii, 13, 16). We wish to identlfy all 
generations and pseudo-generations and tag all 
uses with the appropriate generation. Program en- 
try and allassignments to A act as generations; 
we indicate this by circling these nodes in the 
graph. Each node in the graph is numbered (on the 
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left). We wish to tag each node N (on the right) 
with a node number which is the number of the node 
corresponding to the generation of A which domin- 
ates node N . For each generation, the tag is 
clearly its own node number. For other nodes, 
initially, the tag is O. 
graph: 

S ~  ['5 

6 0 

8 0 

9 ~ 

This g ive s  us the  fo l lowing "l' 
2, 2 

3 0 

4 0 

16 

17 

10~e 0 

4 ° • 13 0 

0 

S 
o 

o 

The remain ing  problem is to de te rmine  the p s e u d o -  
g e n e r a t i o n s  which co r re spond  to merges  and to tag 
u s e s .  This is done by push ing  the tag (r ighthand 
s ide  number) of e a c h  t agged  node a long  the d i r e c t -  
ed a r c s  to the n o d e ' s  s u c c e s s o r s  and cont inuing  
a long  a l l  pa ths  unti l  t agged  nodes  a re  r e a c h e d .  
When a tag being pushed  r e a c h e s  a p r e v i o u s l y  t a g -  
ged node N , there  a re  two p o s s i b i l i t i e s :  if N is 
t agged  with i ts  own node number ,  N is  a g e n e r a -  
t ion and we are done; if N is tagged with some 
other number, N is a merge pseudo-generation 
and should be circled on the graph and tagged wlth 
its own node number to mark it as a generation. 
Upon completion of the algorithm every node is 
either circled and tagged with its own node number, 
or is tagged with a node number of a circled node, 
its unique most recent circled ancestor. These 
tags partition the graph nodes into equivalence 
classes where each circled node corresponds to an 
equivalence-class-generating event, either an 
assignment to A or a merge. It has been proved 
that the algorithmproduces a unique minimal solu- 
tion [ 1 ]. The resulting graph is: 

1 1 

2 2 

3 2 

4 2 

s 2 

6 11 

7 ~ 12 

8 12 

9 12 

1 5 ~ 1 5  

16 I 15 

17 • 15 
It remains to present the p-graph algorithm 

i t s e l f .  It should  be  noted  tha t  the p - g r a p h  a l g o -  
ri thm d o e s  not depend  on any  pa r t i cu la r  c h a r a c t e r -  
i s t i c s  of  the program graph .  The a lgor i thm works  
p e r f e c t l y  wel l  on an  i r reduc ib le  graph  [ 10 ]; i n -  
deed ,  the example  program graph  is i r r educ ib l e .  
Rather than code  the a lgor i thm in a pa r t i cu l a r  p ro -  
gramming l a n g u a g e ,  we have  e x p r e s s e d  it  us ing  
high l eve l  l anguage  c o n s t r u c t s  which  should be 
familiar. A possible complication is the use of 
set operations on the sets S and NOTYET. This 
is done specifically to avoid issues about repre- 
sentation of sets; any representation will suffice. 

We assume that we have initially: 

• A constant N equal to the number of 
nodes, 

• A vector TAG of N elements such that 

TAG(I) = I if the I th node of the graph is 
circled; TAG(I) = 0 otherwise, for 
i~_ I&N,and 

• A vector S of N elements such that 
S(1) is the set of nodes which are im- 
mediate successors of node I , for 
i~ I~ N. 

The algorithm uses I as an integer vari- 
able to represent the node of current interest, J 
as an integer variable representing an immediate 
successor of I , Q as a boolean variable used as 
a flag to indicate whether another iteration through 
the graph is necessary, and NOTYET as a set of 
nodes still to be processed. 

On completion of the algorithm N and S 

are unchanged and TAG(1) = I , if the I th node is 
circled (generation or pseudo-generation); other- 

wise, TAG(I) = I , where the jth node is the last 
circled ancestor on all paths to node I . 



The p-graph  algorithm is: 

BEGIN: " Q ~- fa|se; 
NOTYETq- [I II <_ l~Nand TAG(1) ~0]; 
white NOTYET / empty d~ 

choose I e NOTYET; 
NOTYET 4- NOTYET - [ I ] 
(v~ ]JeS(I))d~ 

i_f TAG(J) = 0 then 
TAG(J) .- TAG(1); 

// start with all circled nodes 

// select a node I to process 
// remove I from the set to be processed 
// for all immediate successors J of I 

//if J is not tagged 
//tag it the same as I 

l_f Q 

NOTYET ~- NOTYET D [ I ]; 
goto NEXTJ; 
endif; 

if TAG(1) = TAG(I) then goto NEXT/; endif; 
if TAG(J) = J then gQto NEXTJ; endif; 
TAG(J) ~- J; 
Q ~- t rue;  

NEXTJ: end al..J; 
end while;  

then 
I~- It..~N~.~ 

if TAG(1) ~ I then TAG(I) ~ O; endlf; 
end;. 

qpto BEGIN; 
endif; 

// and add it to the set to be processed 

/ / i f  J is t agged  with 
/ / T A G ( I )  or J, ignore it  
/ /  o the rwi se  J is a merge,  c i r c l e  J 
/ /  s e t  flag to ind ica te  ano ther  pass  

/ /  needed  

// if another pass is needed 
// erase all tags except those 
// corresponding to circling 

Optimization Engineerinq 

We have seen how to use p-graph tech- 
niques to perform conventional program optimiza- 
tion. We must now consider, at least briefly, the 
issue of whether the transformations and p-graph 
techniques can be performed efficiently enough to 
be of practical utility. A first necessary require- 
ment is an appropriate choice for internal repre- 
sentation of programs. We shall say no more than 
that it has proved valuable to have a rich internal 
structure which allows, for example, forward or 
backward scans through the program test; iteration 
over all instances of the variable X , rapid Ioca- 
tion of loop structures, etc. 

An important issue is the order in which 
program transformations are executed. The follow- 
ing order has proved valuable: 

i) Constant propagation with constant compu- 
tation and dead code elimination done as 
need for them is detected. Constant prop- 
agation may result in a DO loop being exe- 
cuted only once. If this is the case, 
elimination of the loop structure may cause 
a constant value to be propagated for the 
loop index. Since the program structure is 
changing, p-graphs are generated only for 
those variables which are candidates for 
constant propagation. Following comple- 
tion of constant propagation the flow struc- 
ture of the program will remain constant. 
The p-graphs which have been generated 
and which are still valid are kept, and p- 
graphs for the other scalar variables in the 
program are generated. 

2) Array references are expanded and linear- 
ized. Since most likely candidates for 
strength reduction come from array addres- 
sing expressions, there is a slight savings 
in incorporating strength reduction and test 
replacement here. 
Common subexpression elimination is done 
next, along with scalar propagation, which 
helps identify more common subexpressions. 

3) 

4) Invariant code motion is done after common 
subexpresslon elimination since common 
subexpressions which are loop invarlant 
will be moved out of loops by the elimina- 
tion process. Also eliminating common 
subexpression decreases the number of po- 
tential candidates for code motion. 

5) Finally there is a clean up phase which in- 
cludes folding and elimination of dead 
variables not previously eliminated during 
constant propagation. 

The most important area for good software 
engineering is that of p-graph generation. Many 
special cases are detected for which p-graph gen- 
eration is trivial. This leaves only a few cases 
for which the complete algorithm is needed. For 
example all generated variables are of one of two 
types: single generation variables for which all 
uses have the same generation, or iterated vari- 
ables, which have two generations and one merge, 
and all uses are generated by the merge. Vari- 
ables introduced by strength reduction are of this 
latter type. 

All instances of a variable are separated 
into uses and generations. The rich structure of 
the intermediate language makes this an easy op- 
eration. An argument to a subprogram is a use and 
a generation, and every subprogram call is a gen- 
erator of every common variable, in the absence of 
any evidence to the contrary. At any time in the 
processing, if there are no uses, or if all uses 
have been tagged, the p-graph is done. Flow 
blocks containing instances are marked, those con- 
taining one generation are tagged with that gener- 
ation at block exit; those containing more than one 
generation are processed locally in statement seri- 
al order and the tag of the last generation is the 
block exit tag. If all uses within a block are tag- 
ged by generations within the block, the block is 
no longer a use block. An explicit entry genera- 
tion may not be needed if all uses are in blocks 
dominated by generations. The dominates relation 
is represented by a bit matrix. A bit vector cor- 
responding to those blocks containing generations 
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is easy to prepare. For each use, the appropriate 
row from the matrix is "anded" with the generation 
vector. If the result vector is non-zero, the use 
is dominated by some generation. For common 
variables there may be no generation. In this case 
the entry generation is the generation for all uses. 
At this point if there is only one generation we are 
done, otherwise we perform the p-graph algorithm. 

There are various improvements in the p- 
graph algorithm that have been made to make it 
both more efficient and useful for the propagation 
of other property sets, but we shall not discuss 
these improvements here. The algorithm may gen- 
erate spurious merges, pseudo-generations which 
in fact dominate no uses. These are eliminated 
from the p-graph. 

An interesting case of globally initialized 
local variables occurs in some versions of FOR- 
TRAN. A typical programming practice is to call a 
routine with a special parameter the first time to 
indicate that initialization of local static storage 
is required. For example: 

SUBROUTINE WALDO ( I, A, B) 
IF (I .NE. 0 ) GO TO i0 
I=2 
X=3.5 

I0 

In this example J and X are local static vari- 
ables. WALDO is called the first time with I = 0 
to initialize J and X and with I / 0 every other 
time. This case can be detected since y and X 
have only one generation, and the entry genera- 
tion, and all uses of J and X are of the merge of 
those two generations. The constant values can 
t hen  be p r o p a g a t e d .  

F i n a l l y  we m u s t  make  some c o m m e n t s  on  
e f f i c i e n c y .  F i r s t ,  u s i n g  p - g r a p h  t e c h n i q u e s ,  a n y  
program which  c a n  be p a r s e d  c a n  be o p t i m i z e d .  
Un l ike  o the r  t e c h n i q u e s  s u c h  a s  i n t e r v a l  a n a l y s i s ,  
the re  is  no r e q u i r e m e n t  t ha t  the program graph  be 
of  a n y  s p e c i a l  form, s u c h  a s  i r r e d u c i b l e .  S e c o n d ,  
the  c o s t  does  no t  a p p e a r  to be p r o h i b i t i v e .  There 
is  a s u b s t a n t i a l  c o s t  i n v o l v e d  in  i n v o k i n g  o p t i -  
m i z a t i o n  a t  a l l ,  a n d  th i s  c o s t  s e e m s  to i n c r e a s e  
f a i r ly  r a p i d l y  u n t i l  a program s i z e  of a b o u t  l0 
b l o c k s  is r e a c h e d .  Beyond lO b l o c k s  h o w e v e r  the 
c o s t  i n c r e a s e s  ve ry  s l o w l y  so tha t  for (ILLIAC 
FORTRAN) programs of 500 to 1000 s t a t e m e n t s  or 
more the c o s t  of  o p t i m i z a t i o n  is  in  f ac t  l e s s  t h a n  
the c o s t  of  p a r s i n g  the  p rogram.  

A c k n o w l e d g e m e n t s  

The i n i t i a l  d e s c r i p t i o n  of p - g r a p h s  a p p e a r -  
ed in " R e p r e s e n t a t i o n  of A lgor i thms"  by Shapi ro  
and  Sa in t  [ 1 ] .  This d o c u m e n t  a l s o  i n c l u d e d  the 
i n i t i a l  d e s c r i p t i o n  of the p - g r a p h  a lgo r i t hm by 
S t ephen  W a r s h a l l  and  a proof  by Robert  M i l l s t e i n  
tha t  the  a lgo r i t hm p r o d u c e s  a u n i q u e  m i n i m a l  s o l u -  
t i o n .  An o p t i m i z e r  f u n c t i o n i n g  as  d e s c r i b e d  in  
th i s  pape r  was  d e s i g n e d  and  i m p l e m e n t e d  by Ross 
F a n e u f  for u s e  in  the ILLIAC FORTRAN c o m p i l e r  
[ 2 ] and  is  c u r r e n t l y  o p e r a t i o n a l .  Dur ing  th i s  
i m p l e m e n t a t i o n  s u g g e s t i o n s  were made  to improve  
the e f f i c i e n c y  of the p - g r a p h  a l g o r i t h m  by L e s l i e  
Lamport  [ 3 ] .  Recen t  work by Ben W e g b r e i t  a t  
Harvard [ 4 ] and  M i c h a e l  Karr of M a s s .  Compu te r  
A s s o c i a t e s  [ 5 ] ,  [ 6 ] ,  [ 7 ] has  e x t e n d e d  and  
g e n e r a l i z e d  the b a s i c  p - g r a p h  t e c h n i q u e s .  An 
o p t i m i z e r  s i m i l a r  to the one  d e s c r i b e d  here  but  

incorporating significant new results is being im ~ 
plemented in a "language laboratory" to allow 
experimental optimization of a FORTRAN like 
language [ 8 ]. 
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