TEACHING SOFTWARE ENGINEERING IN THE ADULT EDUCATION ENVIRONMENT

Steven M, Jacobs
TRW Defense and Space Systems Group
Redondo Beach, California 90278

Continuing Education in Engineering and Mathematics
UCLA Extension
Los Angeles, California 90024

ABSTRACT

Teaching the evolving subject of software
engineering has only recently been explored in
the literature within the last five years.
In a university-level, evening school
environment, problems in the area of soft-
ware engineering education arise due to 1)
the quantity and approach of introducing
software engineering concepts and 2) the
background and motivation of the students.

- Working adults can be introduced to the
components of the software 1ife-cycle by a
careful selection of reading assignments,
lectures, discussion, and a team programming
project. This paper addresses the problems
associated with software engineering in
adult education and presents a working
solution.

Keywords: software engineering, software
engineering education, software 1ife-

cycle, structured analysis, structured
design, top-down concepts, structured
programming, verification and validation,
software management, chief programmer teams.

Permission to copy without fee all or part of this
material is granted provided that the copies are
not made or distributed for direct commercial
advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice
is given that copying is by permission of the
Assoclation for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or
specific permission.

@ 1981 ACM 0-89791-036-2/81/0200/0120 $00.75

INTRODUCTION

One of the key issues facing the field of
software engineering in the 1980's is the need to
develop and standardize software engineering
education. Only within the Tast five years has
the design of a software engineering curriculum
even been addressed (1,2,3,4). Jensen and
Tonies(5) state that there are two problems
associated with teaching software engineering.
The most severe problem is the infancy of software
engineering. New developments are constantly
being made in this field, as is supported by the
fact that the term "software engineer" is only a
decade o1d. The lack of proven software design
strategies and sufficient, current textbooks is
indicative of this problem.

The other problem is the difference between
the academic approaches versus the industrial
methodologies of software engineering. For example,
composition and goals of programming teams from
academia differ drastically from the industrial
counterpart, such as a Chief Programmer Team, as
defined by Baker(6).

New developments in software tools and design
methodologies that are developed in either environ-
ments are often slowly integrated into the soft-
ware engineering classroom, There is very little
experience in teaching software engineering and
an acute shortage of teaching materials. Soft-
ware engineering education is the newest
engineering discipline and has only begun to be-
come a standard part of traditional computer
science coursework.

In a university-level evening school or adult
education environment, the problems become even
more-acute. The quantity and approach of intro-
ducing software engineering concepts must be care-
fully planned. This presentation must be geared

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800037.800974&domain=pdf&date_stamp=1981-02-01

toward students who are often working professionals
of varying backgrounds, returning to an academic
environment for further training and professional
development.

This paper describes a working solution to
the problem of teaching software engineering in
an adult education environment. Working
adults are introduced to elements of the
entire software life-cycle, from preliminary
analyses to final operation and maintenance
phases. Software engineering concepts are
introduced throughout the one-quarter course,
by way of reading assignments, lectures,
discussion and a team programming project.

The remainder of this paper describes one
approach that has been successfully followed by
the author. The types of classroom materials and
techniques are discussed, Problem areas and
helpful suggestions are also included.

CLASSROOM ENVIRONMENT

A number of constraints must be considered
before beginning a software engineering class in
an adult education environment. The quantity of
software engineering concepts and the approach
used in introducing them must be geared toward
the background of the students. Available com-
puters, materials, texts, and other logistics
matters must also be considered.

The Students

Students in an evening school environment
are mostly working adults with often a minimum
amount of available free time. There are a
number of types of students. One is the business
computing professional, the typical COBOL
programmer working daily on a large-scale
computer. Another in the scientific computer
programmer, mostly familiar with FORTRAN, BASIC,
and PASCAL for such applications as defense,
space, or energy research and development.
The third is the engineer or scientist who has
little programming experience, but is partici-
pating on systems development with programmers
who follow or appear to follow modern software
engineering practices. Independent consultants
may also enroll, but they can come from any of
the above backgrounds. A last student type is
the university-trained, full-time student,
who has received a traditional, academic computer
science education.

The motivation for the students varies.
Some are enrolled for professional and personal
development. Others need a knowledge of soft-
ware engineering concepts to participate in a
modern systems development team. Still others
attend because their management requested or
required it. Full-time students expect to learn
something "practical”. A1l the students have a
minimum amount of time to learn the maximum they
can about software engineering.

121

Some students are looking for an alternative
to an expensive, four-day software engineering
seminar that includes primarily the philosophy
of one software development methodology.

THE COURSE

The course taught by the author is called
"Structured Software Development”. The approach
was to describe the components of the software
1ife-cycle in general terms the first evening:
the analysis and design phases, coding and
implementation phases, and testing. Then, each
of the components were described in detail the
remainder of the quarter: approximately one
three-hour class meeting for each of the analysis,
design, programming, testing, etc., phases.

Each of these subjects could justify a larger
part of the course or even an entire course.
However, to educate working adults in software
engineering principles, a survey of the salient
information of each subject is appropriate.

The order of this presentation is extremely
important. Although the logical development of
a software system follows the analysis, design,
jmplementation, test, etc., phases, in that
order, a word of caution is given in regards to
the sequence of presenting this material.
Historically, structured programming and system
testing strategies were developed long before
software design methodologies in an almost
"bottom-up" fashion. Consequently, more concrete
knowledge exists today concerning the former
strategies rather than the latter. Hence, to
start introducing more abstract concepts of soft-
ware systems analysis and design to the evening
student before discussing structured programming
constructs can cause confusion or demotivation.
This author recommends starting with structured
programming, fmplementation, and testing concepts
and then backtracking to the more abstract
analysis and design methodologies.

More details about which concepts and
methodologies are described in the next section.
The course js discussed by emphasizing classroom
techniques and providing numerous references
for the actual course materjal. Industrial soft-
ware development standards, structured walk~
throughs, and software management considerations
were also inciuded in the course. Evening
students can relate these concepts to their own
experience and company policies.

Class Materials

The required text has been Jensen and Tonies.
This comprehensive text satisfied the authors’
goals in presenting the entire software 1ife-cycle
with software engineering concepts and examples.
Recommended texts were that of DeMarco(7) and
Yourdon and Constantine(8). The combination of
these texts presents one of the more popular soft-
ware design strategies in detail, using tools
such as data flow diagrams, structure charts,
and transform and transaction analyses.

One consistent approach to software design is
presented, rather than a survey of design strate-
gies. The Jackson(9) design methodology is
introduced and compared as an alternative.
Lecture material also covers software management
from Yourdon(10). Testing is discussed from

a number of sources including Myers(11).
Supplementary material and team project (see

next section) came from Yourdon(12). Table I
illustrates a possible course syllabus.

Outside readings were encouraged and
discussed. Even a film (13, 14) on top-
down program design was presented to the
students. Numerous real-world examples of soft-
ware engineering concepts were interspersed
throughout the class. Such practical concepts
are covered by Irvine(15) and Mulhall(16).

the philosophy and concepts introduced in
the classroom.

The teams were made up of three students
each: a chief proarammer, a support programmer,
and a program librarian, three key members of the
software development team according to the
author(18). Selection of team members and the
team project took place as described in Kahilany
and Saxon. Students chose from four computer
program specifications selected by the author,
Assignments were made on a week-to-week basis,
parallelling the class discussion. For example,
when design strategies were discussed, system
design using design tools such as structure charts
was assigned, due by the next meeting.

Syllabus for

"Structured Software Development"

Week* Topic** Principal Reference
1 The Software Life-cycle and Top-down Yourdon(12)
Programming
2 Structured Programming Jensen and Tonies(5)
3 Structured Analysis DeMarco(7)
4 Structured Design Yourdon and Constantine(8), and
Jackson(9)
5 Midterm Examination A1l the above
6 Testing Myers(11) and Jensen and Tonies(5)
7 Software Management Yourdon{10)
8 Actual Industry Standard Practices Miscellaneous(15, 16)
9 Structured Walk-throughs Yourdon{10)
10 Final Examination A11 the above

* One week implies three class hours

** Emphasize topics by expanding to more than one session for longer school terms

Team Programming Project

The most appropriate method for assigning a
software engineering class a programming
assignment is by forming programming teams.

The author followed the advice of an excellent
"how to" article on programming team projects in
the classroom that was developed by Khailany and
Saxon(17). This work, mixed with chief pro-
grammer team concepts, is an excellent and re-
warding vehicle for student experimentation with

TABLE 1

122

Student-teams submitted a completely de-
veloped software system, including a project
library and documentation as a final product.
Evening students combine their newly learned
software engineering concepts with their
experience and company software policies to
create a high quality result. Copies are made
for each team member to keep.

Structured Walk-Throughs

To introduce the students to programming
team peer reviews and to encourage the egoless
programming philosophy of Weinberg(19),
structured walk-throughs, as defined by Yourdon,
were conducted by each team on the last
regular class meeting. Two weeks prior to the
walk-throughs, each team was given the assign-
ment to provide a short (one to two page
structure chart, diagram, or structured
English description of their program design)
hand-out to distribgte to the entire class one
week before the walk-throughs are to be held.
Then, the students were assigned to review the
specifications and designs of each team's work.

The structured walk-throughs were then held,.
Each team appointed a spokesperson to walk
through the design and the team responded to
questions from the entire class. This proved to
be a maturing exercise for those evening students
not accustomed to peer reviews in a work
environment. It was a gentle enough experience,
however, to illustrate the benefits of walk-
throughs.

SPECIAL SUGGESTIONS

A number of miscellaneous problems appear in
managing a class such as this. Some
solutions can be handled by mere common sense.
Others, more notable, are described below.

One such problem is the student who desires
software engineering knowledge with 1ittle or no
programming experience. A solution is to assign
that person the role of program librarian on
the team project. This person then serves as
chief documentor and learns by watching and
reading his or her teammates' coding.

Numerous, straightforward examples of software
engineering concepts aid the student new to the
field and reinforce concepts of the student
with a better background.

Due to the types of adult education students
combined with the constant proliferation of soft-
ware engineering advances, discretion is advised
for determining what material could actually
be presented and what readings should be encouraged
for outside of class. Handouts of key articles
and a bibliography(20) are helpful. Choosing
one text as the focal point for class discussion
was necessary for continuity.

CONCLUSIONS

An evening school course in software
engineering can be invaluable experience for
students, programmers, engineers, or scientists,
One quarter is enough time for students to
grasp new software engineering concepts and to
experiment with the techniques, as opposed to
attending an expensive, four-day seminar of one
software development philosophy.

123

Students are usually self motivated to

learn and apply their new knowledae in their
classwork and at work or school. Thev are eacer
to learn and to discuss alternative software
engineering practices. They are interested in
sharing their ideas with their instructor., their
teammates, and their classmates.

£ class in the field of software enaineering

in any environment, and especially in the adult
education settina, should not he taucht dog-
matically. Software enaineering is an evolvina
discipline and should be treated as such.

ACKNOWLEDGEMENTS

The author wishes to thank Ms, [stelle

Klingler of the Continuina Education in
Engineering and Mathematics Proaram of UCLA
Extension, Los Angeles, California, and Dr. Tom
Renfrow of the Jet Propulsion Lahoratory,
California Institute of Technology, Pasadena,
California for their contributions to and
review of this paper.

BIBLIOGRAPHY

Freeman, P., Wasserman, A.l1., Fairley,
R.E., "Essential Elements of Software
Engineering Education", 2nd International
Conference on Software Engineering, San
Francisco, CA, 1976, IEEE Cat. No.
76CH1126-4C.

Wasserman, A, 1., and Freeman, P., "Soft-
ware Engineering Concepts and Computer
Science Curricula", IEEE Computer, June 1977.

Wasserman, A. I. and Freeman, P., Editors,
Software Engineering Education, Proceedings
of an Interface Workshop, Springer-Verlag,
1976.

Horning, J. and Wortman, D., "Software
Hut: A Computer Program Engineering
Project In The Form Of A Game", IEEE Trans.

on Software Engineering, Vol. SE-3,
Number 4, July 1577.

Jensen, R., and Tonies, C., Software
Engineering, Englewood Cliffs, N.J.:
Prentice-Hall, Inc., 1979, :

Baker, F. T., "Chief Programmer Team
Management of Production Programming",
IBM Systems Journal, Volume II, Number 1,
January 1972.

DeMarco, T., Structured Analysis and
System Specification, New York:
Yourdon, Inc,, 1979.

Yourdon, E., and Constantine, L.,
Structured Design: Fundamentals of a
DiscipTine of Computer Program ard Systems
Design, Englewood CTiffs, N.J.: Prentice-
Hall, Inc., 1979,

1.

12.

14.

15,

16.

18.

19.

20.

Jackson, M. A,, "Principles of Program
Design", New York: Academic Press, Inc.,
1979.

Yourdon, E., Managing the Structured
Techniques, New York: Yourdon, Inc., 1979,

Myers, G., The Art of Software Testing,
New York: John Wiley and Sons, 1979.

Yourdon, E., Techniques of Program Structure

and Design, Englewood Cliffs, N.J.:
Prentice-Hall, Inc., 1975.

"Top Down Design, Part 1", Los Angeles,
CA: University of California, Los Angeles,
Edutronics Film Series in Computer Science.

"Top Down Design, Part II", Los Angeles,
CA: University of California, Los Angeles,
Edutronics Film Series in Computer

Science.

Irvine, A., Standard Practices for the
Implementation of Computer Software,
Pasadena, CA: Jet Propulsion Laboratory
Publication 78-53, September 1978,

Mulhall, B., and Jacobs, S., "A Technique
For Comparative Assessment of Software
Development Management Policies",
Arlington, VA: AFIPS Press, Proceedings
of the 1980 National Computer Conference,
May 1980.

Khailany, A., and Saxon, C., "Conducting
Project Team Classes in Data Processing”,
ACM SIGCSE Notices.

Jacobs, S., "The Many Faces Of A Program
Librarian", INFOSYSTEMS, October 1978.

Weinberg, G., The Psychology of Computer
Programming, New York: Van Nostrand
Reinhold Co., 1971.

Kleine, K., “"Selected Annotated Biblio-
graphy on Software Engineering", ACM
SIGSOFT Software Engineering Notes.

124

