
A SUGGESTED COURSE IN
INTRODUCTORY COMPUTER PROGRAMMING

Warren A. Harrison

Kenneth I. Magel

University of Missouri, Rolla

Introduction

Introductory programming courses have
long been a popular topic of discussion.
Often it is either the only computer
course a student takes or it is the found-
ation upon which all further training in
computer science i~ built. The usual goal
of such a course is to introduce the stu-
dent to the use of a computer to solve
simple problems in his or her particular
discipline.

Generally the method of presenting
the material may be separated into two
distinct schools of thought, which we have
termed the "Black Box School of Thought"
and the "White Box School of Thought". In
this paper, we discuss the benefits and
drawbacks associated with the two alter-
native approaches. Additionally, we pre-
sent a suggested course outline using the
"White Box" method.

The Black Box and White Box Methods

The Black Box School of Thought seeks
to teach the student how to use the com-
puter while treating it as a black box.
The student is taught how to insert the
instructions at one end of the "box" and
retrieve the results from the other end.
Little time, if any, is spent on the
internal workings of the machine. This
approach is usually characterized by
teaching only a high level language such
as BASIC, COBOL or FORTRAN.

The White Box approach however,
attempts to have the student view the
computer as an assembly of various parts,
such as memory, registers, etc. which
interact according to the instructions in
Permission to copy without fee all or part of this
material is granted provided that the copies are
not made or distributed for direct commercial
advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice
is given that copying is by permission of the
Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or
specific permission.

© i~)81 ACM 0-89791-036-2/81/0200/0050 $00.75

the program. As we define it, this
approach is usually implemented by teaching
a real or fictitious low level language
before teaching the high level language.

The Students

Before determining which method
would prove most effective, one must
identify the characteristics of the
students enrolled in the course. We have
identified three major classes of students
who may be attracted to an introductory
course in computer programming.

The first grouping of students may be
characterized, from the standpoint of
computer science, as "dilettantes" In
most cases, it is highly unlikely that the
students in this group will make direct
use of computers later in their careers.
The largest part of this group is made up
of students from fields such as Art, Music
and History.

The second grouping of students is
made up of individuals who are taking the
course to develop skills which would help
them use the computer in the solution of
problems throughout their careers. Like
the dilettantes, this course will probably
be the only computer course they ever
take. The members of this group include
students from engineering, science and
other quantitatively-oriented disciplines
suclh as economics, business and certain
areas of the other social sciences (e.g.,
sociology and psychology).

The third grouping includes both
computer scientists and others who wish
to use the computer extensively in their
areas. The introductory course for these
people is simply a foundation which they
hope to build upon with additional courses
in computer science.

Obviously, the objectives of the
introductory course would vary greatly
among the groups. The dilettantes, as
their name would imply, would be better
served by receiving a "sampler" of
computer science, and a survey of the

5O

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953049.800961&domain=pdf&date_stamp=1981-02-01

field's effects upon society. The main
concern with this group is "computer
literacy". The typical "computers in
society" course would be adequate to
serve the needs of these students.
Because of this, we will exclude the needs
of this group of students from our following
discussion of an introductory computer pro-
gramming course.

The group of students viewing the com-
puter as a tool for use in their fields
must develop a certain level of programming
ability. However, just as important is a
background of sufficient depth to allow
them to expand their ability through a
reasonable amount of self-study after they
leave school and begin to apply their
programming skills.

The needs of the third group of
students are actually quite similar to the
needs of the previous group. Like the
members of the second group, these people
must develop skill at programming. Also
like the second group, this group of
students must have a broad background of
general computer knowledge (i.e., language
independent). Because most subsequent
computer science courses will build upon
the first course, a good general knowledge
of computers, not just FORTRAN, BASIC, etc.
should prove invaluable to the student.

Advantages of the Black Box Method

There are several reasons why the
Black Box Method is often picked over
the White Box Method. In most cases it
is easy to rationalize because a high level
language is probably the only type the
student will ever have to use. With
assembly language programming becoming
less and less prevalent in industry, even
the third group will seldom have to program
in assembly language. Therefore, in some
.respects, a high level language is all the
student will ever really have to use. In
addition, by devoting the entire course to
a single high level language, more time is
available to pursue the intricacies of the
language, and hence, more indepth coverage
of the language's advanced features is
possible.

If one also takes into account the
fact that the high level language is
machine independent, and therefore the
specific knowledge the student has gained
such as syntax, etc. is widely applicable,
the Black Box Method becomes quite
attractive.

Besides the reasons just mentioned,
there are two more very important reasons
why only a high level language is commonly
taught. First, because of the complexity
associated with most low level instruction
sets, high level languages are usually much
easier to learn. The second reason is that
by teaching a single high level language

the instructor's knowledge of the language
is also widely applicable. The mobility
afforded computer scientists today makes
this especially important. It is possible
that an instructor may teach at several
different institutions over a short period
of time. If each school uses a different
low level language, the skills gained by
the instructor would be of little use as
he goes from school to school. On the
other hand, high level language skills
would transfer easily since BASIC, COBOl.,
FORTRAN, etc. remain very similar from
machine to machine.

Advantages of the White Box Method

The White Box blethod possesses some
advantages which we feel compenates for
the lack of some of the Black Box Method's
advantages. To begin with, high level
languages tend to hide the general
functions of the computer. On the other
hand, low level languages illustrate these
functions. Mayer (2) has pointed out the
importance of teaching at the transaction
level. Mayer defines a transaction as a
unit of programming knowledge which
consists of an operation, an object and a
location. While Mayer states that
transactions do not require an understand-
ing of machine-level operations, we feel
that low level languages offer a "natural"
method to present material at this level.

Since the White Box approach provides
a model the student can examine if he
desires, he can observe the effects of
transactions upon various parts of the
machine, and the interactions of those
parts through the use of "selective"
core dumps. This can help alleviate some
of the abstraction inherent in most high
level languages. A significant group of
students have a great deal of difficulty
dealing with abstraction. They tend to
perform much better and understand much
more when given something concrete to
relate to. In addition to helping
minimize abstraction, the model can give
the student a good idea of the general
organization of a computer.

Knowledge of the general organization
of a computer can help build the foundation
needed if the student is to pursue advanced
programming topics on his own. Aspects of
programming which were not covered in class
can be anticipated and understood on the
basis of the model.

Familiarity with a low level language
can also help the student understand the
concept of source language translation.
This can provide an appreciation and
better understanding o.f compilers and the
compilation process.

Actual or Simulated Boxes?

While it is possible to present the

51

internal organization of a computer
by other methods, there appears to be a
general concensus among the adherents of
the White Box Method that using a low level
language to illustrate the organization and
operation of the computer reaps the great-
est benefits. The supporters of this
method are split however upon the vehicle
used to support such a language.

One camp maintains that a fictitious
machine, designed for this purpose be
implemented upon a host computer. For
example, Sebesta and Kraushaar (4,5) and
Wainwright (6) have developed such psuedo-
machines.

The rationale for using a fictitious
machine is that the complexity of a real
computer precludes its use with beginning
students. The use of a fictitious model
allows extremely simple assembly and/or
machine languages to be developed for
purely pedagogical use.

Fictitious machines have certain
problems associated with them however. The
primary problem is that they give the stu-
dent an unrealistic, over-simplified view
of a computer. While it is certainly
desirable for the language to be simple,
it should not be unrealistically so. This
tends to isolate the student from a number
of features that will no doubt have an
effect upon his programming later in the
course, such as internal representation of
floating point and integer values, two's
complement, word lengths, etc.

The use of a fictitious machine is
also a "dead end" approach to introducing
beginners to programming. After the
student is finished with the simulation,
the knowledge gained of the particular
"machine" cannot be used again except in a

. strictly general sense.

Yet another problem associated with
using a fictitious machine arises from its
implementation upon the host machine. It
is very possible that the implementation
may have errors in it. When the student
encounters these errors, he will be
exposed to the underlying host machine
through error messages, etc. which are
not related to his view of the problem.
This can confuse and discourage the student.

The second camp feels that the added
complexity of using a real machine is more
than sufficiently compensated for by the
realism inherent in this method. The
actual machine, with all its limitations
and "rough edges" provide~ a more useful
model than the "perfect" mythical machine
£or explaining errors and other phenomenon
in an actual operating environment.

The main complaint against actual low
level languages is their complexity. The
complexity may be minimized greatly by using

an extremely basic subset of the full
instruction set available for a particular
machine.

The instruction subset learned in the
introductory course may be expanded upon
for use in a more advanced course. Courses
in operating systems, language translators,
etc. could all make use of an expanded
instruction set, built up from the found-
ation supplied by the first course. For
this reason, the use of a real machine is
not the "dead end" approach to learning
as is the fictitious machine.

An additional virtue of using a real
machine as opposed to a fictitious machine
is that the student has a start on a
marketable skill. With additional study,
the student could easily improve upon his
skills in low level programming for a
particular machine. Likewise, it would
prepare the student to transfer from
machine to machine more easily than a
fictitious simulation would.

The Role of the Microcomputer

A microcomputer is a natural choice
for the vehicle to be used to present this
knowledge to the student. Microcomputers
provide a most favorable interactive
environment. The student can enter his
program, either through the front panel or
a CRT keyboard, and have complete control
over the machine's resources. More
importantly, he is not insulated from the
machine by a card reader or miles of
telephone line.

Microcomputers also tend to be quite
a bit simpler than their larger counterparts.
This facilitates reduced complexity. In
addition to being simpler, microcomputers
are also much smaller physically than
large computers. This can aid in reducing
the intimidation felt by many beginning
programmers when faced with the experience
of being one of many users working on an
anonymous machine which requires a special
air-conditioned facility larger than his
classrQom.

Other aspects of microcomputers that
make them attractive is the fact that they
are becoming widely available. They are
relatively inexpensive and require no
special operating environment (e.g., air
conditioning).. In the near future, micro-
computers will start to be widely
available in student homes.

Instruction Subset

It is desirable to limit the subset of
instructions to be used to an absolute
minimum in-order to reduce complexity.
The minimum subset should contain all those
instructions which are usually associated
with a classical single accumulator
machine. These instructions are generally

52

U

agreed to include:

Load accumulator from memory

Store contents of accumulator in
memory

Add contents of memory to contents
of accumulator

Subtract contents of memory from
contents of accumulator

Unconditional transfer of control

Conditional transfer of control

Input and Output

and may be easily implemented on most
microcomputers with a subset of a dozen or
so instructions. As an illustration of
how such a subset may be developed, Appendix
A lista a subset for the popular 8080/8085
based microcomputer.

Pragmatic Considerations

The main idea behind the use of a low
level instruction subset is to present the
general ideas of computer organization and
operation. Because of this, the low level
language should be used only until the
student has an adequate understanding of
the simplified computer.

The primary goal of an introductory
programming class is to introduce students
to the computer as a tool for solving
problems. It is almostuniversally
recognized that problem-oriented languages
such as BASIC and FORTRAN are more suitable
for actually solving problems than are
assembly languages. Fot this reason, it
is incumbent upon an introductory course
to provide students with an acquaintance
with such a language.

The introduction and use of a problem-
oriented language should follow after the
low level language programming has been
completed. This will allow the student to
build on the knowledge, understanding and
techniques gained during the first part of
the course.

As the .student is introduced to new
statements in the high level language,
the general relation of the statement to
corresponding groups of low level
instructions may be pointed out. This
allows the student to grasp the relation-
ship between the individual low level
instructions, the various parts of the
machine, and the actual high level language
instructions.

Course Content

Because the goal of the introductory
programming course is usually to introduce

students to the use of a computer to solve
problems, the first part of the course
should deal with how to solve problems,
regardless of whet~r a computer is being
used or not. Generally the process of
problem solving is dealt with in intro-
ductory text books, for example, Moore and
Makela (3) and Feingold(1). The process,
in general, is characterized as consisting
of the following steps:

Problem definition

Formulation of a procedure to
produce the solution

Coding the procedure in a programming
language

Entering and running the job

Locating and correcting errors.

The problem solving section of the course
should deal exclusively with the first two
items of the above list. The instructor
should present several non-trivial examples
in class, and then guide the students
through several more. General techniques
of problem definition and formulation of
solutions should be described and illus-
trated in the examples. Tricks and subtle-
ness should be avoided if possible. This
is not to suggest, of course, that problem
definition and solution formulation be
neglected during the remainder of the
course. On the contrary, the process of
problem definition and formulation of
solutions should be present throughout the
entire course.

Following the problem solving material,
the second part of the course should deal
with the concepts of machine organization
and low level language programming. By the
time this portion of the course is completed,
the student should have an adequate grasp
of the relationship of the different parts
of the machine to each other, and the way
these parts are affected by the program
during execution.

The third and final part of the course
should introduce the use of a high level
programming language. This part of the
course should, in addition to teaching the
student how to use a high level language
in an effective manner, teach them a
disciplined approach to programming by way
of the concepts of structured programming.

A course outline for a typical fifteen
week session using WATFIV-S as the high
level language is shown in Figure i.

Summary

The course described in this paper has
been developed to address several problems
common to most introductory programming
courses. Primarily, through the use of

53

the White Box Method, we have provided an
alternative to the "cookbook" programming
inherent in the traditional Black Box
Method. The approach presented here not
only teaches the student how to instruct
the computer to solve problems, but it
also provides some insight into what those
instructions cause to happen inside the
computer.

WEEK CONTENT

i0

1 Problem Solving: Problem definition

2 Problem Solving: Development of
problem solutions

3 Problem Solving: Role of systems
t-h-inking in problem solving

4 Machine Organization: CPU; Memory; I/O;
Accumulator; Number systems~ etc.

5 Machine Level Programming: Load; Store;
Arithmetic and Output instructions;
Program testing

6 Machine Level Programming: Input;
Conditional and Unconditional branch
instructions; looping; counters;
Program testing

7 Machine Level Programming: Array
concepts via machine language

Machine Level Programming: Simple
subprogram concepts

Concepts of code translation: Symbolic
memory locations; idea of compilers

FORTRAN: Character set; constants;
variables; operators; expressions;
assignment statements; simple I/O

ii FORTRAN: Unconditional GOTO; Computed
GOTO; DO CASE; Arithmetic and Logical
IF; IF-THEN-ELSE

12 FORTRAN: DO-LOOPS; WHILE DO; Looping

13 FORTRAN: Arrays; Array I/O; Additional
specification statements

14 FORTRAN: Formatted I/O; Subprograms

15 FORTRAN: Subprograms

Figure i. Sample outline for introductory
programming course using the White Box
iMethod and FORTRAN (WATFIV-S).
h_.

References

1. Carl Feingold,Fundamentals of
Structured COBOL Programming,
Wm. C. Brown Company, Dubuque
Iowa, 1978.

2. Richard E. Mayer,"A Psychology
of Learning BASIC",Communications
of the ACM,22,11 (November 1979),
589-593.

3. John B. Moore and Leo J. Makela,
Structured FORTRAN with WATFIV,
Reston Publishing Co., Inc.,
Reston, Virginia, 1978.

4. Robert W. Sebesta and James M.
Kraushaar,"TOYCOM - A Tool for
Teaching Elementary Computer
Concepts",Proc. SIGCSE llth
Technical Symposium, February
1980, 58-62.

5. R.W. Sebesta and J.M. Kraushaar,
"A Simple Computer Model for
Teaching Introductory Computing",
Proc. ACM Computer Science Conf.,
February 1980, 57.

6. Roger L. Wainwright,"An Introductory
Computer Science Course for Non-
Majors",Proc. SIGCSE llth Technical
Symposium, February 1980, 154-160.

54

APPENDIX A

The instruction subset should consist
of the absolute minimum number of instruc-
tions in order to keep complexity within
acceptable bounds. The instructions chosen
to be included within this subset should
correspond somewhat to those instructions
associated with a classical Von Neumann
computer. Additional instructions may also
be included for the sake of pedagogy. By
carefully selecting the instructions to be
used in the subset, minimum complexity may
be achieved with little loss of generality.
It should be noted that it is important for
the subset to maintain consistency wherever
possible regarding addressing modes.

In order to maintain the characterr
istics of a single accumulator machine
only one register, used as an accumulator,
need be introduced in some cases. However,
due to the fact that register indirect
addressing is inescapable with many ma-
chines, additional registers may need to
be introduced. If this is the case, the
register(s) used for indirect addressing
should be used only for that purpose (i.e.,
they should not be used as additional
general purpose registers...this confuses
the student and adds to the complexity of
the model.

The numeric opcodes of the 8080/8085
based micros are similar to those of the
Z-80. The mnemonics however, differ.
Therefore, the numeric opcodes listed in
this appendix may also be used as a Z-80
instruction subset. The mnemonics must
however, be supplied by the reader.

This machine requires the use of
indirect addressing. For this reason, a
set of three, 8 bit registers must be
introduced to the student. These three
registers are: the A register, used as
the accumulator and referenced in the
instruction summaries as 'A', and the HL
register pair used for indirect memory
reference and referenced as 'M' in the
instruction summaries.

In addition to being used for the
arithmetic operations, the accumulator is
also used to hold data for I/O transfer
and in operations affecting the condition
flags.

Five single bit condition flags are
provided with the architecture. Only one
of these, the 'zero flag' is used with the
selected instruction subset. Operations
involving this flag are discussed later.

A suggested subset for the popular
8080/8085 based microcomputers follow.
The reader should note that both the
numeric opcode and mnemonic instruction
is given. This allows the instruction to
be first introduced in numeric form, and
then during the discussion of the
translation process, the mnemonic form may
be introduced.

Each time an instruction byte is
fetched from memory, the processor
increments the 16 bit program counter by
one. When the sequential flow of execution
is altered by a jump instruction, the
processor replaces the contents of the
program counter with the address of the
new instruction. The next byte fetched is
from the location specified by the new
address. The selected subset provides the
following model for the student to work on.

I I/O Ports i ~

' Accumulat°r k ~ ~

I Zero F l a g ~

I HLgAddreSpair F s I ~ ~

I

PROCESSOR MEMORY

55

A description of the instructions
included in the subset follow. Note that
the Z-80 uses different mnemonics, but ~s
the same numeric opeodes. Many of the
instructions, due to complexity consider-
ations, are not used to their full capacity.

Load Accumulator from Memory
Opcode: 7E
Mnemonic: MOV
Form: MOV A,M
Action: A < c(c(M))

Store contents of Accumulator in Memory
Opcode: 77
Mnemonic: MOV
Form: MOV M,A
Action: c(M) 6 c(A)

Load HL Register pair Immediate
Opcode 21
Mnemonic: LXI
Form: LXI H,address
Action: M ~ address

Load HL Register pair Direct
Opcode: 2A
Mnemonic: LHLD
Form: LHLD address
Action: L 4 c(address),

H ~ c(address+l) .

Add contents of Memory to Accumulator
Opcode: 86
Mnemonic: ADD
Form: ADD M
Action: A ~ c(A)+c(c(M))

Subtract contents of Memory from Accumulator
Opcode: 96
Mnemonic: SUB
Form: SUB M
Action: A ~ c(A)-c(c(M))

Unconditional Transfer of Control
Opcode: C3
Mnemonic: JMP
Form: JMP address
Action: Continue execution at

specified address

Compare contents of Memory with contents
of Accumulator
Opcode: BE
Mnemonic: CMP
Form: CMP M
Action: If c(A)=c(c(M)) 'Zero Flag'

i, otherwise 'Zero Flag'
0 (i.e., checks if the

difference is zero)

3 byte instruction, byte 1 is opcode, bytes
2 and 3 is address-specified in hex form.

To be used only on HL Register pair when
illustrating array concepts.

Port number may be constant 00H thru
OFFI1

Transfer Control if 'Zero Flag' is zero
(transfer if difference ~ 0)
Opcode: C2
Mnemonic: JNZ
Form: JNZ address
Action: If 'Zero Flag' is 0, then

continue execution at the
specified address

,

Transfer Control if 'Zero Flag' ~ one
(transfer if difference = 0)
Opcode: CA
Mnemonic: JZ
Form: JZ address
Action: If 'Zero Flag' is I, then

continue execution at the
specified address

Increment Register pair
Opcode: 23
Mnemonic: INX
Form: INX H
Action: Adds 1 to contents of HL

Register pair (M)

I n p u t
Opcode: DB
Hnemonic: IN
Form: IN port #
Action: Loads Accumulator with 8

bits of data from the
specified port

Output
Opcode: D3
Mnemonic: OUT
Form: OUT port #
Action: Sends contents of the

Accumulator to specified
port

Terminate Execution
Opcode: 76
Mnemonic: HLT
Form: HLT
Action: Halts processor

56

