
A FOUNDATIONS COURSE FOR A
DEVELOPING COMPUTER SCIENCE PROGRAM

By Mark Benard
Computer Science Department

Tulane University
New Orleans, LA 70118

I. Introduction

The demand of industry for personnel
educated in computer science has created a
two-edged problem for colleges and
universities. Student demand for computer
science courses has increased as the use of
computers has increased. In addition, industry
has attracted computer science faculty and
potential faculty away from academics so that
there is a very real shortage of faculty
members who have strong backgrounds in
computer scienc<. Thus the increased demands
for courses coupled with the shortage of
staffing for such courses have caught
institutions of higher education in a squeeze
and have caused them to examine the extent
that they participate in computer science
education.

Since colleges and universities are
competing with one another for students more
now than in the past, they cannot ignore
strong student interests in any area of study.
Courses in computer science are not Just being
demanded by students who are aiming for
computer-related careers. Students with
majors in such diverse fields as business,
psychology, and engineering are being told
that some computer science coursework is
essential for careers in these fields. In
addition, more students majoring in the
humanities are choosing to take compu1~er
science courses as electives for "insurance"
in case that they are unable to pursue careers
related to their majors.

Most colleges and un~versltles without
full-fledged computer science programs meet
the general demand by offering courses which
are staffed by faculty from other fields who
have some experience with computer
programming. Because of the limited expertise
of the staff, such course offerings may be

Permission to copy without fee all or part of this
material is granted provided th~at the copies are
not made or distributed for direct commercial
advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice
is given that copying is by permission of the
Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or

specific permission.

© 1981 ACM 0-89791-036-2/81/0200/0188 $00.7.5

restricted to courses such as Introduction to
Data Processing and courses in which
programming languages such as FORTRAN and
COBOL are studied. This solution makes good
use of faculty resources to meet some basic
needs for service courses in computer science,
particularly when the faculty member involved
is supported and encouraged by the college in
refining the skills needed to teach such
COUrSeS.

Schools which go a little further and
try to prepare students for computer-related
careers may also have an assembly language
course and a numerical analysis course in
their curriculum. If the assembly language
course focuses on assembly language
programming and not on computer organization,
then the student is exposed to very little
computer science in this curriculum, no matter
how many programming languages he or she may
learn to use. Such a combination of course
offerings does not provide an education which
will enable the graduate to contribute to
solving computer-related problems as they
change over the next forty years. In order to
adapt to the changing demands which are
already apparent in today's Jobs, the computer
professional needs a broad background in the
fundamentals of computer science, which
clearly goes beyond programming. Furthermore,
training in computer programming and nothing
beyond is not consistent with the principles
of a college education. Such training is more
suitable for a vocational-technlcal institute
both from the standpoint of breadth of
coverage and that of the depth of

understanding.

II. The Role of the Foundations Course

This paper discusses a course, referred
to as Foundations, which has been used to
partially satisfy the need for a broad program
in computer science in a situation where
staffing is limited. This course was
introduced at Tulane University in 1974 and
was taught until recently when a full-fledged
major program was established. At the time
that it was introduced, the only other
computer science courses that were being
taught involved programming in several
languages (including assembler), some

188

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800037.800986&domain=pdf&date_stamp=1981-02-01

applications, and numerical analysis. My
experience in teaching the course for five
years has led me to believe that it is an
ideal course for a school which wishes to
offer something beyond programming but which
is restricted by the size and expertise of its
faculty.

The Foundations course covers several
topics, each of which is related to discrete
mathematics. These topics are data
structures, formal languages, graph theory and
boolean algebras. While the course is
organized around the theoretical subjects, it
includes a great variety of applications to
computer science. The course also includes a
major project which ties in several of the
topics studied and provides a design and
programming problem that ~s more complex than
those seen by students in preceding courses.
The project involves the construction of an
interpreter for a simple algebraic language.
More details are given on the exact contents
of the course and on the interpreter project
in Sections IV thru VI.

Most students came into the course with
a view that computer systems are black boxes.
They had very little idea of what happened to
their programs during compilation and
execution. An introduction to the translation
process for programming languages, reinforced
by the interpreter project, changed that
black-box view very quickly. The study of the
use and implementation of some simple data
structures and the study of applications of
boolean algebras such as the logical design of
adders gave them some insight into the
organization of computer systems. Students
who took the course during its first two or
three years of existence were mostly
participants in a combined mathematics/
computer science program. Feedback from these
students indicate that the course did
accomplish its goals of giving them a broad
view of computer science (which resulted in
more opportunities for them in the Job market)
and of providing them with the background
needed for further study in the field.

This course should be appealing to a
college with limited faculty expertise in
computer science. With a moderate amount of
reading and Preparation , a faculty member who
is familiar with discrete mathematics and who
is experienced in programming can teach such a
course. In addition, teaching such a course
can also provide an incentive to delve more
deeply into computer science. Hence, the
course might provide the school with a
springboard for developing the faculty
expertise needed for an expanded computer
science program.

III. Further Course and Faculty Development

The Foundations course can also be used
as a transition course in the development of a
minor or major in computer science. Data
Structures would probably be the most
desirable next course to be added to the

curriculum. A faculty member with experience
with the Foundations course should be able to
develop Data Structures, which is a natural
spln-off from Foundations. In the case of
Tulane, we inserted a sophomore-level Data
Structures course and altered the Junlor-level
Foundations course to cover other material in
more depth. Another option would be to build
on Foundations and schedule Data Structures to
follow it.

A minor program might easily be built
from this point. Such a minor might include
two introductory programming courses,
asssembly language, Data Structures,
Foundations, and some coverage of the
organization of computer systems and system
software. A major program would require
considerably more courses, but several can be
regarded as spin-oils from Foundations.
Courses in progran~ming languages and their
translation, analysis of algorithms, and
discrete mathematics could be inserted in
place of the Foundations course.

I have referred to the role of the
Foundations course in faculty development.
The current situation in which many computer
science courses are being taught by those
acquainted only with computer programming is
hopefully a temporary one. Computer science
should be taught by computer scientists for
the same reason that history should be taught
by historians. College professors should have
a thorough understanding of what they are
teaching and should be knowledgeable of new
developments in the field; it is also
important that they have an overview of the
field which goes beyond mere knowledge of the
course being taught. However, man/ of the
non-experts who are currently teaching
computer science may provide a key source of
the computer scientists that are badly needed
in academics. Often these people are already
dedicated to teaching but may not find much
incentive to learn about computer science
beyond the subject of "programming" if they do
not expect to be teaching anything other than
the introductory courses which are primarily
service courses. However, if they are given a
chance to teach a course llke Foundations,
they may be stimulated to become more deeply
involved in computer science. With the
support of their institutions in the form of
travel to conferences and short courses, and
paid leave to study with computer scientists
elsewhere, many of these people may be
transformed into contributing computer
scientists in a fairly short period of time.

IV. Contents of the Course

The Foundations course is divided into
two main parts; data structures and formal
languages are covered in the first part while
graph theory and boolean algebras comprise the
second part. The theme that dominates the
first part is the specification and
translation of languages. In an introductory
section on mathematical induction, an
algorithm for determining whether a string of
parentheses is properly paired is presented.
The algorithm is a simple counting algorithm,

189

assigning the value of +I to left parentheses
and -I to right ones, but the proof that it
works involves looking at how strings of
properly paired parentheses can be generated.
That is, a grammer which generates the
language of "properly paired parentheses" is
informally presented. Much later, after
formal languages have been introduced, that
grammar is discussed again. The language of
reverse Polish expressions is also studied
prior to the section on formal languages.
Translation algorithms for infix to reverse
Polish areused to illustrate applications of
stacks and binary trees. Thus the student
deals with grammars and languages in several
situations before they are presented more
rigorously in the section of formal languages.

The section on graph theory does not
include any indepth discussion of prominent
applications in computer science. Because
there are so many definitions and concepts to
understand before one can use graph theory,
this section concentrates on those basics.
The applications presented are to problems for
which a computer solution is being sought,
such as problems that involve resource
allocations (e.g., PERT and CPM). Hence,
graph theory is viewed as a mathematical tool
which can be used to reduce a problem to a
form that is appropriate for computer
solution. Direct applications to computer
science, such as flow analysis of programs and
analysis of computer networks, are somewhat
too sophisticated for this course and are only
briefly mentioned.

One application of boolean algebras
appears very prominently in the second part of
the course, the application to the design of
digital logic circuits. This gives the
student some exposure to the hardware-level
organization of computers. There are other
reasons for including a thorough discussion of
boolean algebras. Mathematical logic and the
propositional calculus are useful tools for a
computer scientist, and the study of bo?lean
algebras provides an introduction to this
material.

Another topic which is included
actually appears spread throughout the entire
course. This topic is the analysis of
algorithms. Numerous algorithms are presented
in each section. These al~orithms are
carefully presented so that their validity can
be discussed. In cases where a simple proof
(using tools such as mathematical induction)
of the correctness of the algorithm exists,
the proof is formally presented. Recurring
techniques, such as the use of depth-first and
breadth-first searches in graphs, are pointed
out to illustrate that • algorithm design often
involves the adaption of well-known methods in
new situations.

Several different books ([I], [3], [5])
have been used as textbooks for the course,
but none of these was foll~wed very closely.
Selected readings from these books and several
other references ([2], [4]) can be used to
supplement classroom lectures.

V. Course Outline

A. Mathematical preliminaries
I. Mathematical induction
2. Set theory

B. Linear data structures
i. Arrays
2. Linked lists
3. Stacks
4. Applications of stacks:

subroutines; conversion from infix
to reverse Polish notation;
execution of reverse Polish
expressions

C. Binary trees
I. Traversal algorithms
2. Implementation
3. Applications: relationship between

infix and reverse Polish notation;
symbol tables

D. Formal languages
I. Formal grammars and their

languages
2. BNF notation
3. Syntax trees and parsing
4. Simple precedence gran~aars

E. Graph theory
I. Undirected graphs - basic

definitions
2. Trees and spanning trees; spanning

tree algorithms using depth first
search

3. Cycle basis; algorithm based on
the spanning tree

4. Degrees of connectivity
5. Directed graphs - basic

definitions
6. Applications of networks using the

max flow - min cut algorithm and
shortest path algorithms (PERT,
CPM)

F. Boolean algbras
I. Characterization of (finite)

boolean algebras
2. Boolean functions
3. Canonical forms of boolean

polynomials
4. Minimization using Karnaugh maps
5. Applications to digital logic

design (example: a full
adder-subtractor)

Vl. The Interpreter Project

While additional programming
assignments have been given to implement some
of the algorithms studied, the interpreter
project has been used as the primary
programming work. It ties together the
material in the first part (sections B,C and
D) of the course and gives the student a
better understanding of language translators.

The language to be interpreted consists
of algebraic assignment statements~ wi th
integer values .and single character variable
names. Optionally, the language can include
an IF-THEN-ELSE construct or multicharacter
variable names.

190

The project assignment is handed out at
the first class to give the students a goal to
focus on. Of course, the students cannot
fully understand the project at that time and
it is actually broken down into a series of
assignments to be done when appropriate.
Stack algorithms are implemented after stacks
are introduced, symbol table routines are
implemented after binary trees are studied,
and the parsing module is implemented after
the section on formal languages is completed.
The most difficult part of that project for
most students is the identification of the
various syntax errors that can occur. Certain
types of errors (e.g., improperly paired
parentheses) can be detected with the usual
precedence-based algorithm which can be used
to convert an assignment statement to reverse
Polish notation, but transition tables of some
type are needed in either the lexicographic
scanning module or the parsing module to
detect most errors. When time has permitted,
this problem has been used to motivate a brief
study of finite state machines and automata.

Vll. Conclusions

The Foundations course, as outlined
here, can be a valuable asset to a small or
developing computer science program. It
exposes the students to many apects of
computer science which are not apparent to
those who have studied only "programming"
previously; yet it provides a natural
transition between "programming" and a more
indepth study of computer science. The course
also presents a number of tools which are
needed for the study of more advanced topics.

In addition, this course can be taught
by a faculty member with minimal expertise in
computer science. It can also provide the
incentive for such a person to pursue a deeper
understanding of computer science. With the
help of the college or university, this person
could develop the expertise to teach a wide
variety of computer science courses and hence
contribute to a more comprehensive computer
science program at that institution.

REFERENCES

[I] A.T. Berztiss, "Data Structures,"
Second Edition, Academic Press, 1975.

[2] D.E. Knuth, "The Art of Computer
Programming," 3 volumes,
Addlson-Wesley.

[3] R.R. Korfhage, '~iscrete
Computational Structures," Academic
Press, 1974.

[4] C.W. Marshall, "Applied Graph
Theory," Wiley-Intersclence, 1971.

[5] J.P. Tremblay and R. Manohar,
"Discrete Mathematical Structures
with Applications to Computer
Science," McGraw-Hill, 1975.

191

