
A TOOL THAT DETECTS PLAGIARISM IN PASCAL PROGRAMS

Sam Grier
Department of Astronautics and Computer Science

USAF ACADEMY
USAFA CO 80840

Plagiarism has become a problem in
introductory Computer Science courses.
Programmed assignments can be copied and
transformed with little human effort. A
pertinent recommendation has resulted
from this realization; an on-line system
to detect programs that are "too similar"
and hence suspected of plagiarism should
be developed [4]. This paper discusses
such a system for Pascal programs.

I. INTRODUCTION
As noted in recent litera~ture, pla-

giarism has become a problem in intro-
ductory Computer Science courses [4]. To
put it succinctly, students are copying
other students' programs.

Detecting this plagriarism is diffi-
cult. Not only must graders grade a large
volume of programs, but these programs all
solve the same problem. Sophisticated
plagiarism is not the problem; the sheer
volume of code involved is simply over-
whelming.

One attempted solution to this
problem has been the development of a
program at Purdue University by K.J.
Ottenstein that quantifies the sameness of
Fortran programs [3]. This program uti-
lizes the four basic Software Science
parameters suggested by M. Halstead as
useful measures of program length [2].
This program utilizes only these para-
meters, and it counts them in a straight-
forward manner. The parameters are:
(I) the number of unique operators,
(2) the number of unique operands, (3) the
total number of occurrences of operators,
and (4) the total number of occurrences
of operands [3]. It seems the first

Permission to copy without fee all or part of this
material is granted provided that the copies are
not made or distributed for direct commercial
advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice
is given that copying is by permission of the
Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or
specific permission.

© 1981 ACM0-89791-036-2/81/0200/0015 $00.75

suggestion to use these parameters as
measures of similarity or dissimilarity
Cdepending on your viewpoint) came from
N. Bulut as a by-product of his study of
invariant properties of algorithms [i].

A tool that analyzes Pascal programs
to detect those pairs of programs suffi-
ciently similar such that plagiarism is a
possibility is not known to exist. Pro-
gram Accuse attempts to fill this void.

2. DESIGN
Program Accuse attempts to go beyond

M. Halstead's four basic Software Science
parameters in the belief that additional
parameters are available to establish
dissimilarity of two or more programs.
It uses seven parameters and various
counting heuristics that result in the
computation of a correlation number that
is used to determine the similarity of
two programs. Accuse measures 20 para-
meters. The seven that comprise the
correlation number were selected by test-
ing different combinations of them.

An overriding concern of the deve-
lopment of Accuse has been that it be as
inexpensive to use as possible. For this
reason, the idea of utilizing the front
end of a compiler was discarded, and
Ottenstein's lead of using a fast counter
was followed.

The result is a compromise between
speed and comprehensive analysis. Accuse
processes over 170 lines per second.
However, it will not discover changes
made by the sophisticated plagiarist.
This is rationalized with the assumption
that the student intelligent enough to
plagiarize with sophistication has no need
to plagiarize. We hope, however, that
Accuse is not so simple-minded that it is
easy to beat. It is meant to make plagi-
arism difficult to achieve, and it is
meant to do this is such a manner that
its repeated use does not compromise its
heuristics.

15

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953049.800954&domain=pdf&date_stamp=1981-02-01

Accuse is a 2800 line program written
in Pascal that runs on the E.T.H. Zuerich/
University of Minnesota Compiler. It
consists of a modified Pascal scanner that
passes tokens to a driver capable of
processing compilable input programs. It
also contains a host of support routines
for the driver.

Accuse presently measures the
following 20 parameters:

I. total lines

2. code lines

3. code comment lines

4. multiple statement lines

S. constants and types :

6. variables declared (and used)

7. variables declared (and not used)

8. procedures and functions

9. var parameters

I0. value parameters

ii. procedure variables (includes
9 and i0)

12. for statements

13 repeat statements

14 while statements

15 goto statements

16 unique operators

17 unique operands

18. total operators

19 total operands

20. indenting function

The seven parameters that comprise
the correlation number are:

i. unique operators

2. unique operands

3. total operators

4. total operands

5. code lines

6. variables declared (and used)

7. total control statements

One result of Accuse's development
has been the failure of an "indenting
function" to play a role in the detection
of plagiarism. The indenting function is
defined as:

((left indentations) mod I000) *
I000000 +

((right indentations) mod 1000) *
I000 +
(zero indentations) mod i000

If all programs were processed through a
"pretty printer," an indenting function
might become important. This additional
cost is presently considered prohibitive,
and it is contrary to the intent of
Accuse being inexpensive to use.

The counting heuristics Accuse uses
involve "total operators" and "code lines."
"Total operators" does not include assign-
ment operators. Additionally, for every
assignment operator found, two operands
are subtracted from "total operands," and
"code lines" is decremented. This should
prevent Accuse from being misled by
unnecessary initializations and unneces-
sary assignment statements. "Code lines"
ignores blank lines, comment lines, and
declarations. It counts only executable
lines of code within a program. "Code
lines" was found to be an accurate indi-
cation of the sameness of two programs.

As Accuse only counts variables, the
obvious tactic of changing variable names
makes no difference to Accuse. Since
Pascal requires declarations, Accuse can
keep track of variables declared and
subsequently used or not used. Hence
excess declarations are an ineffective
change to a program. Constants of enu-
merated types and tag fields in case
clauses of record declarations that
contain a declaration are considered
variables. Since these constants cannot
be read or written, their non-use is
considered notable.

Accuse is also selective about what
it calls operators. Software Science
considers a BEGIN END combination as an
operator [2]. Because BEGINs and ENDs
can be added to Pascal code where not
required, Accuse chooses to ignore them.
Parentheses and several other operators
are ignored by Accuse for essentially the
same reason.

3. OUTPUT
Accuse prints four results for the

user. The first (Table i) is a dump of
each program's identifier and its values
of the 20 parameters measured by Accuse.
This dump is sorted on the indenting
function (a matter of my preference).

The second result (Table 2) is a

16

dump of each program's identifier and its
respective values of the seven parameters
used to compute the correlation number;
each parameter list is sorted smallest to
largest. In the output, the column headed
FOR STMT actually contains the total number
of control statements. This is a result
of the implementation of summing para-
meters.

The third result (Table 4) is a fre-
quency distribution graph that indicates
the number of pairs of programs with like
correlation numbers.

The final result (Table 5) is a list
of all pairs of programs with correlation
number greater than or equal to 28. Twenty
nine is currently identified as the number
that indicates the possibility of plagia-
rism, with 32 the maximum correlation
number possible.

4. CORRELATION SCHEME
The scheme that computes the correla-

tion number is only a tentative one. The
current scheme was developed and tuned by
using a group of 43 programs from an intro-
ductory course. Code for. three of the
programs was written together, but finished
individually. The "importance values" for
the seven correlation parameters were then
adjusted until these three programs were
brought into the domain of "those programs
suspected of plagiarism."

The current correlation scheme involves
computing an increment for each pair of
affected programs based on the equation:

increment = "importance value" -
(pcounta - pcountb)

where pcounta and pcountb represent parameter
counts, and (pcounta - pcountb) is less than
or equal to some "window" size, depending
on the particular parameter.

The computation of the correlation
number may well be subject to improve-
ment by a more elaborate scheme, or by
simple changes to the importance values.

A simple, illustrative run of Accuse
follows the text of this paper (Tables 1
through 5). This run processed 13 programs,
three of which were input twice. Included
is a print-out of the triangular matrix
(Table 3)that contains correlation values
of the pairs of programs. This matrix is
not printed in a production model of Accuse.

Below we illustrate the computation
of the correlation number for a pair of
programs in the run. Before proceeding,
it is necessary to note the following
"window" sizes and "importance" values for
each of the correlation parameters:

i. total operators
window slze
importance value

= 5

= 6

2. total operands
window slze
importance value

= 5

= 6

3. unique operators
wlndow slze
importance value

= 3

= 5

4. unique operands
window slze = 3
importance value = 5

5. code lines
window slze = 3
importance value = 5

6. declared variables (and used)
window size = 2
importance value = 3

7. control statements
window slze = 1
importance value = 2

The correlation number for the pair
of programs TI07 and TI02 (see Tables) is
computed as follows:

i. TI07 - TI02 = 8
Eight is greater than the window

size for this parameter, hence these are
not "affected '~ programs.

2. TI07 - TI02 = 16
Again, these are not "affected"

programs.

3. TI07 - TI02 = 1
These programs are now within the

window size, and an increment is calculated
for this pair of programs.

increment = 5 - (25 - 24) = 4
correlation number = 4

4. TI02 - TI07 = 0
increment = S - (13 - 13) = 5
correlation number = 9

5. TI02 - TI07 = i
increment = 5 - (64 - 63) = 4
corrolation number = 13

6. TI07 - TI02 = 0
increment = 3 - (Ii - Ii) = 3
correlation number = 16

7. T102 - TI07 = 0
increment = 2 (4 4) = 2
correlation number = 18

17

5. RESULTS
A typical production run of Accuse

included 137 input programs consisting of
13,374 lines of code. Accuse processed
the code on a CDC machine at a cost of
$12.32. It required:

FL TO LOAD 110700
FL TO RUN 77100
I05237B CM USED
89.956 CP SECS

Accuse prints all pairs of programs
with correlation number greater than or
equal to 28, though 29 is the number that
indicates the possibility of plagiarism.

S e v e r a l p o i n t s a r e n e c e s s a r y .

In six runs of AcCuse, sabotage
occurred in two. There is nothing to
prevent a student from removing lines of
code from his program. One student
shuffled his cards, and another added
control characters not found in the
character set of the machine. This led
to Accuse being used in the context of a
larger tool in its last and most success-
ful run. The instructor retrieved the
students' programs, compiled them, ran the
programs on data the students had never
seen, and then sent the source code to a
file to be run on Accuse. This is the
recommended context for the use of Accuse.

The correlation scheme is admittedly
ad hoc. The only thing that can be said
in its defense is that it seems to work.
The use of Accuse should not be misun-
derstood, Accuse does not judge plagia-
rism; it merely indicates its possibility.
It is a tool for the user to aid him in
its detection; the decision as to pla-
giarism is left to the user. High
co~relation numbers may be meaningless;
though rare, programs that are completely
different may have like values for the
seven parameters that are used to compute
the correlation number.

6. THE REAL ISSUE?
Finally, as a reviewer noted, Accuse

is a tool tO discourage dishonesty in
students. But, he asks, @oes anyone
care to ask students why they cheat more
now, and can we find ways to abort this
rising phenomenon? These are pertinent
educational issues.

7. ACKNOWLEDGEMENTS
Thanks tO Lloyd Fosdick, who con-

ceived this pro~ect and let me work on
it; special thanks tO Malcolm Newey for
his insights and encouragement.

8. REFERENCES

i. Bulut, N., "Invariant Properties of
Algorithms," PHD Thesis, Purdue Univer-
sity (August 1973) 118-119.

2. Halstead, M.H., "Elements of Software
Science," Elsevier North Holland, New
York (1977), Chapters 1-4,7.

3. Ottenstein, K.J., "An Algorithmic
Approach to the Detection and Prevention
of Plagiarism," SIGCSE Bulletin, Dec 76,
Vol.8, No.4.

4. Shaw, M.; Jones, A; Knueven, P.;
HcDermott, J.; Miller, P.; Notkin, D.,
"Cheating Policy in a Computer Science
Department," SIGCSE Bulletin, Jul 80,
Vol. 12, No. 2.

~ Accuse was developed as a Masters
Thesis under the advisement of Lloyd
Fosdick, University of Colorado, Boulder.

18

. . . . ~,, G , c~ ,:-, Z~ O) G, G . ~

~g

C)

~g
0 , . ' o 0 o o o o o o o 0 0 o , 0

o_~z : o o o o o o o o o o 0 o 0

,.< ~) o o o o o o o o o o o o , o

:~ 4

g

g

~ , ~ 0 o o o o o o o o o o o ~ o
0 ~

o >-

~-- ~- m o o o o o c O o o o o o o ~

_ J

I ~ ~- (/~ m G, 01 t n r 0 o o ~- o un m m ,,~,

O ~ Z

~0 ce , n m e~ ~- (x~ t,- c~ o o cO

~ - o o ~ ~ o o o o o o

0

u~ o~

• r -~ 0

w c ~

• "~ t a <

[-U

<

F~

~: . r

u~

0 : "
tD *. ,

o o o o o o o ~ ~ -

o ~ o o o o o o o

H -- - , -

~ a

o

o

o o ~ o 0 ~ 0 o ~ o

I - u l ~
o a .

~ 0 ~ o o o o o o o ~ 0

G

i -

r a c~ l
0

0

<

a~
nc

8

Z

g

lu

Z

g

0 ~ 0 0 ~ 0 0 0 ~ 7 0 0

u~ -,t u"l ~ ,,~" i.rl i.o

~ q

<
b "

19

u .

i-.

z

u.

r , ,

co
rd

~,~

?

r~

co

c~

i

~ o o o

~ o o o
~ 2 2 ;
g

bO

<

20

