
TEACHING SOFTWARE ENGINEERING IN THE ADULT EDUCATION ENVIRONMENT

Steven M. Jacobs
TRW Defense and Space Systems Group
Redondo Beach, California 90278

and
Continuing Education in Engineering and Mathematics

UCLA Extension
Los Angeles, California 90024

ABSTRACT

Teaching the evolving subject of software
engineering has only recently been explored in
the l i terature within the last f ive years.
In a university-level, evening school
environment, problems in the area of soft-
ware engineering education arise due to l)
the quantity and approach of introducing
software engineering concepts and 2) the
background and motivation of the students.
Working adults can be introduced to the
components of the software l i fe-cycle by a
careful selection of reading assignments,
lectures, discussion, and a team programming
project. This paper addresses the problems
associated with software engineering in
adult education and presents a working
solution.
Keywords: software engineering, software
engineering education, software l i f e -
cycle, structured analysis, structured
design, top-down concepts, structured
programming, verif ication and validation,
software management, chief programmer teams.

Permission to copy without fee all or part of this
material is granted provided that the copies are
not made or distributed for direct commercial
advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice
is given that copying is by permission of the
Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or
specific permission.

lO81 ACM 0-89791-036-2/81/0200/0120 $00.75

INTRODUCTION

One of the key issues facing the f ie ld of
software engineering in the 1980's is the need to
develop and standardize software engineering
education. Only within the last f ive years has
the design of a software engineering curriculum
even been addressed (1,2,3,4). Jensen and
Tonies(5) state that there are two problems
associated with teaching software engineering.
The most severe problem is the infancy of software
engineering. New developments are constantly
being made in this f ie ld , as is supported by the
fact that the term "software engineer" is only a
decade old. The lack of proven software design
strategies and suff icient, current textbooks is
indicative of this problem.

The other problem is the difference between
the academic approaches versus the industrial
methodologies of software engineering. For example,
composition and goals of programming teams from
academia d i f fer drastical ly from the industrial
counterpart, such as a Chief Programmer Team, as
defined by Baker(6).

New developments in software tools and design
methodologies that are developed in either environ-
ments are often slowly integrated into the soft-
ware engineering classroom. There is very l i t t l e
experience in teaching software engineering and
an acute shortage of teaching materials. Soft-
ware engineering education is the newest
engineering discipline and has only begun to be-
come a standard part of tradit ional computer
science coursework.

In a university-level evening school or adult
education environment, the problems become even
moreacute. The quantity and approach of intro-
ducing software engineering concepts must be care-
fu l l y planned. This presentation must be geared

120

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800037.800974&domain=pdf&date_stamp=1981-02-01

toward students who are often working professionals
of varying backgrounds, returning to an academic
environment for fu r ther t ra in ing and professional
development.

This paper describes a working solut ion to
the problem of teaching software engineering in
an adult education environment. Working
adults are introduced to elements of the
ent i re software l i f e - c y c l e , from prel iminary
analyses to f i na l operation and maintenance
phases. Software engineering concepts are
introduced throughout the one-quarter course,
by way of reading assignments, lectures,
discussion and a team programming project .

The remainder of this paper describes one
approach that has been successfully followed by
the author. The types of classroom materials and
techniques are discussed, Problem areas and
helpful suggestions are also included.

CLASSROOM ENVIRONMENT

A number of constraints must be considered
before beginning a software engineering class in
an adult education environment. The quant i ty of
software engineering concepts and the approach
used in introducing them must be geared toward
the background of the students. Avai lable com-
puters, mater ials, tex ts , and other l og i s t i cs
matters must also be considered.

The Students

Students in an evening school environment
are mostly working adults with often a minimum
amount of available free time. There are a
number of types of students. One is the business
computing professional, the typical COBOL
programmer working daily on a large-scale
computer. Another in the sc ient i f ic computer
programmer, mostly famil iar with FORTRAN, BASIC,
and PASCAL for such applications as defense,
space, or energy research and development.
The third is the engineer or scientist who has
l i t t l e programming experience, but is par t ic i -
pating on systems development with programmers
who follow or appear to follow modern software
engineering practices. Independent consultants
may also enrol l , but they can come from any of
the above backgrounds. A last student type is
the university-trained, fu l l - t ime student,
who has received a t radi t ional , academic computer
science education.

The motivation for the students varies.
Some are enrol led for professional and personal
development. Others need a knowledge of so f t -
ware engineering concepts to par t ic ipate in a
modern systems development team. S t i l l others
attend because the i r management requested or
required i t . Fu l l - t ime students expect to learn
something "p rac t i ca l " . A l l the students have a
minimum amount of time to learn the maximum they
can about software engineering.

Some students are looking for an a l te rna t i ve
to an expensive, four-day software engineering
seminar that includes pr imar i ly the philosophy
of one software development methodology.

THE COURSE

The course taught by the author is called
"Structured Software Development". The approach
was to describe the components of the software
l i fe-cycle in general terms the f i r s t evening:
the analysis and design phases, coding and
implementation phases, and testing. Then, each
of the components were described in detail the
remainder of the quarter: approximately one
three-hour class meeting for each of the analysis,
design, programming, testing, etc., phases.
Each of these subjects could j us t i f y a larger
part of the course or even an entire course.
However, to educate working adults in software
engineering principles, a survey of the salient
information of each subject is appropriate.

The order of this presentation is extremely
important. Although the logical development of
a software system follows the analysis, design,
implementation, test, etc., phases, in that
order, a word of caution is given in regards to
the sequence of presenting this material.
Histor ical ly, structured programming and system
testing strategies were developed long before
software design methodologies in an almost
"bottom-up" fashion. Consequently, more concrete
knowledge exists today concerning the former
strategies rather than the lat ter . Hence, to
start introducing more abstract concepts of soft-
ware systems analysis and design to the evening
student before discussing structured programming
constructs can cause confusion or demotivation.
This author recommends starting with structured
programming, implementation, and testing concepts
and then backtracking to the more abstract
analysis and design methodologies.

More details about which concepts and
methodologies are described in the next section.
The course is discussed by emphasizing classroom
techniques and providing numerous references
for the actual course material. Industrial soft-
ware development standards, structured walk-
throughs, and software management considerations
were also included in the course. Evening
students can relate these concepts to their own
experience and company policies.

Class Materials

The required text has been Jensen and Tonies.
This comprehensive text satisfied the authors'
goals in presenting the entire software l i fe-cycle
with software engineering concepts and examples.
Recommended texts were that of DeMarco(7) and
Yourdon and Constantine(8). The combination of
these texts presents one of the more popular soft-
ware design strategies in detai l , using tools
such as data flow diagrams, structure charts,
and transform and transaction analyses.

121

One consistent approach to software design is
presented, rather than a survey of design strate-
Qies. The Jackson(9) design methodology is
introduced and compared as an a l te rna t i ve .
Lecture material also covers software management
from Yourdon(lO). Testing is discussed from
a number of sources including Myers(l l) .
Supplementary material and team project (see
next section) came from Yourdon(12). Table I
i l l u s t r a t es a possible course syl labus.

Outside readings were encouraged and
discussed. Even a f i lm (13, 14) on top-
down program design was presented to the
students. Numerous real-wor ld examples of sof t -
ware engineering concepts were interspersed
throughout the class. Such pract ical concepts
are covered by I rv ine(15) and Mulhal l (16).

the philosophy and concepts introduced in
the classroom.

The teams were made up of three students
each: a chief programmer, a support programmer,
and a program l i b r a r i a n , three key members of the
software development team according to the
author(18). Selection of team members and the
team project took place as described in Kahilany
and Saxon. Students chose from four computer
program speci f icat ions selected by the author.
Assignments were made on a week-to-week basis,
para l . le l l ing the class discussion. For example,
when design strategies were discussed, system
design using design tools such as structure charts
was assigned, due by the next meeting.

Week*

5

6

7

8

9

I0

Syllabus for

"Structured Software Development"

T_~ic**

The Software L i fe-cyc le and Top-down
Programming

Structured Programming

Structured Analysis

Structured Design

Midterm Examination

Testing

Software Management

Actual Industry Standard Practices

Structured Walk-throughs

Final Examination

Pr incipal Reference

Yourdon(12)

Jensen and Tonies(5)

DeMarco(7)

Yourdon and Constantine(8), and
Jackson(9)

A l l the above

Myers(l l) and Jensen and Tonies(5)

Yourdon(lO)

Miscellaneous(15, 16)

Yourdon(lO)

A l l the above

* One week implies three class hours

** Emphasize topics by expanding to more than one session for longer school terms

TABLE I

Team Programming Project

The most appropriate method for assigning a
software engineering class a programming
assignment is by forming programming teams.
The author followed the advice of an excel lent
"how to" a r t i c l e on programming team projects in
the classroom that was developed by Khailany and
Saxon(17). This work, mixed with ch ie f pro-
grammer team concepts, is an excel lent and re-
warding vehicle for student experimentation with

Student-teams submitted a completely de-
veloped software system, inc luding a project
l i b r a r y and documentation as a f i na l product.
Evening students combine t he i r newly learned
software engineering concepts wi th t he i r
experience and company software po l ic ies to
create a high qua l i t y resu l t . Copies are made
for. each team member to keep.

122

Structured Walk-Throughs

To introduce the students to programming
team peer reviews and to encourage the egoless
programming philosophy of Weinberq(19),
structured walk-throughs, as defined by Yourdon,
were conducted by each team on the last
regular class meeting. Two weeks pr io r to the
walk-throughs, each team was given the assign-
ment to provide a short (one to two page
structure chart, diagram, or structured
English descr ipt ion of t he i r program design)
hand-out to d i s t r i b ~ e to the ent i re class one
week before the walR~-throughs are to be held.
Then, the students were assigned to review the
speci f icat ions and designs of each team's work.

The structured walk-throughs were then held.
Each team appointed a spokesperson to walk
through the design and the team responded to
questions from the ent i re class. This proved to
be a maturing exercise for those evening students
not accustomed to peer reviews in a work
environment. I t was a gentle enough experience,
however, to i l l u s t r a t e the benefi ts of walk-
throughs.

SPECIAL SUGGESTIONS

A number of miscellaneous problems appear in
managing a class such as th is . Some
solut ions can be handled by mere common sense.
Others, more notable, are described below.

One such problem is the student who desires
software engineering knowledge with l i t t l e or no
programming experience. A solut ion is to assign
that person the role of program l i b ra r i an on
the team project. This person then serves as
chief documentor and learns by watching and
reading his or her teammates' coding.
Numerous, straightforward examples of software
engineering concepts aid the student new to the
f i e l d and reinforce concepts of the student
with a better background.

Due to the types of adult education students
combined with the constant p ro l i f e ra t i on of so f t -
ware engineering advances, d iscret ion is advised
for determining what material could ac tua l l y
be presented and what readings should be encouraged
for outside of class. Handouts of key a r t i c l es
and a bibl iography(20) are he lp fu l . Choosing
one tex t as the focal point for class discussion
was necessary for con t inu i ty .

CONCLUSIONS

An evening school course in software
engineering can be invaluable experience for
students, programmers, engineers, or sc ien t i s ts .
One quarter is enough time for students to
grasp new software engineering concepts and to
experiment wi th the techniques, as opposed to
attending an expensive, four-day seminar of one
software development philosophy.

Students are usual ly se l f motivated to
learn and apply the i r new knowledoe in the i r
classwork and at work or school. They are eager
to learn and to discuss a l te rna t ive software
engineering Dractices. They are interested i n
sharing the i r ideas with the i r i ns t ruc to r , thPi r
teammates, and the i r classmates.

class in the f i e l d of software engineering
in any environment, and especia l ly in the adult
education set t ina, should not ke taught doa-
mat ica l ly . Software enaineering is an evolvin~
d isc ip l i ne and should be treated as such.

ACKNOWLEDGEM[NTS

The author wishes to thank Ms. [s t e l l e
K l ing ler of the Continuing Education in
Engineering and Mathematics Program of UCLA
Extension, Los Angeles, Ca l i fo rn ia , and Dr. Tom
Renfrow of the Jet Propulsion Laboratory,
Cal i forn ia I ns t i t u t e of Technology, Pasadena,
Cal i forn ia for t he i r contr ibut ions to and
review of th is paper.

BIBLIOGRAPHY

I . Freeman, P., Wasserman, A . I . , Fa i r ley ,
R.E., "Essential Elements of Software
Engineering Education", 2rid Internat ional
Conference on Software Engineering, San
Francisco, CA, 1976, IEEE Cat. No.
76CHI126-4C.

2. Wasserman, A. I . , and Freeman, P., "Soft-
ware Engineering Concepts and Computer
Science Curr icu la" , IEEE Computer, June 1977.

3. Wasserman, A. I . and Freeman, P., Editors,
Software Engineering Education, Proceedings
of an Interface Workshop, Springer-Verlag,
1976.

4.

5.

6.

7.

8.

Horn~ng, J. and Wortman, D., "Software
Hut: A Computer Program Engineering
Project In The Form Of A Game", IEEE Trans.
on Software Engineerin 9, Vol. SE-3,
Number 4, July 1977.

Jensen, R., and Tonies, C., Software
Engineering, Englewood C l i f f s , N.J.:
Prent ice-Hal l , Inc . , 1979.

Baker, F. T., "Chief Programmer Team
Management of Production Programming",
IBM Systems Journal, Volume I I , Number I ,
January 1972.

DeMarco, T. , Structured Analysis and
System Speci f icat ion, New York:
Yourdon, Inc. , 1979.

Yourdon, E., and Constantine, L.,
Structured Design: Fundamentals of a
D isc ip l ine of Computer Program and Systems
~ , Englewood C l i f f s , N.J.: Prentice-
Hal l , Inc . , 1979.

123

9.

I0.

I I .

12.

13.

14.

15.

16.

17.

18.

19.

20.

Jackson, M. A., "Principles of Program
Design", New York: Academic Press, Inc.,
1979.

Yourdon, E., Managing the Structured
Techniques, New York: Yourdon, Inc., 1979.

Myers, G., The Art of Software Testing,
New York: John Wiley and Sons, 1979.

Yourdon, E., Techniques of Program Structure
and Design, Englewood Cl i f fs , N.J.:
Prentice-Hall, Inc., 1975.

"Top Down Design, Part I " , Los Angeles,
CA: University of California, Los Angeles,
Edutronics Film Series in Computer Science.

"Top Down Design, Part I I " , Los Angeles,
CA: University of California, Los Angeles,
Edutronics Film Series in Computer
Science.

Irvine, A., Standard Practices for the
Implementation of Computer Software,
Pasadena, CA: Jet Propulsion Laboratory
Publication 78-53, September 1978.

Mulhall, B., and Jacobs, S., "A Technique
For Comparative Assessment of Software
Development Management Pol icies",
Arlington, VA: AFIPS Press, Proceedings
of the 1980 National Computer Conference,
May 1980.

Khailany, A., and Saxon, C., "Conducting
Project Team Classes in Data Processing",
ACM SIGCSE Notices.

Jacobs, S., "The Many Faces Of A Program
Librarian", INFOSYSTEMS, October 1978.

Weinberg, G., The Psychology of Computer
Programming, New York: Van Nostrand
Reinhold Co., 1971.

Kleine, K., "Selected Annotated Biblio-
graphy on Software Engineering", ACM
SIGSOFT Software Engineering Notes.

124

