AN ANALYS!S OF ERRORS AND THEIR CAUSES
[_| IN SYSTEM PROGRAMS

Check for
Updates

Albert Endres, IBM Laboratory
Boeblingen, Germany

Keywords

Programming methodology
Program testing
Software reliability

Software error classification

Abstract

Program errors detected during internal testing of
the operating system DOS/VS form the basis for an
investigation of error distributions in system pro-
grams. Using a classification of the errors according
to various attributes, conclusions can be drawn con-
cerning the possible causes of these errors. The in-
formation thus obtained is applied in a discussion of
the most effective methods for the detection and pre-
vention of errors.

Contents

Introduction

Object and Method of Investigation

Possibilities and Limitations of an Error Analysis

Presentation of some Results and Conclusions
Error Distribution by Modules
Error Distribution by Type of Error

Cause and Prevention of Errors
Detection of Errors

Concluding Observations

Introduction

It should be useful for all who attempt to improve the
reliability of software to know as much as possible
about the types of errors that actually occur in pro-
grams. Almost everyone who has ever written a pro-
gram that did not immediately function as intended -
a normal occurence as we all know - has developed
his personal theory about what went wrong in this
specific case and why. As a result, the programming
style is modified the next time, i.e. the tricks which
were unsuccessful are avoided, or more attention is
directed to typically error-prone areas.

It would be desirable, of course, that this learning
process, which is individually experienced by a
competent programmer, be expanded to include a
larger group of programmers, or even the entire
profession. In order to realize this, it is necessary
to attempt to generalize the experience accumulated
by each individual programmer. This implies that
it is essential to identify which errors are made by
a large class of programmers.

In my opinion, there are some serious deficiencies in
the investigations published to date in this area.

As an example, | would cite the work of Moulton

and Muller (1). This analysis was based on FOR-
TRAN programs in a university environment (Uni-
versity of Michigan). While a considerable number
of programs (about 5000) was analyzed, the average
program size was only 38 statements. However, even
more characteristic of this kind of study is the fact
that the analysis of different types of errors is limi-
ted to a purely syntactical classification. The same is
true for the statistics of Rubey (2), which he drew
from a comparison of FORTRAN, COBOL, JOVIAL,
and PL/I. The only conclusion that can be drawn on
the basis of these studies is that it is necessary,

for example in FORTRAN, to beware of assignment
and 1/0 statements. This, obviously, is not a practi-
cal conclusion.

The study by Boies and Gould (3) (among other stu-
dies) shows that the problems are normally not found
in the syntax of a language. In this study, the con-
clusion presented is that the proportion of syntax
errors is clearly below 15 %. An attempt to include
the entire activity from problem definition to coding
in a predetermined programming language in the
analysis is very well illustrated by Henderson and
Snowdon (#) . Although only the history of a single
error is described here, this type of investigation
promises to be the most successful.

The following paper is based on an analysis of errors
in system programs. System programs differ from
application programs in that they show an excep-
tionally high degree of parameterization, a broad
spectrum of users, and a long life span.

As a result, not only are they subject to exceptional-
ly high quality requirements, but also, due to the
growth pattern over several releases, acquire a
structure that is no longer clean and cohesive.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F390016.808455&domain=pdf&date_stamp=1975-04-01

The objective of this paper is to investigate what
meaningful conclusions, if any, can be obtained from
an analysis of errors and also to present the conclu-
clusions that can be derived from the specific data

of this analysis.

Object and Method of Investigation

The object of this investigation were the errors dis-
covered during internal tests of the components of the
operating system DOS/VS (Release 28), developed

in the IBM Boeblingen laboratory. This system was
released to customers in the middie of 1973. For a
better understanding of this investigation, the follow-
ing information concerning this project must first

be presented. The first version of DOS was released
in 1966. Extensions and/or improvements of the
system were released first in quarterly and then in
semi-annual intervals. The extent of these changes in
the different versions (the so-called Releases) varied
considerably. The version which is the subject of
this discussion includes the most extensive changes
ever made to the system. The extensions developed
in the Boeblingen laboratory for Release 28 consisted
primarily of the following subprojects, all of which
are a part of the control program:

(a) support of the virtual storage concept

(b) extension of the system from 3 to 5 partitions,
including variable partition priority

(c) support of new card 1/0 devices

(d) support of an optical display device (CRT)
as operator console

(e) several smaller extensions (catalogued proce-
dures, timer per partition, adaptation for
VSAM)

(f) adaptation of the spooling subsystem "POWER"

to the system changes mentioned above.

Concurrently with these extensions, other additions
to the control program were developed, primarily in
the Dutch laboratory, and a new assembler, new
compilers, and data access methods in several labora-
tories, including some in the United States.

The code comprising the system is physically divi-
ded into macros and modules. Macros are those rou-
tines which are contained in the assembler source
format when the system is shipped; modules exist in
their object form. This distinction is not essential in
the following discussion; the term "module" is

used for module or macro.

About 500 modules were affected by the activities in
the Boeblingen laboratory. The average size of these
modules was about 360 lines per module, considering
only the executable code, and about 480 lines per
module if the comments are counted. The entire pro-
ject had the following effect on the system:

Modules instructions

old new

Completely rewritten 169 - 53K
0ld and new code 253 97K 33K
Comment change only 100 7K —
Total 522 104K 86K

The 190K instructions which are cited represent
bxecutable code. Added to this are about 60,000

328

lines of comments. All modules and macros are writ-
ten in DOS Macro Assembler language.

As shown in Figure 1, the size of the individual mo-
dules varies significantly. The relative magnitude

of the change per module also varies greatly. Figure
2 illustrates this for the 253 modules which contain
both old and new code. The two figures together lead
to the conclusion that the typical project activity
consisted of changing or adding about 50 instructions
in an existing module of about 200 instructions. These
facts should make it evident that many methods re-
commended for the construction of error-free pro-
grams (top-down design, structured programming,
and so forth) could hardly be applied in this situ-
ation.

The material used for this study was the record of
errors found in the modules mentioned previously
during a formal test period of five months. This test-
ing phase was only a part, although the most cri-
tical part, of the complete test cycle for the system.
It had been preceded by the tests conducted on a
decentralized basis by the programmers responsi-
ble for each individual module or subproject.

Each subproject had been tested to the point that it
was "ready for integration". This means that the
new functions had been verified to the extent that was
possible while not all components were at the same
level of development.

Conflicts that may have been introduced by the sub-
sequent integration process had also been resolved,
so that this centralized test was begun on an operable
system. The objective of this phase was to test the
complete system with all its components in as many
different configurations and with as many functional
variations as possible. To achieve this objective,

two groups used two different types of test cases.
One group from the development department execu-
ted test cases already used on an earlier version of
the system, but in component and system configura-
tions that varied as much as possible (Regression
test) . A second and independent group had develo-
ped new test cases, based on the externals of the
system. These test cases were designed to simulate
an acceptance test as it would be performed by a cus-
tomer (Beta test).

Additional tests were carried out prior to the delive-
ry of the system to the customers, for example, a per-
formance study, special tests for remote data pro-
cessing, and a field test in the computer center for
selected customers.

The material analyzed here, therefore, cannot pro-
vide a complete picture of all types of errors found in
the course of the project, but only a subset. Typical
errors that would appear in the early stages of a pro-
ject (completely missing routines), with trainee pro-
grammers {syntax errors), or after a hectic period
of changes are unusually scarce in this sample. The
same applies to errors normally found by methods
other than by running test cases.

All irregularities of the system found (or suspected)
by both testing groups were documented according
to their external manifestation, that is, by the effect
they produced in a specific test case. This informa-
tion we call the problem. It was passed to the ori-
ginal development group which analyzed the pro-

blems and wrote a response on a form designated as
the error protocol.

The error protocol first classified the problems in
one of the following groups:

(@) machine error

(b) user or operator error

(c) suggestion for improvement

(d) duplicate (of a previously identified program
error)

(e) documentation error

(f) program error (not previously identified)

The distribution in these classifications is usually
dependent on the nature and also the organization
of a project. The number of duplicates, for ex-
ample, is in inverse proportion to the speed with
which a correction of an identified problem is made
available to the testing group.

Although relevant information certainly may be con-
tained in the other classifications as well, we will
concentrate on classification (f) in the following dis-
cussion. These are the problems accepted as program
errors by the development department. In this study
the entire data base contained about 740 problems

of which 432 were classified as program errors.

1t should be noted that, from the perspective of a
user, this distinction is usually not easily accepted.
Errors in the classifications (a), (d), and (e) can be
as annoying as the program errors themselves. How-
ever, we do not intend to examine them in this study
because they do not originate in the programming
activity per se.

For the sake of completeness, it should also be noted
that all of these errors were corrected prior to the
release of the system.

Possibilities and Limitations of an Error Analysis

The 432 error protocols available for the analysis
contain the following information for each error:

- administrative data on discovery of the pro-
blem (system version, configuration, test
case, date of test run, name of tester etc.)

- description of the problem

- administrative data on the correction made
(changed modules, date of change, name of
programmer, system version into which the
correction is to be integrated, etc.)

- code for the cause of the error; originating
subproject

- description of the correction made.

Confronted with such comprehensive data, a series
of questions come to mind. The following questions
seemed relevant to me:

{(a) Where was the error made? What is the distri-
bution of errors by modules? Are there any
accumulations, that is, modules which were hit
especially hard? If so, what is their function?
How are they structured?

(b} When was the error made? Errors can be
made in each phase of the development cycle,
beginning with the external design of the pro-
ject, during detailed planning of the logic

structure, during the original coding phase,
while correcting an error, etc.

(c) Who made the error? This can be evaluated
in terms of the responsibility of individual
groups during the project cycle (design, im-
plementation), or of individual subprojects or
even programmers.

(d) What was done wrong? Which particular pro-
gramming task has not been solved or solved
incorrectly? The classification of errors re-
sulting from this question can then be the ba-
sis for the following additional questions:

(e} Why was the particular error_made?

What caused the error? Closely related to this
(as we will show later) is the question:

(f) What could have been done to prevent this
particular error?
And finally:

(g) If the error could not be prevented, by which
procedure can this type of error be detec-
ted?

Of course, this series of questions can be expanded
further. A relevant question might be: Which type
of test case detected which type of error? Also, com-
binations of the above questions might be of interest;
for example (b) and (d) together, which would then
be: When is each type of error made?

It will probably be agreed that this catalog of que-
stions is already quite comprehensive. If we couid
find complete and valid answers to these questions,
we would have fewer problems in the future.

The_ following remarks are intended to illustrate the
difficulties that can occur in such an undertaking
and the limitations that must be accepted.

There is, of course, the initial question of how we
can determine what the error really was. To dispose
of this question immediately, we will say right away
that, in the material described here, normally the ac-
tual error was equated to the correction made. This
is not always quite accurate, because sometimes the
real error lies too deep, thus the expenditure in time
is too great, and the risk of introducing new errors
is too high to attempt to solve the real error. In these
cases the correction made has probably only reme-
died a consequence of the error or circumvented the
problem. To obtain greater accuracy in the analysis,
we really should, instead of considering the correc-
tions made, make a comparison between the original-
ly intended implementation and the implementation
actually carried out. For this, however, we usually
have neither the means nor the base material. The
implementaion originally intended may be either no
longer obvious or no longer valid.

For the same reason, the module where the correction
was made need not be the module where the error ori-
ginated. Often the change is made in the module
which has most free space available.

For error analysis in an operating system, it seems
typical that the description of the problem rarely con-
tains much evidence for the type and cause of the er-
ror. Ignoring cases where, for instance, a library
service program produces an output listing in which
some errors can be found directly, the effect of an
error is normally rather indirect. Typical problem
descriptions in an operating system are:

The system is caught in a loop

- Thé device X could not be started, the data set
Y could not be read.
- The system stopped with an invalid operation
code, invalid storage, disk, or device address.
- The card reader K runs with only half its
theoretical speed, etc.
In counting errors it is also not clear what should be
considered as a unit. As a consequence of a problem
it can happen that one or 20 constants are changed,
one or 20 instructions added, and this in one or 5
places in a module, or in one or 5 modules, etc. It
cannot be excluded that when one problem is solved,
other problems are solved too, problems which the
programmer found as he went through the program
again (or which he secretely had been aware of for
some time) . In this study "number of errors" was
equated to "number of problems". Problems, how-
ever, which arose from the same error (duplicates)
had been deducted previously.

Taking into account the limitations just explained, we
believe that we can answer, with some reliability, the
questions a, b, ¢ and d from the material available.
For some questions, however, we have to take into
account other information which does not result di-
rectly from the error protocols. If we want, for in-
stance, to pursue the question of who caused an
error down to a single programmer, we have to con-
sider information about the history of each module
which can be found in the system library. It should
be mentioned here that some questions can be very
dangerous for the personal relations in the group
and should, therefore, be addressed only in a very
sensitive and objective fashion.

We will ignore the whole complex of questions (b)
and (c} and talk about (a) only briefly. We assume
that complex (d) will yield the most interesting infor-
mation. The categorization according to type of er-
rors which we will develop then serves as a basis

for further considerations concerning the questions
(e}, (f), and(g).

Presentation of some Results and Conclusions

In the following sections a selection of the information
which resulted from the described analysis is pre-
sented.

Error Distribution by Modules. This information

is summarized in three figures. Figure 3 shows

the effects of an error in terms of the number of modu-
les to be changed. It is somewhat surprising that-more
than 85% of the errors could be corrected by changing
only one module per error. It contradicts the precon-
ception we have of the interdependence of the modules
in an operating system and the frequently heard obser-
vation that interfaces between modules, in particular,
are sources of errors.

Figure 4 shows the number of errors found per
module, i.e., the inverse of the distribution shown in
Figure 3. Here those errors which affected several
modules as shown in Figure 3 were counted more
than once. The three top items with 28, 19, and 15
errors came as no surprise; they were three of the
largest modules of the system (all had more that
3,000 instructions) . The fourth place in this negative
competition was taken by a relatively small module
which was known to be very unstable. In general, it
will be noted that out of 422 changed or newly-writ-

ten modules, only 202 had any errors at all (48%). If
we then exclude the modules with only one error each,
we find that 78% of the errors (400) are concentrated
in 21% of the modules (90).

Figure 5 shows three comparisons of error frequency.
In each case, a distinction is always made between
modules which contain only new code and modules
which contain both old and new code. The following
is to be noted: the relation between modules with
errors and all the modules, i.e., the error density,
is the same (48%) . Under "number of errors per mo-
dule", the modules with only new code seem to come
out worse at first glance than the modules with mixed
code. The relation is reversed, however, if we con-
sider the size of the newly written code. | doubt

that this data is especially conclusive. It does seem
to confirm the feeling common among programmers
that, after a certain point, it is better to rewrite a
program completely than to try to save as much of
the old code as possible.

Error Distribution by Type of Error. The informa-
tion presented in this section constitutes the essen-

ce of this study. The figures in this section resulted
from an analysis of all program corrections that was
made after completion of all tests.

To draw meaningful conclusions from the material,
the existing data had to be classified and abstracted.
Thus the data becomes comprehensible even for
people without prior knowledge of this particluar op-
erating system. A disadvantage is, of course, a loss
in precision and exemplatory evidence.

Because of the amount of material, the Figures 6-1

to 6-10 are structured in two levels. Figures 6-1, 6-5
and 6-10 show a major classification which we label
here Group A, Group B, and Group C respectively.
The other figures show further detail for some of the
data in Groups A'and B. In Group A this additional
explanation is given only for 3 out of 6 subgroups, in
Group B for 4 out of 7 subgroups. All numbers in the
figures are percentages; all are based on the same
set of 432 errors. The division into the main groups
A, B, and C was done as an afterthought and is justi-
fied below.

The errors in Group A are specific to the problem at
hand. They are errors in the understanding of the
problem and in the choice of an algorithm to solve it.
In other words, often the wrong problem was solved,
or the algorithm selected was not adequate for the -
given problem. The subgroups typify the problems
to be solved in an operating system. In a different
project, e.g. a compiler, other subgroups would
appear.

The errors in Group B are specific to the implemen-
tation process used. Here the errors lie in the more
or less complete and correct implementation of a
given algorithm, in the translation of an algorithm
into a programming language, etc. When different
problems are solved, the same types of errors might
occur, as long as the same procedures and tools are
used for programming. If different procedures are
used, such as higher level languages or off-the-shelf
routines, different classifications would appear.

Group C, finally, are not programming errors in the
strict sense. They are errors in the code which must

not remain there. After their discovery, at least some
can be removed by people who are not programmers
or have no detailed knowledge of the project.

What do these figures tell us? Consider first the over-
all classification: Almost half of all errors (46%) are
found in the area of understanding the problem, of
problem communication, of the knowledge of possibi-
lities and procedures for problem solving. The other
half (38%) are items where we can expect other, pre-
sumably better, results if we use different methods.
This division in two parts of almost equal size seems
to be confirmed in other studies in the same area.
This fact is alarming or encouraging, depending on
the expectations we had for a hundred percent auto-
mation of software production. More specifically,
only half of the mistakes can be avoided with better
programming techniques (better programming lan-
guages, more comprehensive test tools). The other
half must be attacked with better methods of pro-
blem definition (specification languages), a better
understanding of basic system concepts (training,
education), and by making applicable algorithms
available.

Now to the individual subgroups. What the figures
of Group A express can be said as follows: The pro-
biems to be solved in an operating system are ex-
tremely unstructured. The dependence on machine
architecture and configuration details is heavy.
Functional demands on the system cannot be formu-
lated precisely. Things are often changed once the
programmer has seen their effect on the system. The
key problem is the dynamic behaviour of the system.
As is well known, the parallelism of processes and
events makes the system behaviour difficuit to com-
prehend. We have no good tools to attack this pro-
blem.

In Group B we find that typical problems of assem-
bler programming play a major role. Other classifi-
cations, for instance the problem of initialization,
are such well known phenomena that their appearance
in this list is hardly surprising and only the percen-
tage can be of interest. On the whole, the designa-
tions chosen for this group convey the impression
that trivial mix-ups and omissions occur very often..
In the subgroups B2 and B4 this impression may be
correct. However, in the subgroups B1 and B3 there
is very frequently a more complex and deeply rooted
error hidden under the trivial-sounding classifi-
cation.

Group C, finally, illustrates that there is no way
around the technically less attractive tasks in con-
nection with building a large system. They, too,
must be performed with pedantic accuracy.

Cause and Prevention of Errors

The search for the cause of a programming error,
for the "Why", must be conducted on several levels.
Since programming is @ human activity, we really
should consider a broad spectrum for our analysis.
If we do so, we can distinguish the following causes
for errors:

- technological (definability of the problem,
feasibility of solving it, available procedures
and tools),

- organisational (division of work load, avail-
able information, communication, resources),

331

- . historic (history of the project, of the program,
special situations, and external influences),

- group dynamic (willingness to cooperate, di-
stribution of roles inside the project group),

- individual (experience, talent, and constitu-
tion of the individual programmer),

- other, and inexplicable causes.

It is undeniable that the causes of human erring - and

programming errors belong in this category - lie to

an important degree in the psychological-area (that

is in the lower part of the above list). G. Weinberg

(5), for instance, has presented many arguments

for this point of view.

In the following we will adhere to a very narrow per-
spective. | interpret as "cause of an error" that which
should have been different for the error not to occur.
From this viewpoint, cause and prevention of errors
are two sides of the same coin. As | will further limit
my perspective to the two top groups, the technologi-
cal and the organisational causes, | will interpret
- cause of error as the discrepancy between
the difficulty of the problem and the adequacy
of the means applied,
- prevention of errors as all measures capable
of reducing this discrepancy.

It is obvious that even in this very limited perspec-
tive there are still many degrees of freedom and
many uncertainties. In addition, there are always two
ways to reduce, in a given situation, the discrepan-
cy described above. One can either increase the
means applied to solve a given problem or modify the
task so that the available means are more suitable.
Both methods lead to certain recommendations which
may contribute to preventing errors.

On the basis of these considerations we can once
again look at the types of errors (Figures 6-1 to 6-10)
and try to associate with each of these groups the
technical and organizational causes which may lead;
to this type of error. Figures 7-1 to 7-7 establish

this association for the seven most important types of
error which occured in our case. We do not distin-
guish between error cause and error prevention in
these figures, but select the neutral term "error
factor" instead.

As we said above, the error factors thus specified in-
dicate at the same time what is relevant to the cause
of the error and what could be done in order to pre-
vent the particular error. For example, if we accept
as a fact that the cause of an error in device handling
(Group A1) is to be found in the lack of clarity of

the hardware documentation, then this type of error
can be avoided by, improving the clarity of the hard-
ware documentation.

This approach is to be preferred because of its con-
structive aspects. Each result of these studies is a
starting point for changes and improvements. The re-
sults we -get are not always complete and scientifically
absolute, but the things we find out can be influenced
with technical and organizational means. Proposals
based on similar motivations for the prevention of
programming errors can be found in the papers of
Kosy (6), Elspas (7), gnd Lowry (8) among others,

The error factors indicated in Figures 7-1 to 7-6
show only the type of technical or organizational

measures by which the particular type of error can
be affected. The individual lists are not meant to be
complete.

What has been shown by this method is, in any case,
the obvious fact that for each type of error there
exist different causes and therefore different measu-
res have to be taken to prevent them. In other words,
there is not a single cure-all. If, moreover, we think
of the levels of possible error causes which were not
considered in this study, we find as a result a rather
sobering overall picture. The measures we have to
take in order to prevent errors are just as varied as
the types of errors we can identify, and as complexly
structured as are their causes. Any catalog of such
measures that we could work out remains by nature
fragmentary. This type of study, however, can make
that catalog more concrete, and can prioritize the
measures within it.

The Detection of Errors

If we come to the conclusion that possiblities for er-
ror prevention can only be incomplete, the question
arises whether we can deduce anything from the in-
vestigations made so far concerning the possibilities
of error detection. It seems indeed useful to contrast
the classification of errors by type of error previous-
ly presented with the error detection techniques ap-
plied today. Corresponding to the division of types
of errors in the Groups A and B (Group C will be
omitted here) two different sets of procedures are
considered.

For Group A the following measures, which are actu-
ally applied in practice, seem to be the most impor-
tant ones:

A careful examination of the functional (exter-
nal) and the logic (internal) specifications by
outsiders (design walk-though) . These are
usually people who are not directly participa-
ting in the project. In the case of an operating
system they might be: hardware developers,
product planners, sales specialists, applica-
tion programmers etc.,

Additional or overlapping descriptions of the
system by formal methods (e.g. VDL, Petri-
nets, Markov models) .

Use of analytical or simulation models (which"
are normally prepared for performance ana-
lysis) in order to make the behaviour of the
system clear and to understand it better.
Inspection of the written program text by
others (code-walk-through). This can be done
by other experienced programmers of the pro-
ject who know the problem to be solved but not
the method which was chosen for solution.
Test runs by participants of the project or by
outsiders.

(a)

(b)

(c)

(d)

(e)

For group B, the typical catalog of measures is dif-
ferent. Here most weight has to be put on procedures
of program verfication in the strict sense. To these
belong: :

(a) Program inspection by others (see (d) above)

(b} Proof of programs by the methods of Floyd or
Hoare.
(c) Hand simulation of test runs, that is, calcu-

lation of examples with pencil and paper.

332

d)
(e)

Test runs by the author of the program.
Test runs by others (i.e. not the author of
the program.)

It would certainly be asking too much to try to deduce
exact figures on the relative effectiveness of these
procedures and measures from the data available
here. At best we can attempt a relative evaluation of
the different procedures based on experience and
subjective judgement. This we ventured to do with
Figures 8-1 and 8-2. Although the statements thus
obtained may be of a slightly speculative character,
they still can throw light on the kind of problems
connected with such an assessment. In other words,
it is not expected that the particular figures given be
taken to be precise, but it is hoped that they give a
general indication of how the effectiveness of the mea-
sures can be evaluated and expressed.

Figures 8-1 and 8-2 are designed to indicate the sui-
tability of a given error detection procedure for de-
tecting each type of error. This is done by giving the
estimated probability (in percent) that a given
method would be effective. The figures are not abso-
lute but relative to the set of errors that could be dis-
covered by any of the methods. That means that

no information is given about the probability that an
error can be discovered at all, but only, if it is de-
tected, which procedure is most likely to be success-
ful. This explains why the sum of the probabilities

in each line is 100 %. Of course, the question of ab-
solute probability of success would be of greater in-
terest, but because such an estimate would be even
more speculative than the current figures, we have
decided to abstain.

Concluding Remarks

The preceding discussions have - | hope - shown

that while the analysis of programming errors is a
difficult task, it is also a necessary and useful activity.
By means of such an analysis we can derive results

to help us find remedies for certain frequently en-
countered types of errors. The present study was con-
cerned with a specific group of system programs. There-
fore, there are still a number of open questions which
could not be answered on the basis of the material
available. Some of these questions are:

(a) What effect will the application of higher pro-
gramming languages have on system program-
ming? Which types of errors will appear less
frequently?

(b) What general differences are there between

control programs and compilers?
Some of the conclusions which were drawn on the
basis of our data are certainly open to debate. Per-
haps this will stimulate some of my colleagues to
think further in the direction indicated and to sup-
plement, support or refute my interpretation.

Acknowledgements

The author gratefully acknowledges the help recei-
ved from IBM Bdblingen Programming Publication
Department in preparirg the English version of this
paper. Particular thanks are due to Prof. D. Parnas
whose interest in the subject was a source of great
encouragement to the author.

Bibliography

(1) Moulton, P.G. and Muller, M.E.: DITRAN - A
Compiler Emphasizing Diagnostics, CACM 10,
1, (Jan. 1967). " ~.

(2) Rubey, R. et al: Comparative Evaluation of
PL/1, ESD-TR-68-150 {(Apr. 1968)

(3) Boies, S.J. and Gould J.D.: A Behavioral Ana-
lysis of Programming -~ on the Frequency of
Syntactical Errors. IBM Research, Yorktown
Heights, N.Y., RC-3907 (June 1972)

(4) Henderson, P. and Snowdon, R.: An Experi-
ment in Structured Programming, BIT 12 (1972)
pp. 38 - 53

(5) Weinberg, G.: The Psychology of Computer
Programming, Van Nostrand Reinhold, New
York, 1971

{6) Kosy, D.W.: Approaches to Improved Program
Validation through Programming Language De-
sign, in W.G. Hetzel (ed): Program Test
Methods, Prentice Hall, Englewood Cliffs, N.J.
1973

(7) Elspas, B. et al: Software Reliability, IEEE
Computer 4, 1 (January/February 1971)

(8) Lowry, E.: Proposed Language Extensions to

. Aid Coding and Analysis of Large Programs, IBM
Systems Development Division, Poughkeepsie,
N.Y., TR 00.1934 (1969)

100% \Frequency (522=100%)

/
81,5%
80% -
60% -
Average: 360 Instructions/Module
40%
20% -
9%
5%
2% 1
—j-;%—LO’S% 0.5% 0,5%

Size (K) 05 1 1,5 2 2,5 3 3,5 4

Figure 1. Distribution of modules by module size

100%‘ Frequency (253=100%)
3

80%
Average: 200 Instructions/Module
60% -
40%
20% i 45%
27% 26%
' 2%
1 >
Numberof 10! 102 10° 10
changed/added
instructions

Figure 2. Distribution of modules by extent of
change per module

Number of Errors Number of Modules

Affected

371 1

50 2

6 3

3 4

1 5

1 8
432

Figure 3. Number of modules affected by an error

Number of Modules Number of Errors per

Module
112 1
36 2
15 3
1 4
8 5
2 6
4 7
5 8
3 9
2 10
1 14
1 15
1 19
1 28
202 512

Figure 4. Number of errors per module

Code origin| Total Number of | Percenta i i i ;
ge of Al Machine configuration and architecture 10
of module r;;.zmbiar modules modules with A2 Dynamic behaviour and communication
a Irno with errors | errors between processes 17
ules A3 Functions offered 12
New only 169 o1 ug :::g gptput Iti§tings and formats 3
Old + new 253 121 48 A6 P;i?:ro:malrfze ?
Total w22 702 W 3
46
Figure 6-1. Types of errors -
Number of | Number of |Errors per 9 yp Group A
modules errors module
New only 169 254 1.5
Old + new 253 258 1.0
Total 0727 12
422 512 1.2 A2 Dynamic Behaviour and Communication
Size of new| Number of [Errors per between Processes
code errors 1K of cod
© (a) System state which was entered dyna-
mically not identified exactly enough 2.0
gf:f:;y“; 33K gg“ ‘7"8 (b) . In case of sequential transition to an--
Total 33K 258 1.8 other process (especially in forced
86K 512 6.0 termination) status not cleared up. The
Fi F ¢ next process does not find the expec-
igure 5. Frequency of errors ted parameters (e.g. register
contents) 3.0
(c) Registers and control blocks used repea-
tedly were not saved. Interrupt destroys
Al Machine Configuration and Architecture information which is still needed. 4.0
(d) Interrupts were enabled which could
(a) Type of device or device feature not have been masked out. Other inter-
considered; valid I/0 command taken rupts were masked out and thus ig-
for invalid 1.5 nored, although they were important
(b) 1/0 error condition or device status han- for the functioning of the system 3.0
dled incorrectly or not at all 3.0 (e} Logically necessary steps (such
(c) 1/0 command used incorrectly, or simu- as opening a file) were missing,
lated incompletely or incorrectly (in wrong sequence, wrong return
simulating one device by another one) 4.0 branch 3.0
(d) Error statistics .for a device not gene- (f) Incorrect resource allocation; deadlock, .
rated or generated needlessly 1.0 allocation of non-existing or of pre-
(e) External operation mode of a device viously assigned resources. 1.5
handled incorrectly 0.5 (g) [If one function was not generated (or
10.0 not activated) a related subsequent
function was not eliminated at sy~
Figure 6-2. Types of Errors-Group Al stem generation time (or not switched
off at run time) 0.5
17.0
A3 Functions Offered Figure 6-3. Types of errors-Group A2.
(@) Functions are completed, as necessary
for the intended use of the system 2.0
(b) . Functions are added, or generalized,
although not orginally intended 1.5
(c) Functions are completed in order to
zzr;cai:es?ttt;g:,n:scases and other excep- 1.5 B1 Initialization (of fields and areas) 8
(d) Functions are changed in order to B2 Addre;lsab)lluty (in the sense of the ,;
improve usability, security, compa- assemoler 7
tibility etc. 2.0 B3 Refere:nce to names 4
(e) Changes caused externally (e.g pro- B4 Counting and calct:llatlng 2
duct strategy) 2.0 B5 Masks and comparisons f
) Defaults for omitted parameters B6 Estimation of range limits (for ad- .
changed 1.0 dresses and param.eters) o
(g) Message for operator/user added 1.5 87 Pla:j:n?g °é |gsf§r;(uct|ons within a 5
(h) Function is eliminated, because no module, bad tixes =
longer needed 0.5 38
12.0

Figure 6-4. Types of errors-Group A3

Figure 6-5. Types of errors-Group B

B1 Initialization

(a) Control block, register, switch not
cleared or reset before transition
from one routine, process, job etc.
to another .
(b) 1/0 area, buffer, etc. not cleared 5.0
before usage
(c) Fields declared as "Define Storage" 1.0
(without initialization) instead of
as "Define Constant" (with initiali-
zation at program loading)
(d) Cleared only part of a field or table 1.0
(e) Initialization at wrong time or with 0.5
) wrong value 0.5
8.0
Figure 6-6. Types of errors-Group B1.
B3 Reference to Names
(a) Field has meaning different than as-
sumed (e.g. pointer does not contain
address but address of address) 2.0
(b) Reference to wrong register or wrong
field name (possibly because similari-
ty of abbreviations) 2.0
(c) Correct control block found, but refe-
rence to wrong relative entry. Table
addressed with wrong search argu-
ment. 1.5
(d) Mix-up of system constants (partition
number, SVC number) 1.5
7.0
Figure 6-8. Types of errors-Group B3.
(03} Spelling errors in messages and
commentaries [
C2 Missing commentaries or flowcharts
(standards) 5
C3 Incompatible status of macros or
modules (integration errors) 5
Csy Not classifiable 2
16
Figure 6-10. Types of errors-Group C.
Al Machine Configuration and Architecture
1. Number of different device types and device
features.
2. Device specific properties and variations in
error treatment.
3. Availability and clarity of hardware documen-
tation.
. Contact to and communication with hardware
developers.

5. Central or decentralized handling of {/0 de-

vices in the system.
6. Experience in operation of a device.

B2 Addressability
(@) Assignment, loading, or saving of

address registers forgotten (espe-

cially when code increases) 2.0
{b) Effects of changes in the length of

constants, messages, etc. on adja-~

cent storage areas overlooked 1.0
(c) Code, areas, and data overwritten

since storage was used twice (or

more) 1.0
(d) Mix-ups between absolute and relo-

catable, real and virtual addresses

(especially when accessing the lower

storage areas) 1.0
(e) Alignment to word boundaries in-

correct 1.0
(f) ORG, LTORG added or changed 0.5
(g) Splitting of a phase that exceeded

defined storage limits 0.5

7.0

Figure 6-7. Types of errors-Group B2.
B4 Counting and Calculating
(@) Incorrect calculation or counting of

field or record lengths, area sizes

(discrepancy not specified) 2.0
(b) Like (a) (with discrepancy of

1 byte) 1.5
(c) Incorrect displacement (relative

address) 1.0
(d) Incorrect testing of a loop condition

(too early stop, infinite loop) 1.0
(e) Programmed counter of records,

lines etc. gives wrong values 1.0
(f) Transformation from decimal to hexa-

decimal is missing; binary to decimal

transformation is wrong 0.5
(g) Calculation of disk addresses, number

of tracks, or track capacity is wrong 1.

8.0

Figure 6-9. Types of errors-Group B4.

A2

N

Dynamic Behaviour and Communication
between Processes

Representation of process information in the

system (clarity, security)

Structuring of process hierarchy.

Description of interfaces and communication

needs of all processes

(a) explicit parameters (sequence, meaning,
format)

(b) shared data areas (implicit parameters)

Standardized routines (macros), supporting

process monitoring at a higher level, forcing

clearance of system status, etc.

Description techniques for dynamic events,

interaction between processes, etc.

Description of resources, their properties,

their status.

Central or decentralized handling of super-

visory functions, resource allocation, etc.

Figure 7-1. Error factors-Group Al.

335

Figure 7-2. Error factors-Group A2.

A3

W N =

Functions Offered

Quality of specifications

Experience with similar systems

Statistical information on user profiles, data
volumes, operating modes.

Clarification of and concentration on worst
cases, exceptional situations.

Self-discipline with one's own "bright-ideas"
and external suggestions.

B1 Initialization

1. Forced initialization or warning message by
language translator if initialization is missing

2, Automatic adaptation of operations to field
length (e.g. clear the whole field)

3. Analysis of routines for effect on control
blocks, registers, and data fields.

4, Specification of explicit and implicit parameters,
of allowed and expected value ranges.

Figure 7-3. Error factors-Group A3.

Figure 7-4. Error factors-Group B1.

B2

1.
2.
3

Addressability

Extension of symbolic addressing
Extendability of address space

Delineation of address spaces for each routine
("need to know")

Figure 7-5. Error factors-Group B2.

BY

e

Counting and Calculating

Self-decribing data and areas

Powerful loop commands to be linked to data
descriptions (e.g. reiterate for al! entries of
a table)

Tables or easily-accessible transformation
routines for the calculation of

disk addresses or track capacities

More regula-ity in the addressing structure
for all devices; symbolic addressing

Figure 7-7. Error factors-Group B4,

B3 Reference to Names

1. Syntax of names

2, Possibility of qualification for names

3 Representation of the role of a field and indi-
cation of routines with access rights

4, Associative addressing of tables

Figure 7-6. Error factors-Group B3.

Detection Method Examination | Formal Simulation, Program |Test runs
of specs by | description model inspection

Type of Error others methods building by others
A1 Machine configuration + archi-

tecture 30 10 10 20 30
A2 Dynamic behaviour + commu-~

nication 10 20 20 20 30
A3 Functions offered 40 - - 20 40
AL Qutput listings and formats 30 10 - 10 50
A5 Diagnostics 20 20 - 20 40
A6 Performance 10 10 30 10 40

Figure 8-1. Error detection-Group A.

Detection Method Program Floyd/Hoare|Simulation | Test runs [est runs
inspection method of |of test runs| by the by others
Type of Error by others proof programmer]
B1 Initialization 30 10 10 20 30
B2 Addressability 20 - 10 30 40
B3 Reference to names 20 20 10 20 30
B4 Counting and calculating 20 20) 20 20 20
B5 Masks and comparisons 20 10 20 20 30
B6 Estimation of range limits 30 10 10 20 30
B7 Placing of code 30 - - 30 40

Figure 8-2. Error detection-Group B.

336

