
SOFTWARE DESIGN VALIDATION TOOL

Loren C. Carpenter

Leonard L. Tripp

Boeing Computer Services, Inc.
Seattle, Washington

KEYWORDS AND PHRASES

Design Validation, Top Down Design, Structured Programming;
Multilevel Modeling, Transition Diagram, Design Tree, Data
Parcel, Design Expression

ABSTRACT

DECA is a computer program which is used in, conjunction with a
top-down dominated design methodology. The program organ-
izes, validates, and produces a document depicting the design of a
software system. The use of DECA significiantly enhances the
quality of the software design. The quality of the design in turn
significantly benefits the quality of the implemented software
system.

INTRODUCTION

Tile construction of a reliable software system is predicated upon
the existence of a sound design. The performance of the software
iadustry to date indicates that adequate software designs are not
commonly prepared.

A method is presented which significantly enhances the quality
of a software design. The features of the method are:

• A sound theoretical basis.
• The ability to describe small to very large systems.
• A medium for communication between designers and

requestor.
• All sequential processes can be described.
• A description of the design retrievable at any level of

detail.
• Management of complexity is possible.
• Design can be described incrementally.
• Understandable by both programmer and non-pro-

grammer.
• A systematic format for program documentation.
• Decisions on design can be made at a point in the

development process where they can be evaluated. This
moves decisions from the code production phase to the
design phase.

• Economical design evaluation possible.
• No inherent limitations placed on design by expression

: method.
• Design validation accomplished by consistency checks

and by formalized testing procedures.
• Cost effective implementation of automated method

feasible.

The theoretical basis for DECA is partially summarized in Burner
(1973) which in turn relies on Zurcher and Randell (1968) for
multilevel modeling and Parnas (1969) for transition diagrams.

TOP-DOWN DESIGN

The initial task of a designer of a software system is to determine
a set of user requirements and how to satisfy them. In a
top-down approach a software system is defined by levels (or
successive refinements). The first or top level must be designed to
satisfy the set of user requirements. Subsequent steps of the
design process define the second and lower levels of the design..
At each step the design progresses one level at a time. Every
component (or element) on a level must be specified before the
design process advances to the fiext level. This continues until the
lowest level components have been designed. Proceeding a level
at a time insures that the requirements of the previous level are
satisfied before going on to lower levels. When the set of
components on the lowest level has been designed, the entire
system is designed with the confidence that it will satisfy the
defined set of user requirementL The top-down design process
reveals the architecture of the software system early in the design
phase.

DESIGN EXPRESSION

The static structure of a software system is determined by
relationships of containment. Processes contain data and other
smaller processes. The dynamic structure of a system is deter-
mined b y the temporal aspects of the system's processes.
Decisions controlling the sequence of process execution and data
manipulation are part of the dynamic structure. Software design
expression is concerned with the static structure of a system, the
dynamic structure of a system, and the relationship between them.
Both the static and the dynamic aspects of a system must work
harmoniously and as specified if the system is to perform as
intended.

Three concepts have been identified as being adequate for the
design expression of a software system. The three are a design
tree, a transition diagram and a data parcel.

A tree (or design tree) is the natural structure of a hierarchically
described system. The circles in Figure 1 are called nodes and the
circle at the top is called the root node. In the tree of a
hierarchical system, the nodes correspond to system components
and the lines indicate a relationship of containment. The root
node is said to be the top level of the design, and the nodes
immediately below it are said to be on level one. Nodes two lines
removed from the root node are on level two, and so forth. Since

395

http://crossmark.crossref.org/dialog/?doi=10.1145%2F390016.808462&domain=pdf&date_stamp=1975-04-01

Figure I

the lines specify containment, there are no "cross-links" and each
level forms a complete partitioning of the root node, or system.
The design tree depicts the vertical structure of the software
system. However, it does not contain all the necessary informa-
tion about the horizontal structure of the system.

To understand the concept of a design tree and multilevel top
down design consider the following example:

Produce from the company employee masterfile a report containing the
average salary and age of all employees and the salary and age deviation of
each employee.

Input
Employee Masterfile

Process Output
Calculate Average Salary Average Salary
Calculate Average Age Average Age
Calculate Salary Deviation Salary Deviation

for Each Employee
Calculate Age Deviation Age Deviation

for Each Employee

As a first step of design expression we will obtain a decomposition
of the whole process into a set of basic subprocesses.

Subprocess Description
A Process Masterfile (read, edit, store table)
B Compute Averages
C Produce Report (deviations for each employee)
D Write Error Message
E Exit

The corresponding design tree would look like:

Deviation Report

The next step of the design tree development would be to
decompose each of the subprocesses. To illustrate this, node A
will be decomposed.

Subprocess Description

AA Obtain Valid Record
AB Store Record
AC Sum Fields
AD Exit

The decomposition of the nodes B through E (if required) would
complete the design tree for this level.

The horizontal structure must define the interconnections
between the components on each level, as the design proceeds
from the top down. A simple notation to describe the horizontal
relationships is a transition (or state) diagram.

Transition diagrams are constructed for each level of the design
tree. Construction begins by viewing each node in the design tree
as a state of the system. The diagram is a specification of the
various conditions that cause a transfer of control between the
states of the system. Transitions are dependent upon inputs to an
individual state and without inputs (to a state) or a condition
change, the system will not act. A name for a state is structured
to indicate its position in the design tree. The name is composed
of "syllables" separated by a delimiter. The number of syllables
indicates the level number. The syllable components indicate in
which branch of the tree the state is located.

A transition diagram is considered complete when the following
information is given for each transition.

1. Origin state for the transition (from state).
2. Destination state for the transition (to state).
3. Description of the condition under which the transi-

tion occurs.
4. Inputs associated with the transition.
5. Data space changes associated with the transition.

~5/S

~ 8/.8/8
Figure 2

The graphical form of a transition diagram is given in Figure 2.
The transition lines correspond, to contrOl statements in the code
and the nodes represent one or more non-control statements. The
i/j/k notation associated with the transitions denotes a reference
to the condition, input, and data space change descriptions,
respectively. The table form of the transition diagram is
illustrated in Figure 3.

From To Condition Input Data Space Change
*A B 1 2 3
*A C 2 1 2

B C 3 3 1
B B 4 4 4
C A 5 5 5
C * 6 6 6

Where the asterisks (*) denote entrance and exit

Figure 3

396

The transition diagram will describe an arbitrary program. To
ensure that the software system being designed will be properly
structured a set of conventions was defined. The conventions
restrict the set of diagrams that can be used in a design. First, to
produce proper programs (one entry and one exit) it is necessary
to consider that the transition logic occurs outside each node and
each node is entered at one point and exited at one point (see
Figure 4). However, in drawing transition diagrams, graphical
clarity is increased if the arcs emanate from anywhere on the
circumference of a node, as shown in Figure 5.

Figure 4

Figure 5

Proper block structure in the system design is accomplished by
transition destination conventions. Each transition will occur
exactly once in the design. Transitions are not refined as are
states. The destination of a transition lies either within the
transition diagram of the state containing the origin state of the
transition or its destination is the parent state itself. Figure 6
illustrates these conventions.

• _ _ ~ e n t S t a t e

Figure

The transition diagrams corresponding to the three basic flow-
charts of structured programming are illustrated in Figure 7.
Since there is a one-to-one correspondence between flowcharts
and transition diagrams, the representation theorem for flow-
charts applies to transition diagrams. Any process which can be
represented as a transition diagram can be represented as a
combination of the basic transition diagrams. An algorithm for
structuring a transition diagram equivalent to Bohm and
Jacopini's for flowcharts has been derived in Carpenter, Redhed
and Tripp (1974).

Concatenation

Loop

If-Then-Else

Figure 7

The level to level decomposition of the basic transition diagrams
is illustrated in Figure 8. These decompositions are in their most
general form.

L e v e l i

I i
I

I
I

I

Level i+1

Leveli

Leveli+l

Level i

Level i+1

s S ~ % %
S %

s I ~ % S s I ~ %
p i ~ %

S S ~ % % p S l I , S I ~ %%

~F~re 8

397

A graphical representation of the transition diagram for level one
of the example is:

D ©
(nl, n2 means both nl and n2.)

CONDITIONS

1 Masterfile Processed
2 Table Status O K
3 Table Status Not OK
4 Next in Sequence

INPUTS

1 Masterfile
2 Table Status

3 Total Age, Total Salary, Number of Employees Processed
4 Employee Table
5 Average Salary and Age
6 Number of Table Entries

DATA SPACE CHANGES

1 Complete Employee Table
2 Table Status
3 Totals of Age and Salary
4 Number of Entries in Table
5 Average Salary and Age
6 Report Line
7 Error Message

The above diagram would be input to DECA as:

* A B 1,2/1,2/1,2,3,4
A D 1,3/1,2/2
B C 4/3/5
C E 4/4,5,6/6
D E 4/2/7
E 4/ /

The transition diagram provides all the information needed in the
design for control flow and data flow. A key requirement of
software system design is the ability to express data requirements
during design. To meet this requirement the concept of a data
parcel was developed.

A data parcel is a named subset of the data space of the process
being described. Its name is structured to indicate any hierarchi-
cal containment of parcels. Unlike a state name, its syllables may
be several characters long. The description of a parcel consists of
a prose explanation of its meaning and use, and syntactically
formal components such as its format and location, and size and
occurrence information.

Parcels are referenced by simply including their name (sur-
rounded by brackets) in state and/or transition description text.
in order to better formalize parcel activity, one or more of four
parcel operators: create, access, modify and delete may immedi-
ately precede a parcel name.

The transition graph and parcel references together implicitly
define a data parcel graph, for each data parcel. (Figure 9) Note
that a data parcel graph represents all possible activity sequences
for a parcel. It does not reflect static relationships like lists, rings,
etc. Static relationships are described in the prose portion of a
parcel description.

~ Access X

Transition Diagram for W

Parcel Graph for X

Figure 9

Parcels may be local, global, or external to a process. Global
parcels are defined in some parent of the referencing process,
while external parcels are defined in a parallel subtree of the
system.

DESIGN VALIDATION

A key element in the production of reliable software is that there
is a high degree of confidence that the software design is
adequate. The design is validated by testing each level of the
design. At level 1, testing is primarily conducted to satisfy the
user requirements. Since later testing is done incrementally, from
level to level, level I testing determines ' the quality of the
software system. The testing falls into two broad categories:

Ensuring that the design works
Ensuring that the design satisfies the user requirements

The transition diagram is a vehicle to "walk through" the process
simulating the system's actions. This becomes the basis for
testing, to discover

Test I Having entered at the beginning, can the User terminate
the process?

Test 2 Having entered at the beginning, can the user reach all
system states?

Test 3 Being in any given state, can the user reach any other
state?

Test 4 If all the paths which lead front one state to another are
acceptable to the user.

Test I, 2, and 3 have both necessary and sufficient conditions for
acceptance. The necessary condition test establishes the neces-
sary path exists, and these are mechanical. The test logic iiwolves

398

constructi!ag the adjacency matrix for the diagram and analyzing
the corresponding reachability matrix. The sufficient condition
test involves the examination of each input to see if the necessary
conditions can be met to allow the required transition to take
place. This is a manual test and should be performed by someone
other than the designer. Test 4 is not easily done before the

.q l
system is built. Using the transntmn diagram, judgments can be
made about what is proper and what is comfortable. The testing
at lower levels does not involve user requirements.

There are a set of design consistency checks which include:

1. All indicated inputs are available as specified in each
transition description.

2. All data space changes are compatible and occur in the
proper sequence.

3. Transition conditions can be satisfied from the avail-
able data.

Satisfaction of user requirements involves matching input and
output specifications with the input and data space changes
specified as external to the design process. These are documented
in the transition diagram, and must be manually checked.

DESCRIPTION OF PROGRAM

The automatable aspects of the design methodology have been
formalized and programmed. The current program, DECA III, is
the third version of DECA, Design Expression and Confirmation
Aid. Description of earlier versions is in Carpenter (1974). The
program accepts a basically unordered line oriented description
of a design tree, including its states, transitions, and data parcels.
DECA makes extensive consistency and completeness tests on
the tree, identifying errors and some questionable design prac-
tices. Then it produces a complete formatted listing of the
design, with appropriate titles and page numbers in a form
suitable for reproduction and publishing.

DECA is composed of five sequentially executed subprocesses.
The first is a scanner which reads in a description of a design tree
and its states, transitions, and data parcels. The scanner performs
complete syntax checking of its input and prints all rejected lines
with appropriate diagnostics. The primary function of the
scanner is to append sort keys onto the accepted input records
which are then passed on to the first sort.

The first sort performs all text ordering needed to produce the
document. The first sort (and the second) is a standard system
utility sort with user-written input and output interfaces.

Next comes the document printer. The document printer reads
in, checks, and prints the ordered text, a state package at a time.
A state package for a state consists of, for each substate of that
state, the substate's structured name, its long name (up to sixty
characters) and an optional body of prose describing in whatever
language the user chooses the function of the substate. Following
the substate descriptions is the transition table describing the
transitions in this state package. Each transition entry is
composed of an optional state package entry point flag, the
structured name of the "f rom" State, the structured aame of the
" to" state if this is not an exit transition, and pointers to entries
in the input, condition, and data space change tables for this
state package. Pointers may be negated or combined with an
"and" operator. The "or" operator was rejected since it
introduces ambiguities.

The input, condition, and data space change tables are next. Each
entry is given an integer label which is used to sort the table.
Entries may contain English prose, tables, or most any printer-
representable figure.

It is vitally important in software design to understand the
functional characteristics of the states or subprocesses, that is,
what happens to the input. DECA produces, for each state
package, two m~trices showing the functional relationship
between the input and both the conditions and data space
changes. This helps the reader verify that sufficient data is
available to detect some condition or to perform some data space
change. Data parcels referenced in the state package are fisted
next, along with the corresponding sub-state names and mode of
reference.

The document printer makes extensive local consistency checks
to ensure against ambiguity and incompleteness. It also perfOrms
a test for strong connectivity on each transition diagram. We
assume the strong connectivity of all higher level transition
diagrams by artifically connecting the exit state of a state
package to its entry state.

In addition to the design tree which is primarily a control
structure, the document printer produces a second part of the
document which contains all user-defined data parcel descrip-
tions, and where and how those data parcels are used, including
expected storage requirements.

The last task of the document printer is to produce a directory
giving page numbers for each state name and data parcel.

The document printer also constructs records for the second sort
whose function is to order information for the fifth part of
DECA, the global checker.

The global checker performs those tests requiring information
from more than one state package. It prints bo.th the top and the
bottom of the tree, identifying all states which have no parent,
(there had better be exactly one), and all states which have not
yet been refined. It identifies data parcels that are created and
not used or used and not created.

Finally, the global checker will, using the entire tree, and
estimates of the bandwidth of inter-state data communication
(taken from data parcel and transition descriptions), perform a
modularization algorithm. This results in a recommended packag-
ing structure which minimizes the coupling between modules.

RESULTS AND DISCUSSION

DECA has been used extensively with The Boeing Company and
Boeing Computer Services for the past two years. Applied
initially to the design of the NASA Integrated Program for
Aerospace Vehicle Design (IPAD) System, it has since been
employed on the Wiring Information Release System, Online
Planning, Engineering Data System, and several smaller special-
purpose projects. Customers have been impressed with the
method's ability to display solutions to their requirements. This
has two aspects. First, the custo~ner understands his own
requirements better, and second, he is better able to understand
the designer's proposed solution.

DECA is operational on both IBM 370 and CDC 6000 computer
systems. It is highly cost effectivel A camera-ready document
master costs less than 10 cents per page. In addition, DECA
allows a system design to be maintained online, enabling design

399

modifications to be made, checked, and distributed almost
immediately.

CONCLUSION

The Design Methodology, assisted by DECA, contributes to the
production of reliable software for the following reasons:

1. The product is visible prior to coding, hence code
changes are minimized.

2. The design is validated. A great number of conven-
tionally difficult, tedious, and error prone checks have
been automatically performed.

3. The document corresponds to the cod~. In fact, the
code is produced directly from the document.

4. Structured programming is an integral part of the
methodology, with respect to both control and data
structures.

5. The quality of the design is maximal for the available
time and money.

Two improvements are forthcoming for DECA-III. Alternative
control structure schema, such as flowcharts, and limited entry
decision tables, will be supported. A partial code generation
capability, for control structures only, will produce GO-TO free
equivalents of transition diagrams.

REFERENCES

Burner, H. B., "An Application of Automata Theory
to the Multiple Level Top Down Design of Digital
Computer Operating Systems," PhD Thesis,
Washington State University, February, 1973.

2. Carpenter, L. C., "DECA, Design Expression and
Confirmation Aid," 1974 Computer Science Con-
ference, Detroit, Michigan, February 1974.

3. Carpenter, L. C,, D. D. Redhed and L. L. Tripp, "The
Systematic Development of Computer Software,"
Boeing Computer Services, Seattle, Wash. August
1974.

4. Parnas, D. L., "Onthe Use of Transition Diagrams in
the Design of a User Interface for an Interactive
Computing System," Proc. 24th National Conference
ACM 1969, pp. 379-385.

5. Zurcher, F. W. and B. Randell, "Iterative Multilevel
Modeling - A Methodology for Computer System
Design," Proceedings of IFIP Congress 1968, pp.
138-142.

400

