
Getting More Oomph from Programming Exercises

Alan L. Tharp
Computer Science Department

North Carolina State Univers i ty
Raleigh, North Carolina 27650

ABSTRACT

Much attention has been given to the content
of introductory computer science courses, but
based upon a perusal of introductory textbooks, i t
appears that somewhat less attention has been
given to the programming exercises to be used in
these courses. Programming exercises can be modi-
fied to provide a better educational experience
for the student. An example of how atypical pro-
gramming exercises were incorporated into an intro-
ductory programming language course is described.

Keywords and Phrases: Programming exercises;
introductory courses; motivation; practical
knowledge; applications; new technology.

INTRODUCTION

Originally the primary goal of introductory
computer science courses was to teach the syntax
of a programming language; the programming exer-
cises then quite naturally stressed language syn-
tax. As the f ie ld of computer science evolved,
the emphasis in introductory courses gradually
shifted from syntax to the basic principles of pro-
gramming; the programming language became a vehicle
to i l lus t ra te the programming concepts and the ex-
ercises then emphasized programming fundamentals.
The focus of the following discussion is on modi-
fying programming exercises even further to pro-
vide greater benefit to the students.

Paraphrases of typical programming exercises
(not especially good nor especially poor) randomly
chosen from introductory computer science text-
books are found in Figure I . One close scrutiny,
one may argue that some do not adequately i l l u -
Strate either programming language constructs or
concepts. One might even argue that a few of the
exercises are just plain DULL to a large number
of students. However, even i f the goals of teach-
ing language syntax and concepts were met with
Permission to copy without fee all or part of this
material is granted provided that the copies are
not made or distributed for direct commefelal
advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice
is given that copying is by permission of the
Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or
specific permission.

© 1981 ACM 0-89791-036-2/81/0200/0091 $00.75

these programming exercises, addi t ional goals
could be achieved.

Motivat ion is a tremendously important com-
ponent of i ns t ruc t ion . I t is now even more nec-
essary in the d i sc ip l i ne of computer science, be-
cause an increasing number of students have had
pr io r computer experience upon entering col lege;
with uninterest ing or non-challenging programming
exercises, many students lack incent ive and be-
come disenchanted. In addi t ion, many students
are now entering the f i e l d of computer science for
reasons other than the i r being enthused about the
d i sc i p l i ne ; such students require greater motiva-
t ion.

Malone (1980) studied the motivational
factors of learning in the context of instruc-
tional design; he comments that " i f students are
intrinsically motivated to learn something, they
are likely to spend more time and effort learning,
feel better about what they learn, and be more
likely to use it in the future." In his study,
he categorizes the motivational factors into three
groups: challenge, fantasy, and curiosity. In
discussing the challenge factor, he reports on
one of Csikszentmihalyi's (1975) observations on
what makes an act iv i ty in t r ins ica l l y motivating -
"There should be a clear criteria for performance;
one should be able to evaluate how well or how
poorly one is doing at any time." Papert (1972)
also argues that i t is preferable for a student
to discover for himself i f something is correct.
One factor common to several of the programming
exercises in Figure l is that the student cannot
determine by herself i f the answer is correct.
Another consideration relevant to motivation is
that the sk i l l being taught (in our case program-
ming) does not need to be the primary goal for an
exercise but rather a means to achieving the pr i -
mary goal.
**Progran~ing exercises oould be improved to be
more motivating.**

91

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953049.800968&domain=pdf&date_stamp=1981-02-01

- Write a program to convert an integer number to
i ts Roman numeral equivalent and vice versa.

- Wr i te a program which when g iven N, counts the
number o f primes ~ N.

- Wri te a program to p r i n t the numbers from 1 to
I0 in one column and the numbers from I0 backward
to 1 in another column to the r i g h t o f the f i r s t .
H in t : The sum o f the two numbers on any l i n e is
I I .

- Wr i te a program using the Eucl idean a l g o r i t h m
which w i l l f i n d the g r e a t e s t common d i v i s o r o f
two p o s i t i v e i n t e g e r s .

Write a program to compute an employee's pay
using the formula

PAY = GROSS - TAX - DEDUCT where

TAX = TAXP~ATE * GROSS and

GROSS = RATE * HOURS

The values for RATE, HOURS, TAXRATE and DEDUCT
are inputs to the program.

- Write a program to read a page of text (50 lines
of 80 characters) and print the words that are
used on that page. Words are to be printed in
alphabetical order with each word appearing only
once; words that are used more than once wi l l
have a frequency count (e.g., AND 12). The max-
imum length of a word may be assumed to be lO
characters.

Figure l
Representative Programming Exercises

A dilemma in computer science education is
that much information necessary for completing
practical computer science tasks is not consi.-
dered worthy of university credit, (e.g. reading
a f i l e from a tape or learning to use an inter-
active computer system; the act iv i t ies in this
classif ication may vary from campus to campus).
How, then, is a computer science major to acquire
this basic knowledge i f i t is not presented in a
course? Currently the student may have to acquire
i t on his own or from another student and although
these methods are suff icient in many cases, the
student may obtain incomplete or incorrect know-
ledge. (Of course no guarantees can be made that
such deficiencies would not occur i f this mater-
ial were presented formally.)
**Progran~ning exercises could be improved to
provide much of this practical knowledge.**

Computer science is a diverse f ie ld ; how is
a student to be introduced to i ts many subareas?
Most curricula al]ow students a choice of elec-
tives, especially in their f inal year or two. I f
a student has not been introduced to the elective
areas, how does he know i f he is interested "in a
course without having to actually take it?
**Progra.~ing exercises could be improved to pro-
vide an introduction to the many elective areas
of computer science.**

Computer technology is changing rapidly.
One of the primary purposes of this symposium is
to introduce new technology to the computer edu-
cator. How can this information in turn be intro-
duced rapidly into an undergraduate curriculum?
How can the students at least be exposed to these
concepts? When a new technology surfaces, there
may be a significant time lapse before i t evolves
to f i l l a complete course or f i l t e r down to the
undergraduate level. Again the few very enthu-
siastic students would probably acquire this in-
formation independently, but what about the ma-
jo r i t y of students?
**Progran~ing exercises could be improved to pro-
vide an introduction to the new ideas and tech-
nology of computer science.**

Four needs related to computer science
education have been presented: motivation, pre-
sentation of essential but non-academic infor-
mation, introduction to various areas of computer
science and introduction to new computer science
technology. One method of meeting these needs is
through improved programming exercises. The next
sections describe an example of how programming
exercises can be used to meet these four needs.

BACKGROUND

Programming exercises which were designed
to achieve the goals outlined in the introduction
were incorporated into a course whose primary
purpose was to teach a programming language. Al-
though this experience was with one programming
language, the method is relevant to essentially
any course in which programming is a major part.
The course used in the study is a one credit hour,
elective, sophomore-level course on the SPITBOL
(SNOBOL) programming language. This course is
one of a set of one credit hour courses offered
at North Carolina State University with the pur-
pose of teaching a programming language other
than the primary one used in the computer science
curriculum (currently PL-I). The courses are
non-graded pass-fail in which the primary eval-
uation of the student is his ab i l i t y to program.
Courses exist for APL, COBOL, FORTRAN, LISP and
PASCAL in addition to the one in SPITBOL.

In the SPITBOL course, the students are
given a set of ten programming assignments of
varying d i f f i cu l t y with a to ta l value of approxi-
mately 17O points. They must sat isfactor i ly com-
plete lO0 points to obtain credit for the course.
The assignments are distributed throughout the
semester.

EXAMPLE TASKS

Example programming exercises used in the
SPITBOL course are sketched to give the
reader an idea of the type of exercises being
suggested. A reader's lack of fami l iar i ty with
the SPITBOL programming language should not hin-
der him from understanding the discussion; i t is
intended to provide examples rather than the con-
cepts of a specificprogramming language.

92

a .

b.

c.

Programming goal - programmer defined input /
output

Exercise - Read information from a master
tape, manipulate the input, wr i te the
information to your tape, rewind your
tape and then p r in t i ts contents.

Evaluation -
With this exercise the students gain ex-
posure to tapes in addi t ion to learning
about input/output in SPITBOL. To in-
crease the student's in terest in the
assignment (and since the speci f ic data
chosen is independent of the programming
goal), data was selected which a f te r manip-
u lat ion became a poster popular among com-
puter science students, such as a po r t r a i t
of Einstein or a sketch of a g o r i l l a with
the inscr ip t ion "THINK".

• Since the f ina l product was something of
in terest to the students and since i t was
immediately obvious i f the program ran
correct ly , i t provided motivation to most
of the class. A secondary advantage of
such an exercise is that the students then
have a reduced urge to i l l i c i t l y p r in t
such posters and waste scarce computer
funds.

Programming goal - b u i l t - i n functions for
st r ing processing

Exercise - Design a data entry form for use
with a CRT. Program the CRT to display
this form by sending the appropriate con-
t ro l characters to the CRT. Then use the
form for entering data and p r in t the con-
tents of the form in a readable format.

Evaluation - The students gained experience
using a CRT for something other than a
"glass te le type" . The students were ex-
posed to an aspect of computer science
which in and of i t s e l f would not be
worthy of academic cred i t . And the stu-
dents were challenged to see how simple
they could make the form. Again they
were able to determine for themselves
when the program worked properly.

Programming goal - use of external functions
Exercise - Load several external functions

which provide the capab i l i t y to draw on
a graphics terminal - Draw, move, p r in t ,
. . . . Then construct an object of your
choice on a graphics terminal and a f te r
obtaining the object, output i t to a
p lo t te r . (A u t i l i t y program was provided
to obtain a hardcopy of the graphic).

Evaluation - Students drew objects ranging
from abstract ar t to notes on a musical
scale. Figure 2 shows typical results
of the output.

0 ~ T ~ ~ L S ~ aOl~J.1~ OF HOLLY Fn Lf~ ~i~ L~ Lt~ ~m

Figure 2
Representative Graphics

d.

The students were again motivated because
the resul t was something of in terest to
them and they knew when i t was correct.
They were introduced to the popular sub-
area of graphics and they were able to
use the r e l a t i v e l y new technologY of
graphics terminals. (As an a l te rna t i ve ,
color graphics could have been used to
make the task more in terest ing and chal-
lenging).

Programming goal - programmer-defined
functions

Exercise - Using the graphics procedures of
a previous assignment, wr i te a programmer-
defined function which w i l l draw a poly-
gon given i ts angle and the length of
i t s sides as parameters. Call your poly-
gon function with three sets of parameters
and obtain plots of the results.

Evaluation - P lo t t ing can be a valuable aid
to displaying information from a compu-
ter , but learning the deta i ls often does
not appear in an undergraduate curr icu-
lum or is not deemed worthy of cred i t .
The procedure for using a p lo t te r may
appear d i f f i c u l t and foreign to many
people pr imar i ly because of ignorance.
Upon completing this programming assign-
ment, in addi t ion to having developed an
understanding of programmer-defined
functions, the students had gained
f a m i l i a r i t y with using a p lo t te r and had
learned how simple i t is when su f f i c i en t
information is provided. " I f looping were

93

3.~

2.C

0.0

Y

~..0

2 .~

3 , (

e .

also a concept to be i l l u s t r a t e d , the
students could have been asked to p lo t
a numeric function over a specif ied range
of values• (See Figure 3)

J
f J

[i0 2 1 0 31o 4.o slo 61o 7~0 slo ~.u
x

SQRTCX)

Figure 3
Graphics Example l l l u s t r a t i n g Looping

Programming goal - programmer-defined data-.
types

Exercise - The ASCII codes necessary to drive
a VOTRAX speech synthesizer for a few com-
mon function words such as "a", " in" and
"the" and a few content words such as "com-
puter science" are stored on a disk data
set. (A complete l i s t of such words is
given• Instruct ions are also given for in-
voking a text-to-speech t rans la tor for
obtaining addi t ional content words such as
the student's name)• Construct a program-
mer-defined datatype for a l inked l i s t
where each node structure contains three
f ie lds - one for the word, one for an ASCll
code and one for a l i nk , i . e .

. r . "~

1
Word A S C I I c o d e Link ',

i
i
i
u

.

Link together the ASCII codes in ascending
order of the associated words for both the
stored and supplemental vocabulary. Then
output the resul t ing l i s t via the synthe-
sizer. Also form a l inked l i s t of words
for two sentences of your choosing and
then have these l i s t s output through the
voice synthesizer.

Evaluation - Using a speech synthesizer is
merely one example of introducing students
to new technology which may not other-
wise be part of an undergraduate curr icu-
lum. The synthesizer was used because
of i ts a v a i l a b i l i t y , but other equipment
could be used for s imi lar tasks. Since

computer synthesized speech was new to
most students, the exercise provided a
high degree of motivat ion for the students.
As with many of the other exercises, the
students were able to determine for them-
selves when the exercise was successfully
completed. They also noted a few of the
def ic iencies of current computer synthe-
sized speech and were thus introduced to
the area of computational l i ngu i s t i cs .

In a f i r s t programming course or in the
beginning of a subsequent programming course for
a d i f f e ren t language, i t is probably unwise to
introduce too much material to the students imme-
d ia te ly . For that reason, i t may be preferable to
l i m i t these i n i t i a l programming exercises to ones
which are motivating but do not necessari ly in-
clude pract ical knowledge, new technology or
appl icat ions. Examples of such assignments in the
Spitbol course are to

• remove offensive words from a passage
(e.g. those re fer r ing to the a th le t i c
a rchr iva l) .

• generate a greeting card (varies with the
time of year, e.g. Halloween, Easter)•

• construct a c e r t i f i c a t e stat ing that some-
one is the [scope of recogni t ion] [l e v e l]
[category], e.g. World's Fastest Program-
mer (th is assignment also introduces the
use of special output forms)•

• associate students with one another based
on the i r yes-no answers (input on op-scan
forms) to a questionnaire• (The assignment
also i l l u s t r a tes another way to enter data
into a computer•)

• wr i te a function to determine i f a str ing
is a palindrome (e.g. a man a plan a canal
panama) and add to the test data i f you
wish.

• wr i te a program in as few statements as
possible (a dubious v i r tue but in this
case encourages the students to consider
most of the constructs in the language
and offers a challenge).

The programming tasks described in th is paper
are representative exercises to help students
achieve more than a mastery of programming syntax
or basic concepts• Many other tasks ex is t . When
in terac t ive computing was new, i t was introduced
to students with this type of programming exer-
cise. As i t became more established i t was made
an integral part of the curriculum. Other possi-
b i l i t i e s for such programming exercises include
a game playing program to introduce a r t i f i c i a l
i n te l l i gence , or use of a word processing termi-
nal, i n t e l l i g e n t terminal , videodisk or typewri ter
p r in te r to introduce new technologies, in cer-
ta in respects, the new and sophist icated hardware
is l i ke a toy to the students and so provides
s ign i f i can t posi t ive motivat ion. I t exposes the
students to many areas of computer science and
new technologies and i t provides them with much
pract ical but non-academic knowledge•

IMPLEMENTATION

Introducing such exercises into a programming
language course is not without e f f o r t ; th is

94

r e a l i t y may explain why few textbooks include
them. A few of the example tasks described pre-
v ious ly use special equipment which may not be
read i ly avai lable everywhere, but a tex t could
include representative exercises from which an
ins t ruc to r could choose depending on the periph-
erals avai lable to him. In addi t ion, software
beyond the basic programming language f a c i l i t i e s
must be provided for many of the example program-
ming tasks. With the graphics program, a set of
external funct ions to al low the graphics manip-
u la t ion and a u t i l i t y program to al low the resu l t -
ing structure to be output on a p lo t t i ng device
had to be wr i t ten . With the screen I /0 program,
an external funct ion had to be wr i t ten to i n te r -
face ASCII terminals with an EBCDIC computer.
Even the tape program required that the input be
placed in a format appropriate for subsequent
manipulation. With facu l ty as occupied as they
already are, where can th is time be found? Much
of the necessary addi t ional software was wr i t ten
by upperclass students as part of an independent
project . The students wr i t i ng the software
obtained valuable experience, and the resu l t ing
product provided a useful funct ion, rather than
being placed on a shel f to co l lec t dust. Knowing
the i r software would be used made the importance
of debugging and test ing apparent to the students.

A few of the exercises require hardware that
may net be avai lable to a l l departments, but most
departments have some type of special equipment
used in research projects or for other purposes.
Quite often th is equipment is used in f requent ly by
facu l ty and graduate students, and undergraduates
are rare ly exposed to i t . Since the equipment
would be used in most cases for only a s ingle
exercise over a period of several weeks, i t would
often be possible to provide access to the equip-
ment for a l l students in the class wi thout
a f fec t ing the primary purpose of the equipment.

Such programming exercises c lear ly require
more programming e f f o r t than the conventional
exercises l i s ted in Figure I . What e f fec t does
th is extra e f f o r t have on the students? In the
SPITBOL course, the evaluat ion is that the course
does take more e f f o r t than s imi la r courses but
that the e f f o r t is j u s t i f i e d by the extra know-
ledge and experience gained. Since the student
does not have tocomplete every programming
exercise, having a choice provides compensation
for the addi t ional e f f o r t ,

CONCLUSIONS

Although the resources avai lable and e f f o r t
required may be such that not every or even most
programming exercises can meet the goals presented
in th is paper, i t would be useful for at least a
few exercises to aim toward these goals.

Programming exercises such as those suggested
could begin to be sprinkled throughout programming
textbooks. To reduce the e f f o r t of each ind iv idua l
ins t ruc to r (why. have each person re invent?) , addi-
t ional software could be provided to the ins t ruc-
tors much as i ns t ruc to r ' s manuals are now. With
widely used programming languages such as FORTRAN,
the addit ional software could be wr i t ten in that

language for easy p o r t a b i l i t y . [The special
interfaces used in the SPITBOL course, which were
wr i t ten in SPITBOL, FORTRAN and IBM 370 assembler,
are avai lab le from the author upon request].

The resul ts of th is study suggest that pro-
gramming exercises do not need to be as dry and
uninterest ing as many cur rent ly are. With more
in teres t ing and chal lenging exercises, the student
gains benef ic ia l s k i l l s . Just as programming
exercises were modified to teach more than pro-
gramming language syntax, they can now be extended
even fur ther .

REFERENCES

Csikszentmihalyi, M., Beyond Boredom and Anxiety,
Jossey-Bass, 1975.

Malone, Thomas W., "What Make Things Fun to
Learn?", Xerox PARC Technical Report,
SSL-80-11, 1980.

Papert, Seymour, "On Making a Theorem for a
Chi ld" , Proceedings of the ACM National
Conference, 1972.

Ul loa, M., "Teaching and Learning Computer
Programming", SIGCSE Bu l l e t i n , July 1980,
pp. 48-64.

95

