
PROGRAM OPTIMIZATION -
THEORY AND PRACTICE

David B. Loveman
Ross A. Faneuf

Massachusetts Computer Assoclates, Inc.

I n t r o d u c t i o n

The c o n v e n t i o n a l p rogram o p t i m i z a t i o n
t e c h n i q u e s e m p l o y e d by the ILLIAC FORTRAN c o m -
p i l e r a r e g e n e r a l p u r p o s e , e f f e c t i v e , and e f f i c i e n t .
The u n d e r l y i n g t h e o r y is a p p l i c a b l e to FORTRAN
and to o t h e r h igh l e v e l l a n g u a g e s . A u n i q u e a p -
p r o a c h to the g a t h e r i n g o f g l o b a l s e t and u s e i n f o r -
ma t ion a b o u t v a r i a b l e s a s w e l l a s c a r e f u l s o f t w a r e
e n g i n e e r i n g o f the a l g o r i t h m s has led to the c o n -
s t r u c t i o n of an e f f e c t i v e s o u r c e - t o - s o u r c e o p t i m i -
z e r w h i c h pe r fo rms c o n s t a n t p r o p a g a t i o n , c o n s t a n t
c o m p u t a t i o n , c o m m o n s u b e x p r e s s i o n e l i m i n a t i o n ,
r e d u c t i o n in s t r e n g t h , and i n v a r i a n t c o d e m o t i o n .

We w i l l f i r s t c o n s i d e r the type o f i n f o r m a -
t ion w h i c h mus t be g a t h e r e d a b o u t a p r o g r a m , and
how th i s i n f o r m a t i o n is u s e d to per form o p t i m i z a -
t i o n . Then we s h a l l s t a t e the a l g o r i t h m for g l o b a l -
ly c o m p u t i n g the s e t and u s e i n f o r m a t i o n for p r o -
gram v a r i a b l e s . H a v i n g d i s c u s s e d the s c i e n c e o f
o p t i m i z a t i o n we s h a l l turn to the e n g i n e e r i n g a s -
p e c t s and c o n s i d e r s u c h t o p i c s a s r e p r e s e n t a t i o n
of p r o g r a m s , o rde r o f o p t i m i z a t i o n t r a n s f o r m a t i o n s ,
and e f f i c i e n t c o m p u t a t i o n o f g l o b a l u s e and s e t
information.

In fo rma t ion N e e d e d

In o rde r to per form o p t i m i z a t i o n we mus t
h a v e c e r t a i n i n f o r m a t i o n a v a i l a b l e to u s . This is
o f two t y p e s : i n f o r m a t i o n d i r e c t l y r e l a t i n g to the
s o u r c e t e x t o f the program and l o c a l p i e c e s of the
p rogram, and i n f o r m a t i o n a b o u t the g l o b a l s t r u c t u r e
o f the p rogram. The l o c a l i n f o r m a t i o n we n e e d i s :

• The program t e x t in s o m e r e p r e s e n t a t i o n
c o n v e n i e n t for m a n i p u l a t i o n , s u c h a s a
l i s t o f s t a t e m e n t s w i th e x p r e s s i o n s in a
t r ee form,

• E x p r e s s i o n s p l a c e d in a c o n v e n i e n t
p a r t l y c a n o n i c a l form, (o p , k ,
s 1 s n, e 1 e m) w h e r e " o p "

is the o p e r a t i o n , "k" is a c o n s t a n t
o p e r a n d , "s " to "s " a re the s c a l a r

1 n
o p e r a n d s in s y m b o l t a b l e o r d e r , and

H , , "e 1 to "e a r e the r e m a i n i n g o p e r - m
a n d s w h i c h may be e x p r e s s i o n s , a r r a y
r e f e r e n c e s , e t c . , in a n y o r d e r . Note
tha t l o c a l c o n s t a n t c o m p u t a t i o n w i l l be
pe r fo rmed in p r o d u c i n g th i s fo rm. For
e x a m o l e , 3+X*4+2+Y w i l l be r e p r e -
s e n t e d a s (.+,5,Y, (* ,4 ,X)) .

• Conventional symbol table information
such as whether a variable X is de-
clared local or global,

• The l a n g u a g e s p e c i f i e d loop s t r u c t u r e o f
the p rogram (in FORTRAN we a re i n t e r -
e s t e d in DO l o o p s and not i n t e r e s t e d in
l o o p s c o n s t r u c t e d from IF and G O T O) ,
and

• F low o f c o n t r o l i n f o r m a t i o n ; a s t r u c t u r i n g
o f t he program in to f low b l o c k s and t h e i r
i n t e r c o n n e c t i o n s . S t a t e m e n t s a r e t a g g e d
w i t h f low b l o c k number and s t a t e m e n t
n u m b e r (in l e x i c a l o r d e r) .

This l o c a l i n f o r m a t i o n is q u i t e c o n v e n t i o n a l and
e a s y to g a t h e r .

The g l o b a l i n f o r m a t i o n r e q u i r e d is more
i n t e r e s t i n g :

• The " d o m i n a t e s " r e l a t i o n b e t w e e n f low
b l o c k s m u s t be d e t e r m i n e d . For t w o
f l o w b l o c k s i a n d j , i d o m i n a t e s j
if and o n l y if e v e r y pa th from the p r o -
gram e n t r y po in t to f low b l o c k j mus t
p a s s t h rough f low b l o c k i . This i s a
c o n v e n t i o n a l d e f i n i t i o n o f a c o n v e n t i o n a l
p rogram g r a p h r e l a t i o n w h i c h c a n be
c o m p u t e d in a s t r a i g h t f o r w a r d m a n n e r .

• The f low b l o c k s a r e o r d e r e d in " f l o w -
s e q u e n c e " o r d e r a s d e t e r m i n e d by the
Earnest, Balke, and Anderson algorithm
[9]. This algorithm assigns sequence
numbers to flow blocks so that:
i) every block will have a higher num-

ber than its predecessors, except
for true backward transfers,

2) every block will have a lower number
than every other block which it
dominates, and

3) for any program looping structure,
all and only those blocks in the loop
will have numbers between those of
the first and last blocks in the loop:
thus to test whether a given flow
b l o c k is w i t h i n a g i v e n loop s t r u c t u r e
r e q u i r e s o n l y two s e q u e n c e number
c o m p a r i s o n s .

• G e n e r a t i o n and u s e i n f o r m a t i o n a b o u t
v a r i a b l e s m u s t be d e t e r m i n e d . For a
v a r i a b l e X , we r e f e r to " the p - g r a p h of
X" a s the sum of i n f o r m a t i o n a b o u t u s e s
and g e n e r a t i o n s o f X . In a l a t e r s e c -
t i o n , we w i l l p r e s e n t the a l g o r i t h m to
c o m p u t e p - g r a p h s . For now we p r e s e n t

~ T

http://crossmark.crossref.org/dialog/?doi=10.1145%2F390015.808407&domain=pdf&date_stamp=1975-01-01

a g e n e r a l d i s c u s s i o n of the i n f o r m a t i o n
w h i c h is n e e d e d .

The f u n d a m e n t a l c a t e g o r y of i n f o r m a t i o n
w h i c h r e s u l t s from p - g r a p h a n a l y s i s of a program
i s the d e t e r m i n a t i o n of the " g e n e r a t i o n - c l a s s "
m e m b e r s h i p of e a c h a p p e a r a n c e of e a c h v a r i a b l e in
the p rogram. A " g e n e r a t i o n - c l a s s " of a v a r i a b l e
in a program is the s e t o f a l l t h o s e a p p e a r a n c e s of
the v a r i a b l e wh ich mus t r e p r e s e n t the s a m e v a l u e :
t h i s s e t w i l l , of c o u r s e , c o n s i s t of o n e a p p e a r a n c e
a t w h i c h the v a r i a b l e r e c e i v e s i t s v a l u e (this a p -
p e a r a n c e i s c a l l e d " the g e n e r a t i o n ") , a n d a n u m -
ber of a p p e a r a n c e s whe re the v a l u e is u s e d , w i t h -
out b e i n g c h a n g e d .

C o n s i d e r a p o i n t i n a program where two
p a t h s of c o n t r o l f low t o g e t h e r , a f t e r w h i c h some
variable is used one or more times, and assume
that this variable receives values on each of the
merging paths, before the merge. Each use after
the merge will indeed belong to one or the other of
the two generation-classes initiated by the gener-
ations before the merge, but in general it is im-
possible, at compile time, to tell which one; none-
theless, whichever one it is, all uses of the same
variable after the merge, up until the next gener-
ation for that variable, must belong to the same
generation-class (for any one passage of control
at run time). For this reason, merge points are
considered to be generations for any variable
whose value is used after the merge before being
reset, and a new generation-class is constructed
for this pseudo-generation and the uses which de-
pend from it. These merge generations are not, of
course, represented by any code in the program.

We assume that p-graph information is
represented in the program as follows:

• Every assignment to a variable is tagged
with
I) its generation class, which is a

unique identification of this particu-
lar generation, and

2) a list of all instances of the variable
in the program which are uses of this
generation.

• Every use of a variable is tagged with a
pointer to its generation, and

• At appropriate merge points, pseudo-
generations are produced which have the
same characteristics as assignments,
but which don't actually appear in the
source program.

O p t i m i z a t i o n

Wi th the a v a i l a b l e i n f o r m a t i o n , a n u m b e r of
program o p t i m i z a t i o n s a re pe r fo rmed . We p r e s e n t
them here in a l o g i c a l o r d e r , no t n e c e s s a r i l y the
mos t e f f i c i e n t p r o c e s s i n g o rder :

• L i n e a r i z e Array R e f e r e n c e s . M u l t i d i -
m e n s i o n a l a r r a y s a re r e p l a c e d by a p p r o -
p r i a t e l y s i z e d v e c t o r s and the a d d r e s s -
ing c a l c u l a t i o n is made e x p l i c i t . For
e x a m p l e , a s s u m i n g r o w - w i s e s t o r a g e ,
if A is d e c l a r e d to be a 5 × 4 × 3 a r r a y ,

1 A wi l l be r e p l a c e d by a v e c t o r A of
60 e l e m e n t s a n d e a c h r e f e r e n c e to A of
the form A(I, J, K) w 11 be r e p l a c e d by

AI(([-i) * 12 + (J-l) * 3 + K) , or

A i (1 2 * I + 3 * J + K - 15) . In mak ing
the a d d r e s s i n g c a l c u l a t i o n s e x p l i c i t ,
t h e y a re e x p o s e d for l a t e r o p t i m i z a t i o n s .

• C o n s t a n t P r o p a g a t i o n a n d C o m p u t a t i o n .
For any assignment of a constant to a
scalar variable X , all uses of this gen-
eration of X can be replaced by the
constant. If the scalar X is a local
variable and the assignment is not need-
ed for a merge pseudo-generation, the
assignment statement may be deleted.
If all references to the scalar X are
deleted, its definition may be removed
from the symbol table. Some constant
computation was performed when expres-
sions were placed into canonical form.
Constant computation is again performed
during constant propagation whenever a
variable use is replaced by a constant.
Note that if this reduces the right hand
side of an assignment to a constant,
another constant propagation is neces-
sary. It appears that constant propaga-
tion is a recursive process; in fact if the
program is searched for assignments in
block order we almost never produce a
requirement for a new constant propaga-
tion where the assignment is "upstream"
of where we now are. The occasional
exception is stacked for processing when
the primary scan is complete. It is im-
portant to note that, in a cross compiler,
constant computation must be done using
target machine arithmetic and not using
host machine arithmetic.

• Dead Code Elimination. As a result of
constant propagation some assignment
statements and data declarations may be
eliminated. It may be that after con-
stant computation some DO loops can be
determined as having exactly one itera-
tion. In this case, the extraneous loop
structure is eliminated (and also, per-
haps, the loop variable), in some [F
statements, the value of the predicate
will now be TRUE or FALSE. This allows
pruning of unreachable portions of the
program. Since these transformations
destroy the collected global information,
they are all done together and the global
information is recomputed.

• Scalar Propagation. Assignments of the
form "X ~- Y" for which only one gener-
ation of Y exists in the program can be
eliminated and all uses of that gener-
ation of X can be replaced by Y .

• [nvariant Code Motion. Computations
which are invariant within a loop are
moved to a point immediately before the
loop entry. Loops are processed in lex-
ical order and nests of loops are proces-
sed inside out: in other words in the
lexical order of their end statements. A
computation represented canonically as
(op, X, Y) is loop invariant if the gen-
erators of X and Y are not within the
loop. This test is simple because of the
block order: find the block number i of
the first block in the loop, the block
number j of the last block in the loop,
and the block number k of the block

c o n t a i n i n g the g e n e r a t i o n o f A . The
g e n e r a t i o n o f X is not w i t h i n the loop
if k < l or k > j .
S t r e n g t h R e d u c t i o n . C o m p u t a t i o n s o f t h e
form I * L w h e r e I is the loop v a r i a b l e
and L is loop i n v a r i a n t a r e c a n d i d a t e s
for s t r e n g t h r e d u c t i o n . The a s s i g n m e n t
t +- l i n i t * L , w h e r e l i n i t is the v a l u e

I t a k e s on the f i r s t i t e r a t i o n o f the l o o p ,
is p l a c e d b e f o r e t he l o o p , the u s e o f
I * L is r e p l a c e d by t , a n d the a s s i g n -
men t t~- t + L i s i n s e r t e d a t the end o f
the l o o p .
T e s t R e p l a c e m e n t . Af t e r s t r e n g t h r e d u c -
t i o n , if the loop v a r i a b l e h a s no e x p l i c -
i t u s e s w i t h i n the l oop , r e p l a c e the loop
v a r i a b l e in the l o o p s t a t e m e n t w i t h t h e
m o s t f r e q u e n t l y u s e d v a r i a b l e g e n e r a t e d
by s t r e n g t h r e d u c t i o n . I n c o r p o r a t e i t s
i n i t i a l , i n c r e m e n t , a n d f i n a l v a l u e s in to
the loop s t a t e m e n t .
F o l d i n g . If for a g e n e r a t i o n "X ~- e x -
p r e s s i o n " t h e r e i s o n l y one u s e o f X ,
and if the v a r i a b l e s o f " e x p r e s s i o n " do
not h a v e g e n e r a t i o n s b e f o r e the u s e of
X , the g e n e r a t i o n c a n be d e l e t e d and
the u s e o f X r e p l a c e d by the e x p r e s -
s i o n . This is d o n e o n l y w i t h i n a f low
b l o c k s i n c e t e s t i n g the c o n d i t i o n s g l o -
b a l l y is d i f f i c u l t and the p a y o f f , g l o -
b a l l y , i s l o w .
Common S u b e x p r e s s i o n E l i m i n a t i o n . The
program is s c a n n e d in b l o c k o r d e r , and
s t a t e m e n t s a r e s c a n n e d bo t tom up l o o k -
ing for c a n d i d a t e c o m p u t a t i o n s , h c a n -
d i d a t e c o m p u t a t i o n is an o p e r a t i o n w i t h
at least one scalar operand X . Given
a candidate, the set of uses of the gen-
erator of the variable X is searched to
find a set of possible common subex-
presslons; these are computations con-
taining a use of the generator of the
variable X , and with the same operator
as the candidate computation. The set
of possible common subexpressions is
pruned by comparing the second oper-
ands with the second operand of the
candidate computation. We have now
found a set of common subexpresslons.
All of these are eliminated in favor of
the generated variable t and the com-
putation "t 4- cse", where cse is the
candidate computation, is placed in an
appropriate place. This assignment is
placed in a block which is dominated by
the generators of every variable in the
cse, and which dominates every occur-
rence of the cse. There must be at
least one such block, there may be
several. The computation is put in the
latest one (in block order) which Is of
lowest frequency (as measured by
depth of loop nesting). The operations
for which common subexpresslons are
computed are the common arithmetic,
relational and logical ones, as well as
functions (such as trigonometric) about
which the system has knowledge.
Since division is expensive, it Is rep-
resented in the canonical form as a
unary inversion operator. Thus common

s u b e x p r e s s i o n e l i m i n a t i o n w i l l t r a n s -
form " . . . A / D . . . B / D . . . " in to
"t 4- i / D . . . A*t . . . B*t . . . " . The
r e q u i r e m e n t for i d e n t i c a l m a t c h is r e -
l a x e d for t he o p e r a t i o n s + a n d * . In
t h e s e c a s e s p a r t i a l m a t c h e s a r e a l l o w e d
a l s o . The s e a r c h for a p a r t i a l m a t c h is
a i d e d by the c a n o n i c a l form r e q u i r e m e n t
t h a t s c a l a r a p p e a r a n c e s a r e o r d e r e d .
C a r e f u l s i g n c o n v e n t i o n s in t he c a n o n -
i c a l for m a11ows c s e to r e c o g n i z e , for
example, that "... A-B ... B-A ..."
can be written "t 4-A-B ... t ...
-t ... " . Because the check for iden-
tity occurs first, it is necessary to
check generated statements for cse also.
Consider the example:

... A+B+C ...

... A+B+C ...

... A+B+D ...

... A+B+D ...

t 3 4- A+B

t I 4-A+B+C t I ~- t3+C

t 2 ~-A+B+D t 2 ~ t3+D

. . . t I . . . = . . . t I . . .

. . . t I t I . . .

. . . t 2 t 2 • . .

• . . t 2 t 2 . . .

The second transformation would not
occur unless the generated statements
were also processed.

The P - G r a p h A l q o r i t h m

The p-graph algorithm is essential to the
optimization process. This algorithm provides
the generation class information for a given pro-
gram variable. We shall first give an example of
the algorithm applied to a variable in a simple
program graph, then state the complete algorithm:

I Area I
/ \

A,- [A
A A~-

L><2!
A

' k /

We logically expand thls graph so that our atten-
tion Is focused only on the variable A and flow
structure specific to A . The program entry and
exit nodes are made explicit (I and 17), flow of
control merge nodes are made expiiclt (7, 12, 15),
block exit nodes (when there is more than one
block successor) are made explicit (4, 9, 14),
and each instance of A is made explicit (2, 3, 5,
6, 8, I0, ii, 13, 16). We wish to identlfy all
generations and pseudo-generations and tag all
uses with the appropriate generation. Program en-
try and allassignments to A act as generations;
we indicate this by circling these nodes in the
graph. Each node in the graph is numbered (on the

99

left). We wish to tag each node N (on the right)
with a node number which is the number of the node
corresponding to the generation of A which domin-
ates node N . For each generation, the tag is
clearly its own node number. For other nodes,
initially, the tag is O.
graph:

S ~ ['5

6 0

8 0

9 ~

This g ive s us the fo l lowing "l'
2, 2

3 0

4 0

16

17

10~e 0

4 ° • 13 0

0

S
o

o

The remain ing problem is to de te rmine the p s e u d o -
g e n e r a t i o n s which co r re spond to merges and to tag
u s e s . This is done by push ing the tag (r ighthand
s ide number) of e a c h t agged node a long the d i r e c t -
ed a r c s to the n o d e ' s s u c c e s s o r s and cont inuing
a long a l l pa ths unti l t agged nodes a re r e a c h e d .
When a tag being pushed r e a c h e s a p r e v i o u s l y t a g -
ged node N , there a re two p o s s i b i l i t i e s : if N is
t agged with i ts own node number , N is a g e n e r a -
t ion and we are done; if N is tagged with some
other number, N is a merge pseudo-generation
and should be circled on the graph and tagged wlth
its own node number to mark it as a generation.
Upon completion of the algorithm every node is
either circled and tagged with its own node number,
or is tagged with a node number of a circled node,
its unique most recent circled ancestor. These
tags partition the graph nodes into equivalence
classes where each circled node corresponds to an
equivalence-class-generating event, either an
assignment to A or a merge. It has been proved
that the algorithmproduces a unique minimal solu-
tion [1]. The resulting graph is:

1 1

2 2

3 2

4 2

s 2

6 11

7 ~ 12

8 12

9 12

1 5 ~ 1 5

16 I 15

17 • 15
It remains to present the p-graph algorithm

i t s e l f . It should be noted tha t the p - g r a p h a l g o -
ri thm d o e s not depend on any pa r t i cu la r c h a r a c t e r -
i s t i c s of the program graph . The a lgor i thm works
p e r f e c t l y wel l on an i r reduc ib le graph [10]; i n -
deed , the example program graph is i r r educ ib l e .
Rather than code the a lgor i thm in a pa r t i cu l a r p ro -
gramming l a n g u a g e , we have e x p r e s s e d it us ing
high l eve l l anguage c o n s t r u c t s which should be
familiar. A possible complication is the use of
set operations on the sets S and NOTYET. This
is done specifically to avoid issues about repre-
sentation of sets; any representation will suffice.

We assume that we have initially:

• A constant N equal to the number of
nodes,

• A vector TAG of N elements such that

TAG(I) = I if the I th node of the graph is
circled; TAG(I) = 0 otherwise, for
i~_ I&N,and

• A vector S of N elements such that
S(1) is the set of nodes which are im-
mediate successors of node I , for
i~ I~ N.

The algorithm uses I as an integer vari-
able to represent the node of current interest, J
as an integer variable representing an immediate
successor of I , Q as a boolean variable used as
a flag to indicate whether another iteration through
the graph is necessary, and NOTYET as a set of
nodes still to be processed.

On completion of the algorithm N and S

are unchanged and TAG(1) = I , if the I th node is
circled (generation or pseudo-generation); other-

wise, TAG(I) = I , where the jth node is the last
circled ancestor on all paths to node I .

The p-graph algorithm is:

BEGIN: " Q ~- fa|se;
NOTYETq- [I II <_ l~Nand TAG(1) ~0];
white NOTYET / empty d~

choose I e NOTYET;
NOTYET 4- NOTYET - [I]
(v~]JeS(I))d~

i_f TAG(J) = 0 then
TAG(J) .- TAG(1);

// start with all circled nodes

// select a node I to process
// remove I from the set to be processed
// for all immediate successors J of I

//if J is not tagged
//tag it the same as I

l_f Q

NOTYET ~- NOTYET D [I];
goto NEXTJ;
endif;

if TAG(1) = TAG(I) then goto NEXT/; endif;
if TAG(J) = J then gQto NEXTJ; endif;
TAG(J) ~- J;
Q ~- t rue;

NEXTJ: end al..J;
end while;

then
I~- It..~N~.~

if TAG(1) ~ I then TAG(I) ~ O; endlf;
end;.

qpto BEGIN;
endif;

// and add it to the set to be processed

/ / i f J is t agged with
/ / T A G (I) or J, ignore it
/ / o the rwi se J is a merge, c i r c l e J
/ / s e t flag to ind ica te ano ther pass

/ / needed

// if another pass is needed
// erase all tags except those
// corresponding to circling

Optimization Engineerinq

We have seen how to use p-graph tech-
niques to perform conventional program optimiza-
tion. We must now consider, at least briefly, the
issue of whether the transformations and p-graph
techniques can be performed efficiently enough to
be of practical utility. A first necessary require-
ment is an appropriate choice for internal repre-
sentation of programs. We shall say no more than
that it has proved valuable to have a rich internal
structure which allows, for example, forward or
backward scans through the program test; iteration
over all instances of the variable X , rapid Ioca-
tion of loop structures, etc.

An important issue is the order in which
program transformations are executed. The follow-
ing order has proved valuable:

i) Constant propagation with constant compu-
tation and dead code elimination done as
need for them is detected. Constant prop-
agation may result in a DO loop being exe-
cuted only once. If this is the case,
elimination of the loop structure may cause
a constant value to be propagated for the
loop index. Since the program structure is
changing, p-graphs are generated only for
those variables which are candidates for
constant propagation. Following comple-
tion of constant propagation the flow struc-
ture of the program will remain constant.
The p-graphs which have been generated
and which are still valid are kept, and p-
graphs for the other scalar variables in the
program are generated.

2) Array references are expanded and linear-
ized. Since most likely candidates for
strength reduction come from array addres-
sing expressions, there is a slight savings
in incorporating strength reduction and test
replacement here.
Common subexpression elimination is done
next, along with scalar propagation, which
helps identify more common subexpressions.

3)

4) Invariant code motion is done after common
subexpresslon elimination since common
subexpressions which are loop invarlant
will be moved out of loops by the elimina-
tion process. Also eliminating common
subexpression decreases the number of po-
tential candidates for code motion.

5) Finally there is a clean up phase which in-
cludes folding and elimination of dead
variables not previously eliminated during
constant propagation.

The most important area for good software
engineering is that of p-graph generation. Many
special cases are detected for which p-graph gen-
eration is trivial. This leaves only a few cases
for which the complete algorithm is needed. For
example all generated variables are of one of two
types: single generation variables for which all
uses have the same generation, or iterated vari-
ables, which have two generations and one merge,
and all uses are generated by the merge. Vari-
ables introduced by strength reduction are of this
latter type.

All instances of a variable are separated
into uses and generations. The rich structure of
the intermediate language makes this an easy op-
eration. An argument to a subprogram is a use and
a generation, and every subprogram call is a gen-
erator of every common variable, in the absence of
any evidence to the contrary. At any time in the
processing, if there are no uses, or if all uses
have been tagged, the p-graph is done. Flow
blocks containing instances are marked, those con-
taining one generation are tagged with that gener-
ation at block exit; those containing more than one
generation are processed locally in statement seri-
al order and the tag of the last generation is the
block exit tag. If all uses within a block are tag-
ged by generations within the block, the block is
no longer a use block. An explicit entry genera-
tion may not be needed if all uses are in blocks
dominated by generations. The dominates relation
is represented by a bit matrix. A bit vector cor-
responding to those blocks containing generations

101

is easy to prepare. For each use, the appropriate
row from the matrix is "anded" with the generation
vector. If the result vector is non-zero, the use
is dominated by some generation. For common
variables there may be no generation. In this case
the entry generation is the generation for all uses.
At this point if there is only one generation we are
done, otherwise we perform the p-graph algorithm.

There are various improvements in the p-
graph algorithm that have been made to make it
both more efficient and useful for the propagation
of other property sets, but we shall not discuss
these improvements here. The algorithm may gen-
erate spurious merges, pseudo-generations which
in fact dominate no uses. These are eliminated
from the p-graph.

An interesting case of globally initialized
local variables occurs in some versions of FOR-
TRAN. A typical programming practice is to call a
routine with a special parameter the first time to
indicate that initialization of local static storage
is required. For example:

SUBROUTINE WALDO (I, A, B)
IF (I .NE. 0) GO TO i0
I=2
X=3.5

I0

In this example J and X are local static vari-
ables. WALDO is called the first time with I = 0
to initialize J and X and with I / 0 every other
time. This case can be detected since y and X
have only one generation, and the entry genera-
tion, and all uses of J and X are of the merge of
those two generations. The constant values can
t hen be p r o p a g a t e d .

F i n a l l y we m u s t make some c o m m e n t s on
e f f i c i e n c y . F i r s t , u s i n g p - g r a p h t e c h n i q u e s , a n y
program which c a n be p a r s e d c a n be o p t i m i z e d .
Un l ike o the r t e c h n i q u e s s u c h a s i n t e r v a l a n a l y s i s ,
the re is no r e q u i r e m e n t t ha t the program graph be
of a n y s p e c i a l form, s u c h a s i r r e d u c i b l e . S e c o n d ,
the c o s t does no t a p p e a r to be p r o h i b i t i v e . There
is a s u b s t a n t i a l c o s t i n v o l v e d in i n v o k i n g o p t i -
m i z a t i o n a t a l l , a n d th i s c o s t s e e m s to i n c r e a s e
f a i r ly r a p i d l y u n t i l a program s i z e of a b o u t l0
b l o c k s is r e a c h e d . Beyond lO b l o c k s h o w e v e r the
c o s t i n c r e a s e s ve ry s l o w l y so tha t for (ILLIAC
FORTRAN) programs of 500 to 1000 s t a t e m e n t s or
more the c o s t of o p t i m i z a t i o n is in f ac t l e s s t h a n
the c o s t of p a r s i n g the p rogram.

A c k n o w l e d g e m e n t s

The i n i t i a l d e s c r i p t i o n of p - g r a p h s a p p e a r -
ed in " R e p r e s e n t a t i o n of A lgor i thms" by Shapi ro
and Sa in t [1] . This d o c u m e n t a l s o i n c l u d e d the
i n i t i a l d e s c r i p t i o n of the p - g r a p h a lgo r i t hm by
S t ephen W a r s h a l l and a proof by Robert M i l l s t e i n
tha t the a lgo r i t hm p r o d u c e s a u n i q u e m i n i m a l s o l u -
t i o n . An o p t i m i z e r f u n c t i o n i n g as d e s c r i b e d in
th i s pape r was d e s i g n e d and i m p l e m e n t e d by Ross
F a n e u f for u s e in the ILLIAC FORTRAN c o m p i l e r
[2] and is c u r r e n t l y o p e r a t i o n a l . Dur ing th i s
i m p l e m e n t a t i o n s u g g e s t i o n s were made to improve
the e f f i c i e n c y of the p - g r a p h a l g o r i t h m by L e s l i e
Lamport [3] . Recen t work by Ben W e g b r e i t a t
Harvard [4] and M i c h a e l Karr of M a s s . Compu te r
A s s o c i a t e s [5] , [6] , [7] has e x t e n d e d and
g e n e r a l i z e d the b a s i c p - g r a p h t e c h n i q u e s . An
o p t i m i z e r s i m i l a r to the one d e s c r i b e d here but

incorporating significant new results is being im ~
plemented in a "language laboratory" to allow
experimental optimization of a FORTRAN like
language [8].

Bibliography

[1] Shapiro, Robert M. and Saint, Harry.
"The Representation of Algorithms",
Applied Data Research, Inc., Final Tech-
nical Report. RADC-TR-69-313, Volume If,
Rome Air Development Center, Sept., 1969.

[2] Massachusetts Computer Associates , Inc.
"Sixth Semi-Annual Technical Report (14
July 1972 - 13 February 1973) for the Pro-
ject Compiler Design for the ILLIAC IV",
CADD-7302-2011, February, 1973.

[3] Lamport, Leslie. "A Refinement of the
Warshall P-Graph Completion Algorithm",
ILLIAC FORTRAN Compiler Project Internal
Memo, Mass. Computer Associates, Inc.,
November 9, 1972.

[4] Wegbreit, Ben. "Property Extraction in
Well-Founded Property Sets", Center for
Research in Computing Technology, Har-
vard University, February, 1973.

[5] Karr, Michael. "On Affine Relationships
Among Variables of a Program", Mass.
Computer Associates, Inc., CA-7402-
2811, February, 1974.

[6] Karr, Michael. "Proving Inequalities",
Mass. Computer Associates, Inc.,
CA-7406-I011, June, 1974.

[7] Karr, Michael. "The P-Graph Algorithm",
in preparation.

[8] Loveman, David, Sattley, Kirk and
Bearisto, David. "Development of Compiler
Optimization Techniques", Mass. Computer
Associates, Inc., CADD-7407-2311,
July, 1974.

[9] Earnest, C.P., Balke, K.G., and
Anderson, I. "Analysis of Graphs by
Ordering of Nodes", Journal of theACM,
Vol. 19, No. i, January, 1972.

[10] Schaefer, Marvin. A Mathematical Theory
of Global Program Optimization,
Prentice-Hall, 1973.

102

