
AN AhlALYSIS OF ERRORS AND THEIR CAUSES
IN SYSTEM PROGRAMS

A lbe r t Endres, IBM Laboratory
Boebl ingen, Germany

Keywords

Programming methodology

Program test ing

Software re l i ab i l i t y

Software e r r o r c lassi f icat ion

Abst rac t

Program e r ro rs detected du r i ng internal test ing of
the opera t ing system DOS/VS form the basis for an
invest igat ion of e r r o r d i s t r i bu t ions in system p ro -
grams. Using a c lassi f icat ion of the e r ro r s accord ing
to var ious a t t r ibu tes , conclusions can be d rawn con-
cern ing the possible causes of these e r ro r s . The in -
format ion thus obtained is appl ied in a d iscussion of
the most effect ive methods for the detect ion and p re -
vent ion of e r r o r s .

Contents

In t roduct ion

Object and Method of Invest igat ion

Possib i l i t ies and Limitat ions of an E r ro r Analys is

Presentat ion of some Results and Conclusions
E r ro r D is t r ibu t ion by Modules
E r ro r D is t r ibu t ion by Type of E r ro r

Cause and Prevent ion of Er ro rs

Detection of Er ro rs

Conc lud ing Observat ions

In t roduct ion

It should be useful for all who attempt to improve the
re l i ab i l i t y of sof tware to know as much as possib le
about the types of e r ro r s that actual ly occur in p ro -
grams. Almost everyone who has ever wr i t t en a p ro -
gram that d id not immediate ly funct ion as intended -
a normal occurence as we al l know - has developed
his personal theory about what went wrong in this
speci f ic case and why . As a resu l t , the p rogramming
style is modif ied the next t ime, i .e . the t r i cks which
were unsuccessful are avoided, or more attent ion is
d i rec ted to t yp i ca l l y e r r o r - p r o n e areas.

It would be des i rab le , of course, that this learn ing
process, which is i nd i v i dua l l y exper ienced by a
competent p rog rammer , be expanded to inc lude a
la rger g roup of p rogrammers , o r even the ent i re
profession. In o rde r to real ize th is , it is necessary
to attempt to genera l ize the exper ience accumulated
by each ind iv idua l p rog rammer . Th is impl ies that
i t is essential to ident i fy which e r ro r s are made by
a large class of p rogrammers .

In my op in ion, there are some serious def ic iencies in
the invest igat ions pub l ished to date in this area.
As an example, 1 wou ld cite the wo rk of Moulton
and Mul ler (1). Th is analys is was based on FOR-
TRAN programs in a un i ve rs i t y env i ronment (Uni -
ve rs i t y of Mich igan) . While a cons iderable number
of programs (about 5000) was analyzed, the average
p rogram size was on ly 38 statements. However, even
more character is t ic of this k ind of study is the fact
that the analys is of d i f fe rent types of e r r o r s is l im i -
ted to a pu re l y syntact ical c lass i f icat ion. The same is
t rue for the stat ist ics of Rubey (2), which he d rew
from a compar ison of FORTRAN, COBOL, JOVIAL,
and PL/ I . The only conclusion that can be d rawn on
the basis of these studies is that i t is necessary,
for example in FORTRAN, to beware of assignment
and 1/O statements. Th is , obv ious ly , is not a p rac t i -
cal conclus ion.

The s'tudy by Boies and Gould (3) (among other stu-
dies) shows that the problems are normal ly not found
in the syntax of a language. In this s tudy, the con-
c lusion presented is that the propor t ion of syntax
e r ro r s is c lear ly below 15 ~o. An attempt to inc lude
the ent i re ac t i v i t y from prob lem def in i t ion to coding
in a predetermined p rogramming language in the
analysis is ve ry wel l i l lus t ra ted by Henderson and
Snowdon (4). A l though on ly the h is tory of a s ing le
e r r o r is descr ibed here, th is type of invest igat ion
promises to be the most successful.

The fo l lowing paper is based on an analys is of e r ro r s
in system programs. System programs d i f fe r from
appl icat ion programs in that they show an excep-
t iona l l y h igh degree of parameter izat ion, a broad
spectrum of users, and a long l i fe span.

As a resu l t , not only are they subject to except iona l -
ly h igh qua l i t y requ i rements , but also, due to the
g rowth pat tern over several releases, acqui re a
s t ruc tu re that is no longer clean and cohesive.

327

http://crossmark.crossref.org/dialog/?doi=10.1145%2F390016.808455&domain=pdf&date_stamp=1975-04-01

The object ive of th is paper is to invest igate what
meaningful conclusions, i f any, can be obtained from
an analys is of e r r o r s and also to present the conclu-
c lus ions that can be der i ved from the speci f ic data
of th is analys is .

Obiect and Method of Invest igat ion

The object of th is invest igat ion were the e r ro r s d i s -
covered du r i ng in ternal tests of the components of the
opera t ing system DOS/VS (Release 28), developed
in the IBM Boebl ingen labora tory . Th is system was
released tO customers in the midd le of 1973. For a
bet ter unders tand ing of th is invest igat ion, the fo l low-
ing informat ion concern ing this pro jec t must f i r s t
be presented. The f i r s t vers ion of DOS was released
in 1966. Extensions and /o r improvements of the
system were released f i r s t in qua r t e r l y and then in
semi-annual in te rva ls . The extent of these changes in
the d i f fe rent vers ions (the so-cal led Releases) va r ied
cons iderab ly . The vers ion which is the subject of
th is d iscussion includes the most extensive changes
ever made to the system. The extensions developed
in the Boebl ingen labora tory for Release 28 consisted
p r i m a r i l y of the fo l lowing subpro jec ts , al l of which
are a par t of the control p rogram:

(a) suppor t of the v i r tua l storage concept
(b) extension of the system from 3 to 5 par t i t ions ,

inc lud ing var iab le par t i t ion p r i o r i t y
(c) suppor t of new card I /O devices
(d) suppor t of an opt ical d i sp lay device (CRT)

as operator console
(e) several smal ler extensions (catalogued proce-

dures , t imer per par t i t i on , adaptat ion for
VSAM)

(if) adaptat ion of the spool ing subsystem "POWER"
to the system changes mentioned above.

Concur ren t l y w i th these extensions, other addi t ions
to the contro l p rogram were developed, p r i m a r i l y in
the Dutch labora to ry , and a new assembler , new
compi le rs , and data access methods in several labora-
tor ies, inc lud ing some in the United States.

The code compr is ing the system is phys ica l l y d i v i -
ded into macros and modules. Macros are those rou-
t ines which are contained in the assembler source
format when the system is shipped; modules ex is t in
the i r object form. Th is d is t inc t ion is not essential in
the fo l low ing discussion; the term "module" is
used for module or macro.

About 500 modules were affected by the act iv i t ies in
the Boebl ingen labora tory . The average size of these
modules was about 360 l ines per module, cons ider ing
on ly the executable code, and about 480 l ines per
module i f the comments are counted. The ent i re p ro -
ject had the fo l lowing effect on the system:

Modules Inst ruct ions
old new

Completely rewr i t t en 169 - 53K
Old and new code 253 97K 33K
Comment change on ly I0_._0 7K -
Total 522 I04K 86K

The 190K inst ruct ions which are ci ted represent
~xecutable code. Added to th is are about 60,000

l ines of comments. Al l modules and macros are w r i t -
ten in DOS Macro Assembler language.

As shown in F igure 1, the size of the ind i v idua l mo-
dules var ies s ign i f i can t l y . The re la t ive magni tude
of the change per module also var ies g rea t l y . F igure
2 i l lus t ra tes this for the 253 modules wh ich contain
both old and new code. The two f igures together lead
to the conclusion that the typ ica l pro jec t ac t i v i t y
consisted of changing or adding about SO ins t ruc t ions
in an ex is t ing module of about 200 ins t ruc t ions . These
facts should make i t ev ident that rnany methods re-
commended for the construct ion of e r r o r - f r e e p ro -
grams (top-down des ign, s t ruc tu red p rog ramming ,
and so for th) could ha rd l y be app l ied in th is s i tu -
at ion.

The mater ia l used for th is s tudy was the record of
e r r o r s found in the modules mentioned p rev ious l y
d u r i n g a formal test per iod of f ive months. Th is test -
ing phase was on ly a par t , a l though the most c r i -
t ical par t , of the complete test cycle for the system.
It had been preceded by the tests conducted on a
decent ra l ized basis by the p rogrammers respons i -
ble for each ind iv idua l module or subpro jec t .
Each subpro jec t had been tested to the point that i t
was " ready for i n teg ra t ion" . Th is means that the
new funct ions had been ve r i f i ed to the extent that was
possib le wh i le not all components were at the same
level of development .

Conf l ic ts that may have been in t roduced by the sub-
sequent in tegrat ion process had also been reso lved,
so that th is cent ra l i zed test was begun on an operable
system. The ob ject ive of th is phase was to test the
complete system w i th al l its components in as many
d i f fe rent conf igurat ions and w i th as many funct ional
var ia t ions as poss ib le . To achieve th is ob ject ive,
two groups used two d i f fe rent types of test cases.
One group from the development depar tment execu-
ted test cases a l ready used on an ea r l i e r vers ion of
the system, but in component and system con f igu ra -
t ions that var ied as much as possib le (Regression
tes t) . A second and independent g roup had deve lo-
ped new test cases, based on the ex terna ls of the
system. These test cases were designed to simulate
an acceptance test as i t would be per formed by a cus-
tomer (Beta tes t) .

Add i t iona l tests were ca r r ied out p r i o r to the de l i ve -
ry of the system to the customers, for example, a pe r -
formance s tudy , special tests for remote data p ro -
cessing, and a f ie ld test in the computer center for
selected customers.

The mater ia l analyzed here, therefore, cannot p r o -
v ide a complete p ic ture of al l types of e r r o r s found in
the course of the pro jec t , but on ly a subset. Typ ica l
e r r o r s that would appear in the ear ly stages of a p ro -
ject (completely miss ing rou t ines) , w i th t ra inee p ro -
grammers (syntax e r r o r s) , or af ter a hect ic per iod
of changes are unusual ly scarce in th is sample. The
same appl ies to e r ro r s normal ly found by methods
other than by runn ing test cases.

Al l i r r egu la r i t i e s of the system found (or suspected)
by both test ing g roups were documented accord ing
to the i r externa l manifestat ion, that is, by the effect
they produced in a speci f ic test case. Th is in forma-
t ion we cal l the prob lem. It was passed to the o r i -
g inal development g roup which analyzed the p ro -

328

blems and wro te a .response on a form designated as
the e r r o r protocol .

The e r r o r protocol f i r s t c lassi f ied the prob lems in
one of the fo l lowing groups:

(a) machine e r r o r
(b) user or operator e r r o r
(c) suggest ion for improvement
(d) dup l ica te (of a p rev ious l y ident i f ied p rogram

e r ro r)
(e) documentat ion e r r o r
(t f) p rogram e r r o r (not p rev ious l y ident i f ied)

The d i s t r i bu t i on in these c lassi f icat ions is usua l ly
dependent on the nature and also the organ izat ion
of a pro jec t . The number of dupl icates, for ex -
ample, is in inverse p ropor t ion to the speed w i th
which a cor rec t ion of an ident i f ied prob lem is made
avai lab le to the test ing g roup .

A l though re levant in format ion cer ta in ly may be con-
tained in the other c lassi f icat ions as we l l , we w i l l
concentrate on c lassi f icat ion {tf) in the fo l lowing d i s -
cussion. These are the problems accepted as p rogram
e r ro rs by the development depar tment . In this s tudy
the ent i re data base contained about 7q0 problems
of wh ich q32 were c lassi f ied as p rogram e r ro r s .

It should be noted that, f rom the perspect ive of a
user , th is d is t inc t ion is Usual ly not easi ly accepted.
E r ro rs in the c lassi f icat ions (a) , (d) , and (e) can be
as annoying as the p rogram e r ro rs themselves. How-
ever , we do not intend to examine them in th is s tudy
because they do not o r ig ina te in the p rogramming
ac t i v i t y per se.

For the sake of completeness, i t should also be noted
that al l of these e r ro r s were corrected p r i o r to the
release of the system.

Possib i l i t ies and Limitat ions of an E r ro r Analys is

The q32 e r r o r protocols avai lab le for the analys is
contain the fo l lowing informat ion for each e r ro r :

admin is t ra t i ve data on d iscovery of the p ro -
blem (system vers ion , conf igura t ion, test
case, date of test run , name of tester etc .)
descr ip t ion of the prob lem
admin is t ra t i ve data on the cor rec t ion made
(changed modules, date of change, name of
p rogrammer , system vers ion into wh ich the
cor rec t ion is to be in tegrated, etc .)
code for the cause of the e r ro r ; o r i g ina t i ng
subpro jec t
descr ip t ion of the cor rec t ion made.

Confronted w i th such comprehensive data, a ser ies
of quest ions come to mind. The fo l lowing quest ions
seemed re levant to me:

(a) Where was the e r r o r made? What is the d i s t r i -
but ion of e r r o r s by modules? Are there any
accumulat ions, that is , modules which were h i t
espec ia l ly hard? If so, what is the i r function?
How are they st ructured?

(b) When was the e r r o r made? Er ro rs can be
made in each phase of the development cycle,
beg inn ing w i th the externa l design of the p ro -
ject , d u r i n g detai led p lann ing of the logic

s t ruc tu re , du r i ng the o r ig ina l coding phase,
wh i le co r rec t ing an e r r o r , etc.

(c) Who made the e r ro r? This can be evaluated
in terms of the respons ib i l i t y of i nd i v i dua l
g roups d u r i n g the pro jec t cycle {des ign, im-
p lementat ion) , or of i nd iv idua l subpro jects o r
even p rogrammers .

(d) What was done wrong? Which pa r t i cu la r p ro -
g ramming task has not been solved or solved
incorrect ly? The c lassi f icat ion of e r ro r s re-
su l t ing from this quest ion can then be the ba-
sis for the fo l lowing addi t ional quest ions:

(e) Why was the pa r t i cu la r e r r o r made?
What caused the er ror? Closely related to th is
(as we w i l l show later) is the quest ion:

i f) What could have been done to prevent th is
pa r t i cu la r e r ror?
And f ina l ly :

(g) I f the e r r o r could not be prevented, by which
procedure can this type of e r r o r be detec-
ted?

Of course, th is ser ies of quest ions can be expanded
fu r the r . A re levant quest ion might be: Which type
of test case detected which type of er ror? Also, com-
b inat ions of the above quest ions might be of interest ;
for example (b) and (d) together , which wou ld then
be: When is each type of e r r o r made?
It w i l l p robab ly be agreed that th is catalog of que-
st ions is a l ready qui te comprehensive. If we could
f ind complete and va l id answers to these quest ions,
we would have fewer problems in the fu ture .

The fo l lowing remarks are intended to i l lus t ra te the
d i f f i cu l t ies that can occur in such an under tak ing
and the l imi tat ions that must be accepted.

There is, of course, the in i t ia l quest ion of how we
can determine what the e r r o r rea l ly was. To dispose
of this quest ion immediate ly , we w i l l say r i gh t away
that, in the mater ia l descr ibed here, norma l l y the ac-
tual e r r o r was equated to the cor rect ion made. Th is
is not a lways qui te accurate, because sometimes the
real e r r o r l ies too deep, thus the expend i tu re in t ime
is too great , and the r i sk of in t roduc ing new e r ro rs
is too h igh to attempt to solve the real e r r o r . In these
cases the cor rec t ion made has p robab ly on ly reme-
d ied a consequence of the e r r o r or c i rcumvented the
prob lem. To obtain greater accuracy in the analys is ,
we rea l l y should, instead of cons ider ing the co r rec -
t ions made, make a compar ison between the o r i g i n a l -
ly intended implementat ion and the implementat ion
actua l ly ca r r ied out. For th is , however , we usuall'~
have ne i ther the means nor the base mater ia l . The
implementaion o r i g i n a l l y intended may be e i ther no
longer obvious or no longer va l id .

For the same reason, the module where the cor rec t ion
was made need not be the module where the e r r o r o r i -
g inated. Often the change is made in the module
which has most free space ava i lab le .

For e r r o r analys is in an operat ing system, i t seems
typ ica l that the descr ip t ion of the prob lem ra re ly con-
tains much evidence for the type and cause of the e r -
ro r . i gnor ing cases where , for instance, a l i b r a r y
serv ice p rogram produces 'an output l is t ing in which
some e r ro rs can be found d i rec t l y , the effect of an
e r r o r is normal ly ra ther ind i rec t . Typ ica l p rob lem
descr ip t ions in an operat ing system are:

The system is caught in a loop

329

- Th~ dev ice X could not be s tar ted , the data set
Y could not be read.

- The system stopped w i th an i n v a l i d opera t ion
code, i nva l i d s torage, d i sk , or dev ice address .

- The card reader K runs w i th on l y ha l f i ts
theore t ica l speed, etc.

In coun t ing e r r o r s i t is also not c lear what should be
cons idered as a un i t . As a consequence of a p rob lem
i t can happen that one or 20 constants are changed,
one or 20 ins t ruc t ions added, and th is in one or S
places in a module, or in one or 5 modules, etc. It
cannot be exc luded that when one pPoblem is so lved ,
o the r p rob lems are so lved too, p rob lems wh ich the
p r o g r a m m e r found as he went t h rough the p rog ram
again (or wh ich he secre te ly had been aware of for
some t ime) . In th is s tudy "number of e r r o r s " was
equated to "number of p rob lems" . Prob lems, how-
eve r , wh ich arose f rom the same e r r o r (dupl icates)
had been deducted p r e v i o u s l y .

Tak i ng into account the l imi ta t ions jus t exp la i ned , we
be l ieve that we can answer , w i t h some r e l i a b i l i t y , the
quest ions a, b, c and d f rom the mater ia l ava i l ab le .
For some quest ions , howeve r , we have to take into
account o the r in fo rmat ion wh ich does not resu l t d i -
r ec t l y f rom the e r r o r pro toco ls . If we want , for in -
stance, to pursue the quest ion of who caused an
e r r o r down to a s ing le p rog rammer , we have to con-
s ider in fo rmat ion about the h i s t o r y of each module
wh ich can be found in the system l i b r a r y . It should
be ment ioned here that some quest ions can be v e r y
dangerous for the personal re la t ions in the g r o u p
and shou ld , the re fo re , be addressed on l y in a v e r y
sens i t i ve and ob jec t i ve fashion.

We w i l l i gnore the who le complex of quest ions (b)
and (c) and ta lk about (a) on l y b r i e f l y . We assume
that complex (d) w i l l y i e l d the most i n te res t ing i n f o r -
mat ion. The ca tegor iza t ion accord ing to t ype of e r -
ro rs wh ich we w i l l deve!op then serves as a basis
for f u r t he r cons idera t ions concern ing the quest ions
(e) , (f) , a n d (g) .

Presentat ion of some Results and Conc lus ions

In the f o l l ow ing sect ions a se lect ion of the in fo rmat ion
wh ich resu l ted f rom the descr ibed ana lys i s is p re -
sented.

E r r o r D i s t r i bu t i on by Modu les . Th is in fo rmat ion
is summar ized in th ree f i gu res . F igu re 3 shows
the effects of an e r r o r in terms of the number of modu-
les to be changed. It is somewhat s u r p r i s i n g t h a t m o r e
than 8S~ of the e r r o r s could be cor rec ted b y chang ing
on l y one module per e r r o r . It cont rad ic ts the p recon-
cept ion we have of the in te rdependence of the modules
in an opera t i ng system and the f r e q u e n t l y heard obse r -
va t ion that in ter faces between modules, in pa r t i cu l a r ,
are sources of e r r o r s .

F igu re 4 shows the number of e r r o r s found per
module, i . e . , the i nve rse of the d i s t r i b u t i o n shown in
F igu re 3. Here those e r r o r s wh ich affected severa l
modules as shown in F igu re 3 were counted more
than once. The th ree top items w i th 28, 19, and IS
e r r o r s came as no su rp r i se ; they were th ree of the
la rgest modules of the system (all had more that
3,000 i ns t ruc t i ons) . The four th place in th is nega t i ve
compet i t ion was taken by a r e l a t i v e l y smal l module
wh ich was known to be v e r y uns tab le . In genera l , i t
w i l l be noted that out of 422 changed or n e w l y - w r i t -

ten modules, on l y 202 had any e r r o r s at al l (4896). I f
we then exc lude the modules w i th on l y one e r r o r e a c h ,

we f ind that 78~ of the e r r o r s (400) are concent ra ted
in 21~o of the modules (90).

F igu re 5 shows th ree compar isons of e r r o r f r e q u e n c y .
In each case, a d i s t i nc t ion is a lways made between
modules wh ich conta in on l y new code and mSdules
wh ich conta in both o ld and new code. The fo l l ow ing
is to be noted: the re la t ion between modules w i th
e r r o r s and al l the modules, i . e . , the e r r o r dens i t y ,
is the same (48%). Under "number of e r r o r s pe r mo-
du l e " , the modules w i th on l y new code seem to come
out worse at f i r s t g lance than the modules w i t h mixed
code. The re la t ion is r eve rsed , howeve r , i f we con-
s ider the size of the n e w l y w r i t t e n code. I doubt
that th is data is espec ia l l y conc lus i ve . It does seem
to con f i rm the fee l ing common among p rog rammers
that , a f ter a cer ta in po in t , i t is be t te r to r e w r i t e a
p r o g r a m comple te ly than to t r y to save as much of
the o ld code as poss ib le .

E r r o r D i s t r i bu t i on by Type of E r ro r . The in fo rma-
t ion presented in th is sect ion const i tu tes the essen-
ce of th is s tudy . The f igu res in th is sect ion resu l ted
f rom an ana lys is of al l p rog ram co r rec t i ons that was
made af ter complet ion of al l tests.

To d r a w meaningfu l conc lus ions f rom the mate r ia l ,
the ex i s t i ng data had to be c lass i f ied and abs t rac ted .
Thus the data becomes comprehens ib le even for
people w i thou t p r i o r know ledge of th is p a r t i c l u a r op -
e ra t i ng system. A d i sadvan tage is, of course, a loss
in p rec is ion and exemp la to r y ev idence .

Because of the amount of ma te r ia l , the F igures 6- I
to 6-10 are s t ruc tu red in two leve ls . F igures 6 - I , 6-5
and 6-10 show a major c lass i f ica t ion wh ich we label
here Group A, Group B, and Group C r e s p e c t i v e l y .
The o ther f i gu res show f u r t h e r deta i l for some of the
data in Groups A and B. In Group A th is add i t iona l
exp lana t i on is g i ven on l y for 3 out of 6 subg roups , in
Group B for 4 out of 7 subg roups . A l l numbers in the
f i gu res are percentages; al l a re based on the same
set of 432 e r r o r s . The d i v i s i o n into the main g roups
A, B, and C was done as an a f te r though t and is j u s t l -
f led be low.

The e r r o r s in Group A are speci f ic to the p rob lem at
hand. They are e r r o r s in the unde rs tand ing of the
p rob lem and in the choice of an a l go r i t hm to so lve i t .
In o ther wo rds , often the w r o n g p rob lem was so lved ,
or the a l go r i t hm selected was not adequate for the
g i ven p rob lem. The subgroups t y p i f y the p rob lems
to be so lved in an opera t i ng system. In a d i f f e ren t
p ro jec t , e . g . a comp i le r , o the r subgroups wou ld
appear .

The e r r o r s in Group B a r e speci f ic to the imp lemen-
ta t ion process used. Here the e r r o r s l ie in the more
o r less complete and co r rec t imp lementa t ion of a
g i ven a lgo r i t hm, in the t rans la t i on of an a l go r i t hm
into a p rog ramming language, etc. When d i f f e ren t
p rob lems are so lved , the same types of e r r o r s migh t
occur , as long as the same p rocedures and tools are
used for p r o g r a m m i n g . If d i f f e ren t p rocedures are
used, such as h i g h e r level languages or o f f - t h e - s h e l f
rou t ines , d i f f e ren t c lass i f ica t ions wou ld appear .

Group C, f i n a l l y , are not p rog ramming e r r o r s in the
s t r i c t sense. They are e r r o r s in the code wh ich must

330

not remain there . Af ter t he i r d i s c o v e r y , at least some
can be removed by people who are not p rog rammers
or have no deta i led know ledge of the pro jec t .

What do these f igures tel l us? Cons ider f i r s t the o v e r -
al l c lass i f icat ion: Almost ha l f of al l e r r o r s (46%) are
found in the area of unde rs tand ing the p rob lem, of
p rob lem communicat ion, of the know ledge of poss ib i -
l i t ies and p rocedures for p rob lem so l v i ng . The o ther
ha l f (38~) are items where we can expect o ther , p re -
sumab ly be t te r , resul ts i f we use d i f fe ren t methods.
Th is d i v i s i on in two par ts of almost equal size seems
to be conf i rmed in o ther s tudies in the same area.
Th is fact is a la rm ing or encourag ing , depend ing on
the expecta t ions we had for a hund red percent auto-
mation of sof tware p roduc t ion . More spec i f i ca l l y ,
on l y ha l f of the mistakes can be avo ided w i th bet ter
p rog ramming techniques (bet ter p rog ramming lan-
guages, more comprehens ive test too ls) . The o ther
ha l f must be at tacked w i th bet ter methods of p ro -
blem de f in i t i on (speci f icat ion languages) , a bet ter
unde rs tand ing of basic system concepts (t r a i n i ng ,
educa t ion) , and by mak ing app l i cab le a lgor i thms
ava i lab le .

Now to the i nd i v i dua l subgroups . What the f igures
of Group A express can be said as fo l lows: The p ro -
blems to be so lved in an opera t ing system are e x -
t reme ly uns t ruc tu red . The dependence on machine
a rch i tec tu re and con f igu ra t ion deta i ls is heavy .
Funct ional demands on the system cannot be fo rmu-
lated p rec i se l y . Th ings are often changed once the
p rog rammer has seen the i r effect on the sys tem. The
key p rob lem is the dynamic behav iou r of the system.
As is wel l known , the para l le l i sm of processes and
events makes the system behav iou r d i f f i cu l t to com-
p rehend . We have no good tools to at tack th is p ro -
b lem.

In Group B we f ind that typ ica l prob lems of assem-
b le r p rog ramming p lay a major ro le . Other c lass i f i -
cat ions, for instance the prob lem of i n i t i a l i za t i on ,
are such wel l known phenomeoa that t he i r appearance
in th is l ist is h a r d l y s u r p r i s i n g and on ly the percen-
tage can be of in terest . On the who le , the des igna-
t ions chosen for th is g roup convey the impress ion
that t r i v i a l m ix -ups and omissions occur v e r y often.,
In the subgroups B2 and B4 th is impress ion may be
cor rec t . However , in the subgroups BI and B3 there
is v e r y f r equen t l y a more complex and deep ly rooted
e r r o r h idden under the t r i v i a l - s o u n d i n g c lass i f i -
cat ion.

Group C, f i na l l y , i l l us t ra tes that there is no way
around the techn ica l l y less a t t rac t i ve tasks in con-
nect ion w i th bu i l d i ng a large system. They , too,
must be per fo rmed w i th pedant ic accuracy .

Cause and Prevent ion of E r ro rs

The search for the cause of a p rog ramming e r r o r ,
for the "Why" , must be conducted on severa l leve ls .
Since p rog ramming is a human ac t i v i t y , we r ea l l y
should cons ider a broad spect rum for our ana lys is .
If we do so, we can d i s t i ngu i sh the fo l low ing causes
for e r ro r s :
- technolog ica l (de f i nab i l i t y of the p rob lem,

feas ib i l i t y of so l v ing it, ava i l ab le p rocedures
and too ls) ,

- organ isa t iona l (d i v i s ion of w o r k load, ava i l -
ab le in fo rmat ion , communicat ion, resources) ,

- h is to r i c (h i s to ry of the p ro jec t , of the p rog ram,
special s i tua t ions, and ex te rna l in f luences) ,

- g roup dynamic (w i l l i ngness to cooperate, d i -
s t r i bu t i on of ro les ins ide the p ro jec t g r o u p) ,

- i n d i v i d u a l (exper ience , ta len t , and cons t i tu -
t ion of the i n d i v i d u a l p r o g r a m m e r) ,

- other , and inexp l i cab le causes.
It is unden iab le that the causes of human e r r i n g - and
p rog ramming e r r o r s be long in th is ca tegory - l ie to
an impor tan t degree in the psycholog ica l , area (that
is in the lower par t of the above l i s t) . G. Weinberg
(5), for instance, has presented many arguments
for th is point of v i ew .

In the fo l l ow ing we w i l l adhere to a v e r y n a r r o w pe r -
spect ive . I i n t e rp re t as "cause of an e r r o r " that wh ich
should have been d i f fe ren t for the e r r o r not to occur .
From th is v i ewpo in t , cause and p reven t i on of e r r o r s
are two sides of the same coin. As I w i l l f u r t he r l im i t
my perspec t i ve to the two top g roups , the techno log i -
cal and. the o rgan isa t iona l causes, I w i l l i n t e rp re t

cause of e r r o r as the d i sc repancy between
the d i f f i cu l t y of the p rob lem and the adequacy
of the means app l ied ,
p reven t i on of err.ors as al l measures capable
of reduc ing th is d i sc repancy .

It is obv ious that even in th is v e r y l imi ted perspec-
t i ve there are st i l l many degrees of f reedom and
many uncer ta in t i es . In add i t ion , there are a lways two
ways to red(Jce, in a g i ven s i tua t ion , the d i sc repan -
cy descr ibed above. One can e i the r increase the
means app l ied to solve a g i ven prob lem or modi fy the
task so that the ava i lab le means are more su i tab le .
Both methods lead to cer ta in recommendat ions wh ich
may con t r ibu te to p reven t i ng e r r o r s .

On the basis of these cons idera t ions we can once
again look at the types of e r r o r s (F igures 6- I to 6-10)
and t r y to associate w i th each of these groups the -
technical and o rgan iza t iona l causes which may l ead~
to th is type of e r r o r . F igures 7- I to 7-7 estab l ish
th is associat ion for the seven most impor tan t types of
e r r o r wh ich occured in ou r case. We do not d i s t i n -
gu ish between e r r o r cause and e r r o r p reven t i on in
these f igu res , but select the neut ra l term " e r r o r
factor" instead.

As we said above, the e r r o r factors thus speci f ied i n -
d icate at the same t ime what is re levan t to the cause
of the e r r o r and what could be done in o r d e r to p re -
ven t the pa r t i cu la r e r r o r . For example , i f we accept
as a fact that the cause of an e r r o r in dev ice hand l ing
(Group A I) is to be found in the lack of c l a r i t y of
the h a r d w a r e documentat ion, then th is type of e r r o r
can be avo ided by, imp rov i ng the c l a r i t y of the h a r d -
ware documentat ion.

Th is approach is to be p re fe r r ed because of i ts con-
s t ruc t i ve aspects. Each resu l t of these studies is a
s ta r t i ng po in t for changes and improvements . The re -
sul ts w e g e t are not a lways complete and sc ien t i f i ca l l y
absolu te , but the th ings we f ind out can be in f luenced
w i th technical and organ iza t iona l means. Proposals
based on s im i la r mot iva t ions for the p reven t i on of
p rog ramming e r r o r s can be found in the papers of
Kosy (6) , Elspas (7) , ,a~nd L o w r y (8) among o thers .

The e r r o r factors ind icated in F igures 7-1 to 7-6
show on ly the type of technical or o rgan iza t iona l

331

measures by which the pa r t i cu la r type of e r r o r can
be affected. The ind iv idua l l ists are not meant to be
complete.

What has been shown by th is method is, in any case,
the obvious fact that for each type of e r ro r there
ex is t d i f fe rent causes and therefore d i f fe rent measu-
res have to be taken to prevent them. In other words ,
there is not a s ing le cu re -a l l . If, moreover , we th ink
of the levels of possible e r r o r causes which were not
considered in this s tudy, we f ind as a resul t a ra ther
sober ing overa l l p ic tu re . The measures we have to
take in o rde r to prevent e r r o r s are jus t as var ied as
the types of e r r o r s we can ident i fy , and as complex ly
s t ruc tu red as are the i r causes. Any catalog of such
measures that we could wo rk out remains by nature
f ragmentary . Th is type of s tudy, however , can make
that catalog more concrete, and can p r i o r i t i ze the
measures w i th in i t .

The Detection of Er ro rs

If we come to the conclusion that poss ib l i t ies for e r -
ro r prevent ion can only be incomplete, the quest ion
ar ises whether we can deduce anyth ing from the in-
vest igat ions made so far concern ing the poss ib i l i t ies
of e r r o r detect ion. It seems indeed useful to contrast
the c lassi f icat ion of e r ro r s by type of e r r o r p rev ious -
ly presented w i th the e r r o r detect ion techniques ap-
p l ied today. Cor respond ing to the d iv i s ion of types
of e r r o r s in the G r o u p s A a n d B (Group C w i l l be
omit ted here) two d i f fe rent sets of procedures are
considered.

For Group A the fo l lowing measures, which are actu-
a l l y appl ied in pract ice, seem to be the most impor -
tant ones:

(a) A careful examinat ion of the funct ional (ex te r -
nal) and the logic (in terna l) speci f icat ions by
outs iders (design wa l k - t hough) . These are
usua l ly people who are not d i r ec t l y pa r t i c ipa -
t ing in the pro jec t . In the case of an operat ing
system they might be: hardware developers ,
product p lanners, sales specia l is ts , app l i ca-
t ion programmers e tc . ,

(b) Add i t iona l or over lapp ing descr ip t ions of the
system by formal methods (e .g . VDL, Pet r i -
nets, Markov models) .

(c) Use of analyt ical or s imulat ion models (w h i c h
are normal ly p repared for performance ana-
lys is) in o rde r to make the behav iour of the
system clear and to understand it bet ter .

(d) Inspect ion of the wr i t ten p rogram text by
others (code -wa l k - t h rough) . Th is can be done
by other exper ienced programmers of the p ro -
ject who know the problem to be solved but not
the method which was chosen for solut ion.

(e) Test runs by par t ic ipants of the pro ject or by
ou ts iders .

For g roup B, the typ ical catalog of measures is d i f -
ferent . Here most we ight has to be put on procedures
of p rogram ver f icat ion in the s t r ic t sense. To these
belong:
(a) Program inspect ion by others (see (d) above)
(b) Proof of programs by the methods of Floyd or

Hoare.
(c) Hand s imulat ion of test runs, that is, ca lcu-

lat ion of examples w i th penci l and paper .

(d) Test runs by the author of the p rogram.
(e) Test runs by others (i .e. not the author of

the p rogram.)

It would cer ta in ly be asking too much to t r y to deduce
exact f igures on the re la t ive effect iveness of these
procedures and measures from the data avai lab le
here. At best we can attempt a re la t ive evaluat ion of
the d i f fe rent procedures based on exper ience and
subject ive judgement . Th is we ventured to do w i th
Figures 8-1 and 8-2. Al though the statements thus
obtained may be of a s l i gh t l y speculat ive character ,
they s t i l l can th row l ight on the kind, of prob lems
connected w i th such an assessment. In other words ,
it is not expected that the pa r t i cu la r f igures g iven be
taken to be prec ise, but i t is hoped that they g ive a
general ind icat ion of how the effect iveness of the mea-
sures can be evaluated and expressed.

F igures 8-1 and 8-2 are designed to indicate the su i -
tab i l i t y of a g iven e r r o r detect ion procedure for de-
tect ing each type of e r r o r . Th is is done by g i v i ng the
est imated p robab i l i t y (in percent) that a g iven
method would be ef fect ive. The f igures are not abso-
lute but re la t ive to the set of e r ro r s that could be d i s -
covered by any of the methods. That means that
no informat ion is g iven about the p robab i l i t y that an
e r r o r can be d iscovered at a l l , but on ly , i f ' i t is de-
tected, which procedure is most l i ke ly to be success-
fu l . Th is exp la ins why the sum of the p robab i l i t i es
in each l ine is 100 %. Of course, the quest ion of ab-
solute p robab i l i t y of success would be of g rea ter in-:
terest , but because such an estimate would be even
more speculat ive than the cur ren t f igures , we have
decided to abstain.

Concludin 9 Remarks

The preced ing discussions h a v e - I hope shown
that wh i le the analysis of p rogramming e r ro r s is a
d i f f i cu l t task, it is also a necessary and useful ac t i v i t y .
By means of such an analysis we can de r i ve resul ts
to help us f ind r.emedies for cer ta in f requent ly en-
countered types of e r ro r s . The present studY was con-
cerned wi th a speci f ic g roup of system programs. There -
fore, there are s t i l l a number of open quest ions which
could not be answered on the basis of the mater ia l

avai lab le. Some of these quest ions are:
(a) What effect w i l l the appl icat ion of h igher p ro -

g ramming languages have on system p rog ram-
ming? Which types of e r ro r s w i l l appear less
f requent ly?

(b) What general d i f ferences are there between
control programs and compi lers?

Some of the conclusions which were d rawn on the
basis of our data are cer ta in ly open to debate. Per-
haps th is w i l l s t imulate some of my col leagues to
th ink fu r ther in the d i rec t ion indicated and to sup-
plement, suppor t o r refute my in te rp re ta t ion .

Acknowled~lements

The author g ra te fu l l y acknowledges the help rece i -
ved from IBM B6bl ingen Programming Publ icat ion
Department in p r e p a r i r ~ the Engl ish vers ion of th is
paper . Par t icu lar thanks are due to Prof. D. Parnas
whose interest in the subject was a source of great
encouragement to the author .

332

Bibl iography

(1) Moulton, P.G. and Mul ler, M.E.: DITRAN - A
Compiler Emphasizing Diagnostics., CACM 10,
1, (Jan. 1 9 6 7) . ' -

(2) Rubey, R. et al: Comparative Evaluation of
PL/I, ESD-TR-68-150 (Apr. 1968)

(3) Boles, S.J. and Could J .D. : A Behavioral Ana-
lysis of Programming - on the Frequency of
Syntactical Errors. IBM Research, Yorktown
Heights, N.Y. , RC-3907 (June 1972)

(q) Henderson, P. and Snowdon, R. : An Experi-
ment in Structured Programming, BIT 12 (1972)
pp. 38- 53

(5) Weinberg, G. : The Psychology of Computer
Programming, Van Nostrand Reinhold, New
York, 1971

(6) Kosy, D.W.: Approaches to Improved Program
Validation through Programming Language De-
sign, inW.G. Hetzel (ed): Program Test
Methods, Prentice Hall, Englewood Cliffs, N.J.
1973

(7) Elspas, B. eta l : Software Rel iabi l i ty, IEEE
Computer 4, 1 (January/February 1971)

(8) Lowry, E.: Proposed Language Extensions to
Aid Coding and Analysis of Large Programs, IBM
Systems Development Division, Poughkeepsie,
N.Y. , TR 00.1934 (1969)

100%

80%

60%

40% -

20~-

Frequency (522=100%)

81,5%

Average: 360 Instructions/Module

Size (K)

9%

! 1%

5%
2%

• --------].._~..10,5% 0,5% 0,5%
! !

0,5 ! 1,5 2 2,5 3 3,5 4

Figure 1. Distr ibut ion of modules by module size

100% Frequency (253=100%)

80%,

60%-

40%-

20%-

27%

Number of 101
changed/added
instructibns

Average: 200 Instructions/Module

45%

26%

102

2%

lO 3

I

10 4

Figure 2. Distr ibut ion of modules by extent of
change per module

Number of Errors Number of Modules
Affected

371 1
50 2
6 3
3 4
1 5
1 8

432

Figure 3. Number of modules affected by an error

Number of Modules Number of Errors per
Module

112 I
36 2
15 3
11 4
8 5
2 6
4 7
5 8
3 9
2 10
I 14
I 15
I 19
! 28

202 512

Figure 4. Number of errors per module

333

Code o r i g i n
of module

New only
Old + new
Total

New only
Old + new
Total

New only.
Old + new
Total

F igure 5. Fre(

Total
number
of mo-
dules

169
253
422

Number of
modules

169
253
42:~

Size of ne~
code

53K
33K
86E

Number of
modules
w i th e r ro r s

81
121
202

Number of
e r ro r s

254
258
512

Number of
errors

254
258
512

Percentage of
modules w i th
e r r o r s

48
48
48

Errors per
module

1.5
1.0
1.2

Er ro rs per
1 K of code

4.8
7.8
6.0

uency of e r r o r s

A1 Machine Confi~lurat ion and Arch i tec tu r e

(a) Type of device or dev ice feature not
considered; va l id I /O command taken
for inva l id 1.5

(b) I /O e r r o r condi t ion or device status han-
d led inco r rec t l y or not at all 3.0

(c) I /O command used incor rec t l y , or s imu-
lated incomplete ly or incor rec t l y (in
s imula t ing one device by another one) 4.0

(d) E r ro r stat ist ics f o r a device not gene-
rated or generated needlessly 1.0

(e) External operat ion mode of a device
handled inco r rec t l y 0.5

10.0

Figure 6-2. Types of E r ro r s -Group A1

A3 Funct ions Offered

(a) Funct ions are completed, as necessary
for the intended use of the system 2.0

(b) Functions are added, or genera l ized,
a l though not o rg ina l l y intended 1.5

(c) Functions are completed in o rde r to
handle extreme cases and other excep-
t ional s i tuat ions I . 5

(d) Functions are changed in o rde r to
improve usab i l i t y , secur i ty , compa-
t i b i l i t y etc. 2.0

(e) Changes caused ex te rna l l y (e.g p ro -
duct s t ra tegy) 2.0

(f) Defaults for omit ted parameters
changed I .0

(g) Message for ope ra to r /use r added I . 5
(h) Funct ion is e l iminated, because no

longer needed 0.5
12.0

F igure 6-4. Types of e r r o r s - G r o u p A3

A1 Machine conf igura t ion and arch i tec ture 10
A2 Dynamic behav iour and communicat ion

between processes 17
A3 Functions of fered 12
A4 Output l is t ings and formats 3
A5 Diagnostics 3
A6 Performance 1

46

F igure 6 - I . Types of e r r o r s - Group A

A2 Dynamic Behaviour and Communicat ion

(a)

(b)

(c)

(d)

(e)

(f)

(g)

between Processes

System state which was entered dyna-
mica l ly not ident i f ied exact ly enough 2.0
In case of sequential t rans i t ion to a n -
other process (especia l ly in forced
terminat ion) status not c leared up. The
next process does not f ind the expec-
ted parameters (e .g . reg is te r
contents) 3.0
Registers and control b locks used repea-
ted ly were not saved. In te r rup t dest roys
informat ion which is s t i l l needed. 4.0
In te r rup ts were enabled which could
have been masked out. Other i n te r -
rupts were masked out and thus ig -
nored, a l though they were impor tant
for the funct ion ing of the system 3.0
Log ica l ly necessary steps (such
as opening a f i le) were miss ing,
w rong sequence, wrong re tu rn
branch 3.0
Incor rec t resource al locat ion; deadlock,
al locat ion of non-ex is t ing or of p re -
v ious ly assigned resources. 1.5
If one funct ion was not generated (or
not act ivated) a related subsequent
funct ion was not e l iminated at sy-
stem generat ion t i m e (or not swi tched
off at run t ime)

F igure 6-.3. Types of e r r o r s - G r o u p A2.

BI In i t ia l izat ion (of f ie lds and areas)
B2 Addressab i l i t y (in the sense of the

assembler)
B3 Reference to names
B4 Count ing and ca lcu la t ing
B5 Masks and compar isons
B6 Estimation of range l imi ts (for ad-

dresses and parameters)
B7 Placing of ins t ruct ions w i th in a

module, bad f ixes

F igure 6-5. Types of e r r o r s - G r o u p B

0.5
"17.0

5

38

334

B1

(a)

Init ial ization

Control block, register, switch not
cleared or reset before transition
from one routine, process, job etc.
to another

(b) I10 area, buffer, etc. not cleared
before usage

(c) Fields declared as "Define Storage"
(without init ial ization) instead of
as "Define Constant" (with in i t ia l i -
zation at program loading)

(d) Cleared only part of a field or table
(e) Init ial ization at wrong time or with

wrong value

5.0

1.0

1.0
0.5

.,0. S
8.0

Figure 6-6. Types of errors-Group BI.

B3 Reference to Names

(a) Field has meaning different than as-
sumed (e.g. pointer does not contain
address but address of address)

(b) Reference to wrong register or wrong
field name (possibly because simi lar i -
ty of abbreviations)

(c) Correct control block found, but refe-
rence to wrong relative entry. Table
addressed with wrong search argu-
ment.

(d) Mix-up of system constants (partition
number, SVC number)

2.0

2.0

1.5

1.5
7-.0

Figure 6-8. Types of errors-Group B3.

C1 Spelling errors in messages and
commentaries

C2 Missing commentaries or flowcharts
(standards)

C3 Incompatible status of macros or
modules (integration errors)

C4 Not classifiable
5
2

16

Figure 6-10. Types of errors-Group C.

A1 Machine Confi~luration and Architecture

1. Number of different device types and device
features.

2. Device specif icpropert ies and variations in
error treatment.

3, Avai labi l i ty and clar i ty of hardware documen-
tation.

4. Contact to and communication with hardware
developers.

S. Central or decentralized handling of I/O de-
vices in the system.

6. Experience in operation of a device.

Figure 7-1. Error factors-Group A1.

B2 Addressabil i ty

(a) Assignment, loading, or saving of
address registers forgotten (espe-
cial ly when code increases)

(b) Effects of changes in the length of
constants, messages, etc. on adja-
cent storage areas overlooked

(c) Code, areas, and data overwrit ten
since storage was used twice (or
more)

(d) Mix-ups between absolute and relo-
catable, real andvirtual addresses
(especially when accessing the lower
storage areas)

(e) Alignment to word boundaries in-
correct

(f) ORG, LTORG added or changed
(g) Splitt ing of a phase that exceeded

defined storage limits

2.0

1.0

1.0

1.0

1.0
0.5

0.5
7.0

Figure 6-7. Types of errors-Group B2.

134 Countin~l and Calculatin~l

(a) Incorrect calculation or counting of
field or record lengths, area sizes
(discrepancy not specified)

(b) Like (a) (with discrepancy of
1 byte)

(c) Incorrect displacement (relative
address)

(d) Incorrect testing of a loop condition
(too early stop, infinite loop)

(e) Programmed counter of records,
lines etc. gives wrong values

(f) Transformation from decimal to hexa-
decimal is missing; binary to decimal
transformation is wrong

(g) Calculation of disk addresses, number
of tracks, or track capacity is wrong

2.0

1 .5

1.0

1.0

1.0

I

0.sJ

1.0

Figure 6-9. Types of errors-Group B4.

A2 Dynamic Behaviour and Communication
between Processes

1.

2.
3.

4.

5.

6.

7.

Representation of process information in the
system (clarity, security)
Structuring of process hierarchy.
Description of interfaces and communication
needs of all processes
(a) expl ici t parameters (sequence, meaning,

format)
(b) shared data areas (implicit parameters)
Standardized routines (macros), supporting
process monitoring at a higher level, forcing
clearance of system status, etc.
Description techniques for dynamic events,
interaction between processes, etc.
Description of resources, their properties,
their status.
Central or decentralized handling of super-
visory functions, resource allocation, etc.

Figure 7-2. Error factors-Group A2.

335

A3 Functions Offered

1.
2.
3.

4.

5.

Quality of specifications
Experience with similar systems
Statistical information on user profi les, data
volumes, operating modes.
Clarif ication of and concentration on worst
cases, exceptional situations.
Self-discipline with one's own "br ight- ideas"
and external suggestions.

Figure 7-3. Error factors-Group A3.

;B1 Init ialization

1.

2.

3.

4.

Forced init ial ization or warning message by
language translator i f init ial ization is missing
Automatic adaptation of operations to field
length (e.g. clear the whole field)
Analysis of routines for effect on control
blocks, registers, and data fields.
Specification of expl ic i t and implicit parameters
of allowed and expected value ranges.

Figure 7-4. Error factors-Group B1.

Addressabil i ty

Extension of symbolic addressing
Extendabil i ty of address space
Delineation of address spaces for each routine
("need to know")

Figure 7-5. Error factors-Group B2.

B3 Reference to Names

1.
2.
3.

4.

Syntax of names
Possibil ity of qualif ication for names
Representation of the role of a field and indi-
cation of routines with access rights
Associative addressing of tables

Figure 7-6. Error factors-Group B3.

B4

1.
2.

3.

4.

Counting and Calculating

Self-decribing data and areas
Powerful loop commands to be linked to data
descriptions (e.g. reiterate for all entries of
a table)
Tables or easily-accessible transformation
routines for the calculation of
disk addresses or" track capacities
More regular i ty in the addressing structure
for all devices; symbolic addressing

Figure 7-7. Error factors-Group B4.

Detection Method

Type of Error

A1 Machine configuration + archi-
tecture

A2 Dynamic behaviour + commu-
nication

A3 Functions offered
A4 Output listings and formats
A5 Diagnostics
A6 Performance

Examination
of specs by
others

30

10
40
30
20
10

Formal
descriptior
methods

10

20

10
20
10

Simulation,
model
bui lding

10

20

30

Program
inspection
by others

20

20
20
10
20
10

Test runs

30

30
q0
50
40
40

Figure 8- I . Error detection-Group A.

Detection Method Program Floyd/Hoare Simulation Test runs "est runs
inspection method of of test runs by the by others

Type of Error ~ by others proof programmer

131 Init ial ization
B2 Addressabil i ty
133 Reference to names
B4 Counting and calculating
B5 Masks and comparisons
B6 Estimation of range limits
B7 Placing of code

30
20
20
20
20
30
30

10

r20
20
10
10

10
10
10
20
20
10

20
30
20
20
20
20
30

30
40
30
20
30
30
40

Figure 8-2. Error detection-Group B.

336

