
PANEL DISCUSSION 

Plagiarism in Computer Sciences Courses 

Philip L. Miller, Moderator 
Carnegie-Mellon University 

William Dodrill 
West Virginia University 

Michael Shamos 
Carnegie-Mellon University 

Doris K. Lidtke 
Towson State University 

Mary Dee Harris Fosberg 
Loyola University 

Cynthia Brown 
Indiana University 

With the dramatically-expanding use of 
computing systems has come the need to pro- 
vide introductory programming courses for 
greater numbers of students and for stu- 
dents with increasingly diverse backgrounds, 
interests, and capabilities. Computer pro- 
gramming is not a skill which can be taught 
effectively. It is an ability which is ac- 
quired and enhanced through practice. Pro- 
gramming courses must, therefore, provide 
an opportunity for students to write, test, 
and perfect meaningful programs. 

The acquisition of skills in computer 
programming can be, and often is, a challeng- 
ing and rewarding experience. Unfortunately, 
the need to teach larger classes consisting 
of a wider variety of students has intro- 
duced many problems. Outstanding among 
these is the tendency of students to resort 
to unorthodox means in fulfilling course 
requirements. In other words, students 
cheat. 

more towards treating symptoms rather than 
towards correcting some very fundamental 
problems. 

The primary difficulty in teaching com- 
puter programming is not necessarily cen- 
tered around detecting and punishing cheat- 
ing cases, but rather on how to teach a 
discipline with the unique characteristics 
of computer programming in a way that will 
encourage individual effort and reward in- 
dividual achievement. Examples of questions 
which might be posed in order to improve 
teaching methods include: How can student 
interest in computer programming be stimu- 
lated? What can be done to reduce the 
frustrations inherent in writing and debug- 
ging code? What should be expected (and 
what should not be expected) of students 
taking introductory programming courses? 
How can individual performance and achieve- 
ment be measured effectively for grading 
purposes? 

Considering the current nature of pro- 
gramming courses, this is not surprising. 
Many students must take computer program- 
ming whether they have an interest in the 
subject or not. In order to complete 
course requirements; they must spend many 
hours, writing and debugg'ing programs. 
It is little wonder that students resort 
to such tactics as copying programs, 
stealing programs written by other students, 
and paying to have programming assignments 
written for them rather than accepting 
the challenge of meeting course require- 
ments through their own efforts. 

What constitutes cheating on programming 
assignments? What methods can be used to 
detect cheating? What should be done with 
offenders? How can cheating be eliminated 
in programming courses? These are all per- 
tinent questions, but they are directed 

If answers to questions like these can be 
found, it is quite natural to expect that 
the prevelence of cheating in introductory 
programming courses will diminish. 

William Dodrill 

Plagiarism and cheating do exist anddo 
present us with special problems which 
differ from those confronted by instructors 
in many other disciplines. Traditionally 
the most common preventive measure against 
these infractions has been to insist that 
students work alone, produce their own 
unique programs, and on the whole avoid 
collaborative efforts. However effective 
this may be in preventing cheating (and is 
cannot always be effective), in practice 
it creates contervaling obstacles to effec- 
tive, learning. 

26 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953049.800956&domain=pdf&date_stamp=1981-02-01


In computer science it is particularly 
valuable for students to work cooperatively. 
Throughout their professional careers they 
will be working in teams and it is a poor 
educational system which does not prepare 
them for this. We should foster team- 
work, rather than isolated individual 
activity; we should train students to 
work together, rather than looking upon 
it with suspicion; and we should encour- 
age the sharing of ideas, rather than a 
jealous secrecy. There is nothing in- 
herent-ly unethical about such collabora- 
tive work. At the same time it is encum- 
bent upon instructors and the profession 
in general to encourage mutual honesty, 
open frankness about how results have been 
achieved, and enthusiasm for a subject 
which can be approached cooperatively. 
If these principles are realized, then the 
problem of cheating and plagiarism dimin- 
ishes substantially in importance. 

Doris K. Lidtke 

Plagiarism on programming assignments 
has been a persistent problem for Computer 
Science educators, but has not been faced 
squarely by the profession as a whole. 
Yet as educators we have a responsibility 
to deal with the problem. Students should 
be given a sense of values regarding their 
chosen discipline, and employers hiring 
Computer Science graduates should be able 
to trust that a student's knowledge and 
ability in the subject, not his proficiency 
at deception. 

The motives of students who copy pro- 
grams are many. The most common motive 
is probably the desire to "get something 
for nothing," to get a good grade (or at 
least a passing grade) without the effort 
or the talent required for the grade. 

Another fairly common cause of plagiarism 
is ignorance, or naivete, among students. 
Everyone is taught in grammar school about 
identifying sources of information in 
written work--use of quotation marks, 
footnotes, etc., but when are students 
taught the same guidelines about witting 
programs? Usually never, although it 
should be at the time they write their 
first programs. There are other, less 
frequent motives for plagiarism. Some 
students plagiarize for "oneupsmanship," 
attempting to prove to the teacher that 
they can "pull a fast one" on the teacher 
and get away with it. Other students 
cheat only on assignments that they con- 
sider "busy work". One example would be 
a student required to write a COBOL pro- 
gram for the survey of programming lan- 
guages course. He said, "Writing a COBOL 
program is a waste of time',, and copied 
another student's program instead of writ- 
ing his own. 

Prevention of plagiarism must begin with 
an explicit definition of plagiarism and 

consequences. This must be done before the 
student has. a chance to fail because of 
ignorance of the rules. Drawing the line 
between working together and copying is 
difficult but necessary. Discussion of 
alternative algorithms or datastructures 
between students seems reasonable, whereas 
cooperative creation of a program is taboo. 
Conferring with a lab assistant must be 
allowed, yet some lab assistants provide 
more actual program statements than they 
should. 

The consequences of plagiarism should 
be reasonable--yet severe enough to make 
the point that plagiarism will not be 
tolerated. Assigning no credit for the 
program or sharing the grade among the 
guilty students seem to be appropriate 
penalties for first offenders. Penalties 
must be applied fairly and firmly, so that 
students understand the instructor's policy. 
Repeat offenders must be dealt with more 
severely with penalties appropriate to the 
offense. 

With critical problems of computer fraud 
and software theft increasing all the time, 
making Computer Science students aware of 
the ethics of the computer industry seems 
not only appropriate but necessary. 

Mary Dee Harris Fosberg 

I consider cheating on program assign- 
ments to be collusion or copying in the 
writing of code. (The extent to which 
general discussion of the nature of the 
problem, or help with debugging, is allow- 
ed should vary with the level of the course.) 
Plagiarism is mostly found in lower level 
courses; if it is easy to plagiarize (as 
is usually the case) then the problem may 
become endemic, leading to demoralization 
and cynicism on the part of students. The 
large size of most sections of elementary 
computer science courses mandates the use 
of automatic methods for detecting similar 
programs. The ideas of Halstead on defin- 
ing software metrics seem the most promising 
in this regard. The penalty for plagiarsim 
should be sever (much worse than the penalty 
for not handing in the assignment). Cheat- 
ing probably cannot be eliminated entirely 
without imposing an unacceptable police- 
state-like system, but a good automatic 
detection method and imposition of severe 
penalties for offenders should reduce it 
to a tolerable level.. 

Cynthia Brown 

27 


