Check for
Updates

Getting More Oomph from Programming Exercises

Alan L. Tharp
Computer Science Department
North Carolina State University
Raleigh, North Carolina 27650

ABSTRACT

Much attention has been given to the content
of introductory computer science courses, but
based upon a perusal of introductory textbooks, it
appears that somewhat less attention has been
given to the programming exercises to be used in
these courses. Programming exercises can be modi-
fied to provide a better educational experience
for the student. An example of how atypical pro-
gramming exercises were incorporated into an intro-
ductory programming language course is described.

Keywords and Phrases: Programming exercises;
introductory courses; motivation; practical
knowledge; applications; new technology.

INTRODUCTION

Originally the primary goal of introductory
computer science courses was to teach the syntax
of a programming language; the programming exer-
cises then quite naturally stressed language syn-
tax. As the field of computer science evolved,
the emphasis in introductory courses gradually
shifted from syntax to the basic principles of pro-
gramming; the programming language became a vehicle
to illustrate the programming concepts and the ex-
ercises then emphasized programming fundamentals.
The focus of the following discussion is on modi-
fying programming exercises even further to pro-
vide greater benefit to the students.

Paraphrases of typical programming exercises
{not especially good nor especially poor) randomly
chosen from introductory computer science text-
books are found in Figure 1. One close scrutiny,
one may argue that some do not adequately illu-
strate either programming language constructs or
concepts. One might even argue that a few of the
exercises are just plain DULL to a large number
of students. However, even if the goals of teach-
ing language syntax and concepts were met with
Permission to copy without fee all or part of this
material is granted provided that the copies are
not made or distributed for direct commercial
advantege, the ACM copyright notice and the title
of the publication and its date appear, and notice
is given that copying is by permission of the
Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or
specific permission. .

© 1981 ACM 0-89791-036-2/81/0200/0091 $00.75

91

these programming exercises, additional goals
could be achieved.

Motivation is a tremendously important com-
ponent of instruction. It is now even more nec-
essary in the discipline of computer science, be-
cause an increasing number of students have had
prior computer experience upon entering college;
with uninteresting or non-challenging programming
exercises, many students lack incentive and be-
come disenchanted. In addition, many students
are now entering the field of computer science for
reasons other than their being enthused about the
discipline; such students require greater motiva-
tion.

Malone (1980) studied the motivational
factors of learning in the context of instruc-
tional design; he comments that "if students are
intrinsically motivated to learn something, they
are likely to spend more time and effort learning,
feel better about what they learn, and be more
likely to use it in the future.'" In his study,
he categorizes the motivational factors into three
groups: challenge, fantasy, and curiosity. In
discussing the challenge factor, he reports on
one of Csikszentmihalyi's (1975) observations on
what makes an activity intrinsically motivating —
"There should be a clear criteria for performance;
one should be able to evaluate how well or how
poorly one is doing at any time." Papert (1972)
also argues that it is preferable for a student
to discover for himself if something is correct.
One factor common to several of the programming
exercises in Figure 1 is that the student cannot
determine by herself if the answer is correct.
Another consideration relevant to motivation is
that the skill being taught (in our case program-
ming) does not need to be the primary goal for an
exercise but rather a means to achieving the pri-
mary goal.

*4Ppogramming exercises could be improved to be
more motivating.**

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953049.800968&domain=pdf&date_stamp=1981-02-01

Write a program to convert an integer number to
its Roman numeral equivalent and vice versa.

Write a program which when given N, counts the
number of primes < N.

Write a program to print the numbers from 1 to

10 in one column and the numbers from 10 backward
to 1 in another column to the right of the first.
Hint: The sum of the two numbers on any line is

11.

- Write a program using the Euclidean algorithm
which will find the greatest common divisor of
two positive integers.

- Write a program to compute an employee's pay
using the formula

PAY

GROSS - TAX - DEDUCT where
TAX = TAXRATE * GROSS and
GROSS = RATE * HOURS

The values
are inputs

for RATE, HQOURS, TAXRATE and DEDUCT
to the program.

- Write a program to read a page of text (50 lines
of 80 characters) and print the words that are
used on that page. Words are to be printed in
alphabetical order with each word appearing only
once; words that are used more than once will
have a frequency count (e.g., AND 12). The max-
imum length of a word may be assumed to be 10
characters.

. Figure 1 .
Representative Programming Exercises

A dilemma in computer science education is
that much information necessary for completing
practical computer science tasks is not consi-
dered worthy of university credit, (e.g. reading
a file from a tape or learning to use an inter-
active computer system; the activities in this
classification may vary from campus to campus).
How, then, is a computer science major to acquire
this basic knowledge if it is not presented in a
course? Currently the student may have to acquire
it on his own or from another student and although
these methods are sufficient in many cases, the
student may obtain incomplete or incorrect know-
ledge. (Of course no guarantees can be made that
such deficiencies would not occur if this mater-
ial were presented formally.)

**Programming exercises could be improved to
provide much of this practical knowledge.**

Computer science is a diverse field; how is
a student to be introduced to its many subareas?
Most curricula allow students a choice of elec-
tives, especially in their final year or two. If
a student has not been introduced to the elective
areas, how does he know 1if he is interested in a
course without having to actually take it?
**Ppogramming exercises could be improved to pro-
vide an introduction to the many elective areas
of computer science.**

92

Computer technology is changing rapidly.
One of the primary purposes of this symposium is
to introduce new technology to the computer edu-
cator. How can this information in turn be intro-
duced rapidly into an undergraduate curriculum?
How can the students at least be exposed to these
concepts? When a new technology surfaces, there
may be a significant time lapse before it evolves
to fill a compiete course or filter down to the
undergraduate level. Again the few very enthu-
siastic students would probably acquire this in-
formation independently, but what about the ma-
jority of students?
**Programming exercises could be improved to pro-
vide an introduction to the new ideas and tech-
nology of computer science.**

Four needs related to computer science
education have been presented: motivation, pre-
sentation of essential but non-academic infor-
mation, introduction to various areas of computer
science and introduction to new computer science
technology. One method of meeting these needs is
through improved programming exercises. The next
sectijons describe an example of how programming
exercises can be used to meet these four needs.

BACKGROUND

Programming exercises which were designed
to achieve the goals outlined in the introduction
were incorporated into a course whose primary
purpose was to teach a programming language. Al-
though this experience was with one programming
Tanguage, the method is relevant to essentially
any course in which programming is a major part.
The course used in the study is a one credit hour,
elective, sophomore-level course on the SPITBOL
(SNOBOL) programming language. This course is
ong of a set of one credit hour courses offered
at North Carolina State University with the pur-
pose of teaching a programming language other
than the primary one used in the computer science
curriculum (currently PL-1). The courses are
non-graded pass-fail in which the primary eval-
uation of the student is his ability to program.
Courses exist for APL, COBOL, FORTRAN, LISP and
PASCAL in addition to the one in SPITBOL.

In the SPITBOL course, the students are
given a set of ten programming assignments of
varying difficulty with a total value of approxi-
mately 170 points. They must satisfactorily com-
plete 100 points to obtain credit for the course.
The assignments are distributed throughout the
semester.

EXAMPLE TASKS

Example programming exercises used in the
SPITBOL course are sketched to give the
reader an jdea of the type of exercises being
suggested. A reader's lack of familiarity with
the SPITBOL programming language should not hin-
der him from understanding the discussion; it is
intended to provide examples rather than the con-
cepts of a specific programming language.

a. Programming goal - programmer defined input/

output

Exercise - Read information from a master
tape, manipulate the input, write the
information to your tape, rewind your
tape and then print its contents.

Evaluation -
With this exercise the students gain ex-
posure to tapes in addition to learning
about input/output in SPITBOL. To in-
crease the student's interest in the
assignment {and since the specific data
chosen is independent of the programming
goal), data was selected which after manip-
ulation became a poster popular among com-
puter science students, such as a portrait
of Einstein or a sketch of a gorilla with
the inscription “THINK".

- Since the final product was something of
interest to the students and since it was
immediately obvious if the program ran
correctly, it provided motivation to most
of the class. A secondary advantage of
such an exercise is that the students then
have a reduced urge to illicitly print
such posters and waste scarce computer
funds.

b. Programming goal - built-in functions for
string processing
Exercise - Design a data entry form for use Figure 2
with a CRT. Program the CRT to display Representative Graphics
this form by sending the appropriate con-

trol characters to the CRT. Then use the

form for entering data and print the con- The students were again motivated because
tents of the form in a readable format. the result was something of interest to
Evaluation - The students gained experience them and they knew when it was correct.
using a CRT for something other than a They were introduced to the popular sub-
"glass teletype". The students were ex- area of graphics and they were able to
posed to an aspect of computer science use the relatively new technology of

which in and of itself would not be : ; ;
. X graphics terminals. (As an alternative,
worthy of academic credit. And the stu- co]gr graphics could have been used to

dents were challenged to see hgw simple make the task more interesting and chal-
they could make the form. Again they lenging).

were able to determine for themselves

when the program worked properly. d. Programming goal - programmer-defined

; . functions
¢. Programming goal - use of external functions Exercise - Using the graphics procedures of

Exercise - Load several external functions a previous assignment, write a programmer-

which provide the capability to draw on defined function which will draw a poly-

a graphics terminal - Draw, move, print, gon given its angle and the length of

«... Then construct an object of your its sides as parameters. Call your poly-

choice on a graphics terminal and after gon function with three sets of parameters

obtaining the object, output it to a and obtain plots of the results.

plotter. (A utility program was provided

to obtain a hardcopy of the graphic). Evaluation - Plotting can be a valuable aid

Evaluation - Students drew objects ranging to displaying information from a compu-

from abstract art to notes on a musicai ter, but learning the details often does

scale. Figure 2 shows typical results not appear in an undergraduate curricu-

of the output. Tum or is not deemed worthy of credit.
The procedure for using a plotter may
appear difficult and foreign to many
people primarily because of ignorance.
Upon completing this programming assign-
ment, in addition to having developed an
understanding of programmer-defined
functions, the students had gained
familiarity with using a plotter and had
learned how simple it is when sufficient
information is provided. 'If looping were

93

also a concept to be illustrated, the
students could have been asked to plot

a numeric function over a specified range
of values. (See Figure 3)

3.0
2.0
1.0
o0 eI e 30 4.0 s.0 6.¢ 7.0 80 9
¥ X
1.0
2.9
3.0 SQRT(X)
Figure 3

Graphics Example I1lustrating Looping

e. Programming goal - programmer-defined data-

types
Exercise - The ASCII codes necessary to drive

a VOTRAX speech synthesizer for a few com-
mon function words such as "a", "in" and
"the" and a few content words such as “com-
puter science" are stored on a disk data
set. (A complete list of such words is
given. Instructions are also given for in-
voking a text-to-speech translator for
obtaining additional content words such as
the student's name). Construct a program-
mer-defined datatype for a linked list
where each node structure contains three
fields - one for the word, one for an ASCII
code and one for a link, i.e.

L]

Link together the ASCII codes in ascending
order of the associated words for both the
stored and supplemental vocabulary. Then
output the resulting list via the synthe-
sizer. Also form a linked list of words
for two sentences of your choosing and
then have these lists output through the
voice synthesizer. :

Evaluation - Using a speech synthesizer is
merely one example of introducing students
to new technology which may not other-
wise be part of an undergraduate curricu-
lum. The synthesizer was used because
of its availability, but other equipment
could be used for similar tasks. Since

94

computer synthesized speech was new to
most students, the exercise provided a
high degree of motivation for the students.
As with many of the other exercises, the
students were able to determine for them-
selves when the exercise was successfully
completed. They also noted a few of the
deficiencies of current computer synthe-
sized speech and were thus introduced to
the area of computational linguistics.

In a first programming course or in the
beginning of a subsequent programming course for
a different language, it is probably unwise to
introduce too much material to the students imme-
diately. For that reason, it may be preferable to
limit these initial programming exercises to ones
which are motivating but do not necessarily in-
clude practical knowledge, new technology or
applications. Examples of such assignments in the
Spitbol course are to

. remove offensive words from a passage
(e.g. those referring to the athletic
archrival).

. generate a greeting card (varies with the
time of year, e.g. Halloween, Easter).

. construct a certificate stating that some-
one is the [scope of recognition] [level]
[category], e.g. World's Fastest Program-
mer (this assignment also introduces the
use of special output forms).

. associate students with one another based
on their yes-no answers (input on op-scan
forms) to a questionnaire. (The assignment
also illustrates another way to enter data
into a computer.)

. write a function to determine if a string
is a palindrome (e.g. a man a plan a canal
panama) and add to the test data if you
wish.

. write a program in as few statements as
possible (a dubious virtue but in this
case encourages the students to consider
most of the constructs in the language
and offers a challenge).

The programming tasks described in this paper
are representative exercises to help students
achieve more than a mastery of programming syntax
or basic concepts. Many other tasks exist. When
interactive computing was new, it was introduced
to students with this type of programming exer-
cise. As it became more established it was made
an integral part of the curriculum. Other possi-
bilities for such programming exercises include
a game playing program to introduce artificial
intelligence, or use of a word processing termi-
nal, intelligent terminal, videodisk or typewriter
printer to introduce new technologies. In cer-
tain respects, the new and sophisticated hardware
is Tike a toy to the students and so provides
significant positive motivation. It exposes the
students to many areas of computer science and
new technologies and it provides them with much
practical but non-academic knowledge.

IMPLEMENTATION

Introducing such exercises into a programming
language course is not without effort; this

reality may explain why few textbooks include
them. A few of the example tasks described pre-
viously use special equipment which may not be
readily available everywhere, but a text could
include representative exercises from which an
instructor could choose depending on the periph-
erals available to him. In addition, software
beyond the basic programming language facilities
must be provided for many of the example program-
ming tasks. With the graphics program, a set of
external functions to allow the graphics manip-
ulation and a utility program to allow the result-
ing structure to be output on a plotting device
had to be written. With the screen I/0 program,
an external function had to be written to inter-
face ASCII terminals with an EBCDIC computer.
Even the tape program required that the input be
placed in a format appropriate for subsequent
manipulation. With faculty as occupied as they
already are, where can this time be found? Much
of the necessary additional software was written
by upperclass students as part of an independent
project. The students writing the software
obtained valuable experience, and the resulting
product provided a useful function, rather than
being piaced on a shelf to collect dust. Knowing
their software would be used made the importance
of debugging and testing apparent to the students.

A few of the exercises require hardware that
may not be available to all departments, but most
departments have some type of special equipment
used in research projects or for other purposes.
Quite often this equipment is used infrequently by
faculty and graduate students, and undergraduates
are rarely exposed to it. Since the equipment
would be used in most cases for only a single
exercise over a period of several weeks, it would
often be possible to provide access to the equip-
ment for all students in the class without
affecting the primary purpose of the equipment.

Such programming exercises clearly require
more programming effort than the conventional
exercises listed in Figure 1. What effect does
this extra effort have on the students? 1In the
SPITBOL course, the evaluation is that the course
does take more effort than similar courses but
that the effort is justified by the extra know-
Tedge and experience gained. Since the student
does not have to complete every programming
exercise, having a choice provides compensation
for the additional effort.

CONCLUSIONS

Although the resources available and effort
required may be such that not every or even most
programming exercises can meet the goals presented
in this paper, it would be useful for at least a
few exercises to aim toward these goals.

Programming exercises such as those suggested
could begin to be sprinkied throughout programming

textbaoks. To reduce the effort of each individual

instructor (why.have each person reinvent?), addi-
tional software could be provided to the instruc-
tors much as instructor's manuals are now. With
widely used programming languages such as FORTRAN,
the additional software could be written in that

language for easy portability. [The special
interfaces used in the SPITBOL course, which were
written in SPITBOL, FORTRAN and IBM 370 assembler,
are available from the author upon request].

The results of this study suggest that pro-
gramming exercises do not need to be as dry and
uninteresting as many currently are. With more
interesting and challenging exercises, the student
gains beneficial skills. Just as programming
exercises were modified to teach more than pro-
gramming language syntax, they can now be extended
even further.

REFERENCES

Csikszentmihalyi, M., Beyond Boredom and Anxiety,
Jossey~Bass, 1975.

Malone, Thomas W., "What Make Things Fun to
Learn?", Xerox PARC Technical Report,
SSL-80-11, 1980.

Papert, Seymour, "On Making a Theorem for a
Child", Proceedings of the ACM National
Conference, 1972.

Ulloa, M., "Teaching and Learning Computer
Programming", SIGCSE Bulletin, July 1980,
pp. 48-64.

