
A SELF-PACED FIRST COURSE IN COMPUTER SCIENCE

Dr. John O. Aikin
Director of Computer Services
The Ew~rgreen State College

Ols~pia, WA 98502

Abstract

As demand for a first course in computer science
increases, more efficient and effective approaches
to such a course become increasingly desirable.
This paper describes the development and use of a
completely self-paced CAI course at The Evergreen
State College. Use of behavioral objectives in
designing the course is explained, the con'~ent
of the course is outlined, the process used to
develop the course is described, experiences with
256 students are reported, and some general obser-
vations on implementing CAI courses are offered.

Student Demand for "The First Course"

Like most colleges today, The Evergreen State
College has been experiencing a rapid growt!h in
student interest in computers and programming. In
addition to those full-time students who plan a
concentration in computer science or who need some
knowledge of computers in order to pursue their
other studies, an increasing number of community
residents seek to understand this new force in our
society. This latter category includes owners and
employees of small businesses who suspect that
(but do not know precisely how) computers can
improve their operations, consumers who are in-
trigued by the idea of having their own computer
but don't know how to choose or use one, and many
others.

CAI as a Response

We began with the premise that CAI might offer an
effective way of presenting an introduction to
computers and programming to a large number of
students. Many researchers (e.g., Jamison et al.
(1974) and Homeyer (1970)) have reported that CAI
can be at least as effective as traditional
instruction and that its use typically reduces the
time required for students to master material.

Permission to copy without fee all or part of this
material is granted provided th'at the copies are
not made or distributed for direct co~ercia~
advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice
is given that copying is by permission of the
Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or
specific,permission.

© 1981 ACM 0-89791-036-2/81/0200/0078 $00.75

Pessel (1977) reported on the use of a self-paced
(although not CAI) introduction to computers
course at the University of Rochester which sug-
gested that demands on faculty time might be re-
duced and attractiveness to part-time students
increased through this approach.

CAI (like the traditional large lecture course)
offers a way of multiplying the number of students
who can be taught by one person. Further, it
offers the student almost complete freedom to
choose when instruction will take place. Finally,
CAI both requires and makes possible a competency-
based approach to instruction that allows each
student to proceed at his or her own pace. These
all seemed like good objectives for which to
strive in designing a new course.

How the Course was Developed

In 1978, the college sought and obtained a grant
from the Control Data Corporation to develop such
a course using the PLATO system of computer-based
education. Control Data provided the equipment
and the college provided the staff to develop,
implement, and test the course. The course was
first used in the fall of 1979. It was exten-
sively tested through the 1979-80 academic year,
then published by Control Data.

The remaining sections of this paper describe the
course, report our experiences in using it, and
con~ent on some general lessons we have learned
about CAI. The reader should bear in mind that
the major objective of the paper is not a compari-
son of CAI and its costs with traditional methods
of instruction, but rather a compendium of methods
which we believe are helpful in applying CAI.

Methodology and Pedagogy

We began by analyzing our student audience and the
content which we felt it was important to convey
in a first course in computer science. We tried
to keep in mind that this course would also be the
last course in computing for many of these
students.

The methodology which we followed in designing the
course is similar to that advocated by Lynne
Baldwin (1978). One proceeds by developing a set
of resultant behaviors that one desires students
to exhibit, specifying what entering behaviors are

78

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953049.800966&domain=pdf&date_stamp=1981-02-01

expected, and then detailing enabling objectives
that make possible the resultant behaviors.

While there has been (and continues to be) much
debate about "behaviorist" approaches to educa-
tion, it is fairly clear that computer-based
education requires such an approach to designing
courseware because of the nature (some would say
limitations) of the medium.

To illustrate how this procedure works, the first
module of the course has the objective of intro-
ducing the student to computers. We decided that
having an introduction to computers means that the
student knows something about:

(i) the uses of computers,

(2) the history of computers,

(3) how computers work,

(4) numbering systems,

(5) peripheral devices,

(6) how data is represented and stored, and

(7) the social issues surrounding computers
and automation.

To carry this example a bit further, we decided
that "knowing something about how computers work"
means that the student knows:

(3a) what the major parts of a computer are,

(3b) how these parts work together,

(3c) how instructions are represented and
data stored,

(3d) that a program is a detailed sequence
of instructions, and

(3e) how a program is executed by the ma-
chine.

Such a breakdown analysis is carried out to the
level where one knows exactly what content is im-
plied in the innocent statement that one is pro-
viding an "introduction to computers." Of course,
a way of assessing whether the student has gained
such a knowledge is also required. Good objec-
tives ought therefore to be stated in terms of
testable behaviors rather than in terms of "having
knowledge." For instance, one says that a student
"knows the parts of a computer" if s/he can name
them, that a student "knows about peripheral
devices" if s/he can recognize and identify the
functions of several, and so forth.

It is a well known fact that no two teachers will
ever agree on the specific choices of objectives
and the particular methods used to assess stu-
dents' mastery of these. The important point here
is that the method just described forces certain
results, whatever choices one makes. Among these
are that one cannot avoid becoming very precise
about what one is teaching, why one has chosen to
teach this and not that, and how one can tell if
one has succeeded. We believe this to be an
enormous benefit of the behavioral objectives
method over less formal approaches to structuring
course content. At least one can tell where one
disagrees with a colleague's course design. (For

a review of some varied approaches to the "Intro"
course, see Rine (1978).)

Content and Organization

The course is divided into five modules. The first
module has been largely described. It provides
what is believed to be a ~sufficient introduction
to computers, principles of operation, and termi-
nology to permit the student to converse intelli-
gently about computers and to go through the rest
of the course.

The remaining four modules provide a thorough
introduction to programming using the BASIC lan-
guage as a vehicle. While a detailed exposition
of content would best be given in terms of behav-
ioral objectives (for the reasons previously
discussed), for the present purposes a briefer,
more conventional outline of course content will
suffice:

Module A: Introduction to Computers

i. Uses of Computers

2. History of Computers

3. How Computers Work

4. Number Systems

5. Peripheral Devices

6. Computer Data

7. Social Issues

Module B: Introduction to BASIC

i. High Level Languages

2. Introduction to BASIC
(line numbers, variables, LET, and
END)

3. Input/Output in BASIC
(PRINT and INPUT)

4. Doing Arithmetic in BASIC

5. Problem Solving: Writing a Complete
Calculation Program

Module C: Dealing with Data in BASIC

i. Alphabetic Data (Strings)

2. Storing Data in Programs
(DATA, READ and REMark)

3. Controlling Program Flow
(GOTO and IF...THEN)

4. Advanced Input/Output
(LINPUT, ENTER, and PRINT USING)

5. Solving a Complete Data Handling
Problem
(searching a list for an item)

Module D: Control Structures in BASIC

i. Structure and Organization in Programs
(Structured Programming, IF...THEN
DO*)

2. Program Documentation

3. Iterative and Control Loops
(FOR...NEXT loops, WHILE...DO*, and

79

UNTIL...DO*)

4. Arrays

5. A Complete Structured Program

Module E: Advanced BASIC Tools

i. Functions

2. Subroutines

3. Files

4. A Complete Application Using Files

*NOTE: While most versions of BASIC can hardly be
said to facilitate good program design and
coding practices, the version of BASIC
used at Evergreen (and taught in this
course) is an exception. Local enhance-
ments provide all of the control struc-
tures required for teaching structured
methodology. Indeed, the only reason
statements such as GOTO are introduced at
all is a recognition of the fact that most
BASICs that the student will subsequently
use do not provide other control struc-
tures.

For each topic in the outline, there is a state-
ment of the objective, an assessment test, and at
least one learning activity. Typically there are
several learning activities, some presenting con-
cepts and others involving application exercises.
The majority of the learning activities are CAI,
but parts of two conventional texts ~ (Computers i~
Action, by Donald Spencer and BASIC: A Hands-on
Method, by Herbert Peckham) have been integrated
as assignments.

To aid the student, we developed a BASIC inter-
preter available through PLATO which provides
exceptionally "friendly" diagnostic messages and a
simplified environment in which the student may
practice programming. Throughout the course, the
student is referred to the simulator for program-
ming exercises that reinforce material presented
in the learning activities. Within all of the CAI
lessons, there is a dictionary available which
allows the student to request a definition of any
unfamiliar technical term.

The PLATO system completely coordinates the stu-
dent's progress through the self-paced course.
Following a mandatory group orientation meeting,
the student usually begins by going through an
introduction to the PLATO keyboard and course
organization. The student may then elect to chal-
lenge the test for the first module, or begin
studying lessons for that module. Whenever the
student is ready for a test on one or more objec-
tives, PLATO constructs and administers an ob-
jective test, scores the test, and (if required)
prescribes learning activities for review prior to
the next text. When all of the objectives in the
first module have been mastered, the student is
able to go on to the second module. When that
module has been mastered, the student goes on to
Module C, and so on until the last module is
mastered.

When the student finishes studying the course
materials, s/he picks up a comprehensive take-home

examination. In order to receive credit, the stu-
dent must perform satisfactorily on this examina-
tion. The student must also submit specifications,
a listing, and a sample run of an individual pro-
gramming project. These are evaluated by the
instructor (along with a written self-evaluation
prepared by the student) and used to make a credit
determination and construct the narrative evalua-
tion that becomes hart of the student's permanent
record.

As the student progresses through the course, s/he
has the ability to leave a note (via the computer)
for an instructor, to which the instructor may
respond. Course instructors read and answer
their "mail" several times each day. The subjects
of such notes may be simple queries about informa-
tion presented in a lesson, requests for an
appointment, or reports of errors in either the
system or in one of the lessons.

Experience in Using the Course at Evergreen

Since this course was first offered fall quarter
1979, 256 students have enrolled in the course for
credit. An additional 116 students went through
the course as part of the Coordinated Studies Pro-
gram* "Society and the Computer." Since students
in this latter group did not take the course in a
completely self-paced mode, they will not be
included in subsequent analyses, although their
comments have been very helpful in refining the
course.

The enrollment in the course has thus been about
50 students each quarter and has remained remark-
ably high for five consecutive quarters. Enroll-
ment has been deliberately limited in order to
permit adequate access to equipment.

The first observation that one might make is that

this ievel of enrollment is almost precisely twice
as large as the number of students taking the
"Intro" course when it was being taught using a
traditional approach. While it is likely that
every student has a different reason for taking
any course, student responses to the questions in
an exit survey suggest strongly that the self-
paced approach to the course does make it avail-
able to many who would otherwise be unable to
enroll. Students repeatedly comment favorably on
the fact that they are able to easily mesh other
class and work schedules with the course, to work
at their own pace, and to avoid traditional pas-
sive and public classroom learning situations.

About forty-five percent (45%)' of the students
taking the course have done so as regular full-
time students; the majority thus being part-time
students for whom one might expect the foregoing
factors to be especially significant. About forty
percent (40%) of the students taking the course
have been women. This is a much higher percentage
than one historically finds in a technical course
of this type. One might therefore wish to argue

See Aikin (1978) for a discussion of Coordinated
Studies.

80

that the self-paced mode is an effective way of
making computer science more accessible to women,
although it is unclear just why this might be so.

Obviously a factor of great interest is whether
the students who enter the course actually com-
plete it and earn credit, in other words, do they
learn? The following table summarizes some of the
relevant data:

Fall~ 79

Enrolled 51

Actually
began 44

Finished 23
PLATO (52%)

Earned 25
Credit* (59%)

Hours of
PLATO time 30.7
to complete

Mean
student age

Percent
part-time
students

* NOTE:

Wtr., 80 S~g., 80 Smr., 80

38 63 50

35 58 40

20 42 27
(57%) (72%) (68%)

18 44 32
(51%) (76%) (80%)

29.7 32.7 28.2

Not avail. 27.8 28.8 28.2

29% (est) 57% 48% 63%

It is possible for students to earn
credit without completing all of the
PLATO modules if they pass the final exam
and submit a satisfactory project. There-
fore this number can exceed the number of
students finishing the PLATO sequence.

It is clear from these results that not every stu-
dent is able to successfully complete the course
and earn credit. It is also clear, however, that
the percentage of students completing the course
and earning credit has increased since the course
was first offered. In part this is an artifact:
During the first two quarters, the number of stu-
dents exceeded our expectations and we did not
have sufficient terminals to permit every student
enough access to complete the course. More impor-
tantly the effectiveness of the learning activi-
ties has been steadily improved and sources of
confusion have been gradually eliminated from the
course structure.

While evaluations of the 56 students enrolled
during fall, 1980 have not yet been completed as
of this writing, all but three actually began the
course this time and we expect more than 75% to
complete the sequence and earn credit.

The number of students currently completing the
course and earning credit thus compares favorably
both with other courses at the college and, more
importantly, with the traditional version of
"Introduction to Computers and Programming" taught
previously. It also compares favorably with the
40% figure cited by Pessel (1977) for the self-
paced course then in use at the University of
Rochester.

It is worth noting that the average age of stu-
dents taking this course (28.4 years) is more than
five years greater than the overall mean age (23)
of students at the college. This is thus far,
however, the only significant demographic obser-
vation that can be made. We are now examining in
detail the survey data that has been collected and
we home to be able to use this data to predict
which students will have difficulty with the self-
paced mode. We would like to be able to administer
an entry questionnaire that could detect those
students who are likely not to complete the course
and advise them to register for something else.

Advantages Over a Traditional Course

The principal advantages over a traditional course
are the ones already touched upon: gre~ter ~va~l-
ability to students and as effective or more
effective presentation and mastery of the mater-
ial. Some other advantages also deserve mention,
however. First there is a real reduction in the
staff effort required to teach the course. While
we would not be prepared to argue that CAI is
cheaper than traditional means of instruction,* it
is clear that CAI permits one instructor to serve
many more students. It is also clear that CAI may
make the repeated teaching of an introductory-
level course both more tolerable for the instruc-
tor and more effective for the student. High
demand initial contact courses are among the most
difficult to teach well because they usually re-
quire enormous amounts of student contact and they
often do not stretch the limits of the discipline.
The computer does not tire of being repeatedly
assigned to teaching the same old course. To the
extent that the authors of a CAI course succeeded
in putting a joy in the subject into their work,
that joy will be there time after time, student
after student.

A second result of using CAI to teach this partic-
ular course is that students are forced to spend
many hours interacting with a computer. As a way
of exposing students to both the powers and the
frustrations of the machine this probably cannot
be improved upon. Students develop an ability to
use a terminal (including the typewriter keyboard)
which they would not be as likely to develop
otherwise. They experience directly how very
sophisticated and subtle can be the machine's
interaction with the human. They also become
painfully aware of how even the most carefully (we
like to think) designed large program will display
the machine's rigidity and susceptibility to the
programmer's error. These are important lessons
for students to learn early in a potential compu-
ter career and for the citizenry generally to
possess.

Finally, although one might expect that using a
machine to teach would be viewed by students as
impersonal and perhaps even dehumanizing, student
comments in the exit survey reveal that many stu-
dents have found PLATO to be more personal and

For a discussion of CAI costs, see ComPuters and
the Learning Society (1978).

81

patient than a human teacher. The machine's
temperament is constant, students' mistakes are
private, and the student can ask a question
(through the dictionary) or repeat a lesson with-
out embarrassment. Older students are particularly
likely to comment favorably on this aspect of CAI.

Disadvantages

There are, of course, some disadvantages too.
Some students simply cannot learn through CA1.
This is not meant as a criticism of such students,
but rather as a statement of a fact that must be
dealt with, just as some students cannot learn
from lectures. It appears that students have
three major kinds of difficulties in mastering
a self-paced course of study. First, self-
motivation assumes a critical role in self-paced
study. There is no teacher standing there with
assignments that must be turned in; there isn't
even a regular time when the student has to be
somewhere. The entire motivational burden falls
on the student. Educational purists will probably
not find this a disadvantage at all, but the fact
is that many students have been ill prepared to
assume such a burden. There is a consistently
higher drop-out and failure rate among full-time
students entering this course directly from high
school than among older students returning to
school. More than three fourths of the latter
group complete the course and earn credit, while
slightly under two thirds of the students entering
directly from high school do so. These figures
should be viewed with caution, however, since'the
number of students entering directly from high
school is small. Nevertheless, these data suggest
that CAI works best with mature students. (Of
course, almost all educational methods work best
with mature students, but the difference may be
more pronounced in courses taught using CAl.
Pessel (1977) reports similar experiences with
student procrastination.)

Second, there appear to be some students who have
physical difficulties in spending the amount of
time using a terminal that is required for this
course. Some students report eyestrain, for
example. Once it is explained to students that
they can cope with this by arranging shorter
sessions on the computer and by refocusing their
eyes periodically, most, but not all, students can
overcome this obstacle.

Third, and probably most significant for CAI as a
methodology, the machine can never be as flexible
and responsive as the best human instructor.
Despite the hundreds of hours of time that has
been invested by the authors and the extremely
flexible system provided by PLATO, most people
would learn better and faster from a highly
skilled personal human tutor. But that is not the
real alternative! For some reason, critics fre-
quently compare CAI with the best human instructor
under the best and most individualized conditions.
How about the 500 student lecture course taught
mainly by an inexperienced TA or by the faculty
member who is teaching it for the umpteenth time
and has an exciting graduate seminar coming up in
the afternoon? Perhaps one should simply acknowl-
edge that the best human teachers under the best
circumstances are much more effective than CAI,

but that for many students in many circumstances,
CAI will be as effective for equal numbers (though
perhaps for different individuals) as the real
alternatives.

One of the things that can go a long way towards
overcoming some of the disadvantages of CAI is to
seek frequent feedback from students using the
course. ~.Tnere do they have problems, what do they
complain about? Such feedback can help refine a
CAI course, but in the end we have found three
devices most helpful in "humanizing" the course:
First:, students are repeatedly urged to use the
notes capability of the system and instructors are
religious about responding quickly. This provides
students with a way to get a quick answer to an
individual question.

Second, students are provided three opportunities
each quarter to come to a "class" meeting. It is
interesting that before we did this, there were
fairly frequent comments about how much such lab
sessions were needed, but once we started doing
it, only 5-10 students out of the group of fifty
ever came. Apparently the reassurance that the
option is there is needed, but it is rarely exer-
cised.

Finally, students are encouraged to form study
groups on their own. Again, not too many students
do so, but there is some evidence that participa-
tion in such a group can make the difference
between success and failure for some of the indi-
viduals who join them. It may be that the favora-
ble impact of study groups is more due to their
motivational impact than to any direct clarifica-
tion of the subject matter.

Comments on PreParing CAI Materials

The remainder of this paper discusses the process
of designing and constructing "courseware" and
presents some observations that may be helpful to
others planning to develop CAI materials.

The construction of CAI courseware incorporates
elements of programming, teaching, and writing.
It is similar to programming in that it obviously
does involve programming a computer, but more
significantly in that the entire methodology of
structured design and implementation is highly
appropriate. An outline* of the process which was
used to develop the present course will illustrate
this parallelism:

I. Develop overall course design

A. Statement of what students are to
learn
(overall terminal objectives)

B. Analysis of audience
(entering behaviors, assumptions)

At each major division of the outline there is a
review, revision, and approval cycle before pro-
ceeding to the next major division.

82

C. Instructional task analysis
(enabling objectives for terminal
objectives)

D. Testing strategy
(how will student achievement be
assessed?)

E. Evaluation and approval process
(how will course success be
assessed?)

(how will design/implementation be
approved?)

F. Design constraints
(budget, time frame, delivery system,
etc.)

G. Development schedule

II. Develop detailed design documents for
each learning activity under each ena-
bling objective including:

A. Description

B. Prerequisites

C. Objectives addressed

D. Content outline

E. Method of presentation (medium)

F. Testing strategy

III. Design utilities and general support sys-
tems

A. Key conventions

B. Standard entries, exits, screen for-
mats, etc.

C. Dictionary and other "help" services

D. Title page formats

E~ Unit linkages within CAI lessons

F. Graphics/animation utilities

G. Simulators

H. Etc.

IV. Implement computer management structure
(CMI)

A. Course management
(sequencing, testing procedures,
etc.)

B. CAI lesson stubs

C. Statements of objectives

D. Test stubs

V. Implement learning activities

A. Subject matter expert writes "script"
with:

i. text

2. graphics

3. student interactions

4. other specifications

B. Script is reviewed and edited by
other members of team.

C. Programmer implements script as CAI
lesson.

D. Professional editor reviews for
language and clarity.

E. Students use lesson with the
"comment" feature enabled so that
they can point out troublesome
portions.

VI. Entire course is tested with students,
then revised as needed.

VII. Course is submitted to publisher for re-
view (assures adherence to technical and
mechanical standards)~ then published.

The foregoing process is obviously an ideal, but
it clearly il~ustrates the similarities between
programming and developing CAI materials. In
general, we would conclude that the application of
structured design methodology to constructing CAI
materials can be exnected to yield the same bene-
ficial results as in programming.

Some other observations grow much more directly
out of our own experiences in authoring the course
and are not so obvious. For example, there is a
learning curve for being able to use the CAI
medium effectively. ~at works in the classroom,
or in a text book, is not the most effective use
of the CAI medium. Since it takes time to master
the instructional medium, we would suggest that
new authors write the last lesson~ in a courseware
package first. That way, students will have
experience in learning from the medium when they
encounter one's worst lessons and will have their
introduction to the medium through one's best
lessons.

Some basic stylistic guidelines are:

(i) Avoid "page turners;" that is, CAI les-
sons that simply use the computer as a
text display medium. Such lessons have
no advantages over text books and may
even be less effective because the stu-
dent's "window" is smaller.

(2) CAI is most effective when it is highly
individualized and when it frequently
requires the student to d0o something.
Therefore one stylistic objective is to
ask frequent questions. Ideally these
questions should be designed to allow
the student to demonstrate that s/he
already knows something, thus allowing
branching to material which the student
has not mastered. Likewise, questions
can be used to verify that a concept
which has just been presented has been
understood. When it hasn't, the lesson
should take appropriate action to rein-
force the concept, ideally by presenting
it in an alternative way. As a goal,
one might strive to write materials such
that each student follows a unique path
based on what the student already knows
and on how rapidly the student can
absorb new knowledge.

83

(3) Graphics and animation can make possible
very effective presentation of ideas by
drawing attention to key points. Graoh-
ics is especially powerful as a way of
illustrating processes. But, graphics
for graphics' sake can be extremely
tedious for students if they are forced
to wait repeatedly for the display to
complete. What is cute the first time
is not cute the 51st time.

(4) Guiding the student through a task, or
otherwise simulating a process :is a
highly effective approach which CAI can
accomplish well. For example, several
of our best lessons ask the student to
write a program to accomplish a task,
giving feedback on the student's choice
of program logic and statements as s/he
develops the program. This is much more
effective than simply presenting con-
cepts. Such lessons are not easy to
write, however.

(5) It is important to provide a consistent
package for a course. When students
begin using a CAI system, they have a
technical hurdle to overcome before they
can concentrate on the material: there
is an unfamiliar keyboard and machine to
master, a new way of studying material,
etc. It is extremely helpful if the
author is kind enough to design a uni-
fied course where keys always do the
same sort of thing, where a given type-
face always is used in the same way (for
instance using italics every time a new
word is first used), where the screen
formats consistently locate action di-
rectives in a particular place, etc.
For this reason, there are advantages
to authoring large packages (entire
courses) rather than small ones.

(6) Use mixed media, with the computer
making assignments, testing, and only
sometimes actually teaching. Too much
CAI is like too much TV; it's better to
intersperse some text materials, or a
lab, or an audio or filmstrip activity.
This helps to break up the monotony.

(7) Try to have at least two different
learning activities that address each
objective. This will help to insure
that no student gets stuck repeating a
learning activity over and over without
improving.

Some other practical conclusions which we have
reached concern the development process itself.
Faculty (unless they are computerphiles) must have
technical support to write CAI materials. In our
discipline this is less of a problem than in some
others, but even so, a college planning to develop
a CAI course should provide competent programmers
and editors to subject matter experts writing CAI
materials.

We have reluctantly concluded that students cannot
be trusted to author CAI materials. They can

sometimes be trusted to implement scripts if
standards are very rigorously enforced. Probably
the best use of student help if it is available is
in implementing utility routines and in testing.

It is important to test materials early and often.
It is simply amazing how frequently something that
seems obvious to the author does not come across
to others. This happens in lectures and textbooks
too, but there is a subtle difference in that
within the traditional classroom setting the stu-
dent has a recourse: s/he can ask for clarifica-
tion. In a self-paced course there is often
nowhere the student can turn if s/he gets lost.
By watching people go through lessons while they
are being implemented, one can locate most of the
problem areas. If the system permits (as PLATO
does), students can be given the opportunity to
comment on lessons at any point, thus providing an
effective means of constant improvement. For
example, our course has a dictionary of computer
terminology that allows students to enter a word
or phrase and receive a definition. If a student
enters a word or phrase for which no definition
exists, the system records that request, and where
it came from. This allows the dictionary to be
updated in areas where frequent inquiries have
arisen and draws attention to learning activities
where there are frequent requests, thus suggesting
the need for revision. Tools soch as this one are
very useful.

One final observation is that unlike textbooks
(and even handouts), CAI can be updated or cor-
rected immediately. Thus if a student finds an
error, that error can be corrected at once so that
no other students need to encounter it. When
students are encouraged to report errors and when
they see that their reports produce immediate
changes, they will do so readily.

Conclusion

The self-paced course described in this paper has
proven to be an effective way of presenting the
"first course" in computer science at Evergreen.
The use of CAI offers both some special advantages
and some special problems. The authors have been
sufficiently encouraged by the results of this
project that they are now working on a similar
course based on Pascal.

The BASIC course described herein has been pub-
lished by the Control Data Corporation and is
available through the CDC PLATO network. To use
the course one simply needs access to a PLATO
terminal and the printed materials used by the
course. Access to another computer system would
be useful for students to practice progran~ing in
BASIC and would reduce the amount of PLATO time
required, thus improving cost-effectiveness.

Bibliography

Aikin, John O., "Computer literacy: an interdis-
ciplinary, hands-on approach at The Evergreen
State College," SIGCSE Bulletin, Vol. i0, No.
3, August, 1978, pp 8-12.

84

Baldwin, Lynne J., "Quasi-behavioral objectives
for curriculum specification," SIGCSE Bulletin,
Vol. i0, No. 3, August, 1978, pp 1-7.

Homeyer, F. C., "Development and evaluation of an
automated assembly language teacher," Technical
Report No. 3, 1970, The University of Texas at
Austin, Computer Assisted Instruction Labora-
tory.

Jamison, D., Suppes, P., & Wells, S., "The effec-
tiveness of alternative instructional media: a
survey," Review of Educational Research, Vol.
44, No. I, 1974, pp 1-67.

Peckham, H. D., BASIC: A Hands-On Method, McGraw-
Hill Book Company, New York, New York, 1978.

Pessel, D., "Introduction to computing self-paced:
a novel approach which may be fun but does it
work and is it worth it?" Proceedings of the
Computer Science and Engineering Curricula
Workshop, 1977, IEEE Catalog No. EHO 126-3, pp
60-63.

Rine, D. C., "A course entitled introduction to
computing: for computing, engineering, and
business majors," College Curricula in Computer
Science, Engineering, and Data Processing,
1978, IEEE Catalog No. 78CH1311-0C, pp 34-38.

Spencer, D. D., Computers in Action, Hayden Book
Company, Rochelle Park, New Jersey, 1978.

Subcommittee on Domestic and International Scien-
tific Planning, Analysis, and Cooperation of
the Committee on Science and Technology, U.S.
House of Representatives, 95th Congress, First
Session; Hearings: "Computers and the learning
society," No. 47, U.S. Government Printing
Office, 1977.

Subcormnittee on Domestic and International Scien-
tific Planning, Analysis, and Cooperation of
the Committee on Science and Technology, U.S.
House of Representatives, 95th Congress, Second
Session~ Report: "Computers and the learning
society," Serial JJ, U.S. Government Printing
Office, June, 1978.

85

