
TEACHING PROBLEM SOLVING IN AN INTRODUCTORY
COMPUTER SCIENCE CLASS

David D. Ri ley
Depar tment of Computer Science

U n i v e r s i t y of Wisconsin - La Crosse

A b s t r a c t lec tu res ; and tw ice a week , s tuden ts meet in
classes of 30 in a more t r ad i t i ona l c lassroom p re -

Th is paper deals the d i f f i cu t i es of teach ing p r o b - sen ta t ion .
leT so lv ing in an i n t r o d u c t o r y level compute r
science course where the ma jo r i t y of s tuden ts are B a c k g r o u n d
not compute r science majors. An approach is
suggested us ing t o p - d o w n des ign techn iques . The As ea r l y as 1965, Edsger W. D i j ks t ra [5] advo -
speci f ic pseudo language, prob lem de f i n i t i on fo rm, cated the cons t ruc t i on of p rograms in a s t r u c t u r e d
and des ign p rocedu re t a u g h t in th is course are manner . The phrase " s t r u c t u r e d p rog ramming "
desc r ibed , was i n t r oduced and more c a r e f u l l y de l inea ted by

D i j ks t ra [6] in 1972. The p a r t i c u l a r ve rs ion of
Keywords p rog ram des ign known as " t o p - d o w n p rog ramming "

is c red i ted to Z u r c h e r and Randel l [21] and was
I /O spec i f i ca t ions , i n t r o d u c t o r y compute r science la te r re f ined b y H. D. Mil ls [16, 17] . The tech -
course , prob lem de f i n i t i on , p rob lem so l v i ng , n iques of s t r u c t u r e d p rog ramming were f i r s t shown
p s e u d o - i n s t r u c t i o n , so f tware e n g i n e e r i n g , s tepwise to be of cons ide rab le va lue by Har lan Mil ls and F.
re f i nement , s t r u c t u r e d p rog ramming ; t o p - d o w n T e r r y Bake r [1] . Datamat ion proc la imed s t r uc -
des ign , t u r e d p rog ramming as a "p rog ramming r e v o l u t i o n "

in December 1973.
I n t r o d u c t i o n

Acceptance of the p recep ts of s t r u c t u r e d p r o g r a m -
Perhaps Donald Knuth said i t best in 1974 [14] , ruing have permeated the compute r so f tware i ndus -
"A revo lu t i on is t ak i ng place in the way we w r i t e t r y . New languages such as PASCAL [11] , ADA
programs and teach p rog ramming , because we are [19] , and FORTRAN [3] emphasize the use of
beg inn ing to u n d e r s t a n d the associated mental con t ro l s t r u c t u r e s sugges ted by s t r u c t u r e d p ro -
processes more deep l y . I t is impossible to read g ramming . F u r t h e r j us t i f i ca t i on f o r s t r u c t u r e d
the recent book S t r u c t u r e d Programming [4] w i t h - p rog ramming comes f rom s imi lar languages used fo r
ou t hav ing i t change y o u r l i f e . " However , Knu th systems deve lopmen t w o r k . Languages such as
neve r e labora ted on how the p recepts of s t r uc - SDL, PL/S and PASCAL u n d e r l i n e the impor tance
t u r e d p rogramming should be t a u g h t to s tuden ts in ass igned to s t r u c t u r e d p rog ramming by B u r r o u g h s
an i n t r o d u c t o r y level compute r science course. C o r p o r a t i o n , IBM C o r p o r a t i o n , Cont ro l Data Cor -

po ra t ion and Texas I n st ruments , I n c o r p o r a t e d .
The essence of the prob lem fac ing the U n i v e r s i t y
of Wisconsin-La Crosse Computer Science Depar t - H i s to r y and Con ten t of the Course
Ten t ~n the sp r i ng of 1980 was how to teach the
a p p r o p r i a t e p rog ramming concepts to 600 s tuden ts The course f o r wh ich all t he p r e v i o u s l y ment ioned
per semester . Of these 600 s tuden ts , a p p r o x i m a t e - w o r k in so f tware eng inee r i ng became h i g h l y s ign i -
ly 90~ are not compute r science majors . S ta f f i ng f i can t at the U n i v e r s i t y of Wisconsin-La Crosse
prob lems r e q u i r e t ha t the f ou r semester hou r (UW-I_) was CPTS 110 - I n t r o d u c t i o n to Compute r
course be t a u g h t in two d i s t i nc t sect ions. Twice a Science. CPTS 110 is a f ou r semester hou r course
week , all s tuden ts v iew 50 minute v ideo taped t a u g h t by members of t he Compute r Science De-

pa r tmen t at UW-L and s u p p o r t i n g an en ro l lmen t

Permission to copy without fee all or part of this
material is granted provided that the copies are
not made or distributed for direct commercial
advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice
is given that copying is by permission of the
Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or
specific permission.

© 1981 ACM 0-89791-036-2/81/0200/0244 $00.75

244

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953049.800995&domain=pdf&date_stamp=1981-02-01

ave rag ing more than 600 s tuden ts per semester.
The composi t ion of CPTS 110 is about 10% computer
science majors and 90,% s tudents sa t i s f y i ng u n i v e r -
s i t y basic s tud ies requ i remen ts . A d d i t i o n a l l y , i t
must be noted tha t 85,% of the computer science
majors at UW-L enro l l in CPTS 110 as t h e i r f i r s t
computer science course.

The most recent rev is ion of CPTS 110 was in i t i a ted
in the fal l of 1979. A f t e r an ex tens i ve course
rev iew , the Computer Science Depar tment vo ted to
adop t , as a course ou t l i ne , F igure 1 in November ,
1979. As an in tegra l po r t i on of the ou t l i ne , a
pe rcen tage was assigned to each major top ic to
ind ica te the app rox ima te percen tage of class t ime
devo ted to the top ic . The p a r t i c u l a r po r t i on of
the ou t l i ne in F igure 1 r e l evan t to th is paper is
the top ic en t i t l ed "Programming in a High Level
Language . "

The select ion of PASCAL as the p rogramming
l a n g u a g e to be t a u g h t in CPTS 110 deserves a
b r i e f e x p l a n a t i o n . I t is more common in a course
such as CPTS 110 to use BASIC as the veh ic le to
teach p rog ramming . In fac t , the t e x t b o o k [9]
used c u r r e n t l y in CPTS 110 conta ins on l y a b r i e f
re fe rence to PASCAL, bu t the t h i r d of i ts t h ree
par ts is devo ted soley to BASIC.

In the fal l of 1979, BASIC was be ing t a u g h t in
CPTS 110. The choice of us ing PASCAL was made
l a rge l y fo r two reasons:

1. The not ions of so f tware eng inee r i ng
suggest t ha t a language wi th cont ro l
s t r u c t u r e s s imi lar to PASCAL would be
amenable to c u r r e n t l y accepted des ign
techn iques .

2. The C o m p u t e r Science Depar tment at
UW-L has a s t rong commitment to the use
of PASCAL as the p rogramming language
to be used c e n t r a l l y in the c u r r i c u l u m .
As a resu l t , i t was fe l t t ha t the com-
p u t e r science majors in CPTS 110 would
bene f i t more f rom the exposu re to
PASCAL than to BASIC.

Th is choice to use PASCAL also had an e f fec t upon
the mechanism used to teach p rog ramming .

In November , 1979, i t was also dec ided t h a t , due
to va r i ous cons t ra in t s , CPTS 110 must be t a u g h t
in a d i v i ded mode. For two f i f t y - m i n u t e per iods
per week, s tuden ts would v iew v i deo - t aped lec-
t u res . These lec tures would be i n te r l eaved wi th
two f i f t y - m i n u t e classroom sessions in g roups of no
more than 30 s tuden ts meet ing wi th an i n s t r u c t o r .

Problem So lv ing at UW-L

I t is c lear t ha t the act of p rogramming is a special
t y p e of prob lem so l v ing . I t is r e l a t i v e l y easy to
teach a s tuden t the s y n t a x ru les fo r a p rog ram-
ming language; bu t i t is e x t r e m e l y d i f f i c u l t to
teach the same i nd i v i dua l how to select f rom all the
sequences of charac te rs r ep resen t i ng syn tac t i ca l l y
co r rec t p rograms a sequence t ha t per forms the
des i red task . D i j ks t ra [7] said, " I t seems va in to
hope- to pu t i t m i l d l y - t h a t a book could be w r i t t e n
t ha t we could g ive to young people, say ing 'Read

5,% Computer Science H i s to r y

10% I n t r o d u c t o r y Compute r A r c h i t e c t u r e (i nc l ud ing
machine language concepts)

10% A S u r v e y of Computer App l i ca t ions

-Medical
-Data Processing
. -Sc ient i f i c (s imu la t ions , O . S . , e t c .)
-Word Processing
-Educat iona l App l i ca t ions
-A r t i f i c i a l In te l l i gence
-Personal Comput ing

5% A S u r v e y of Var ious Languages, (COBOL,
FORTRAN, ADA, SNOBOL, LISP, APL,
BASIC, PASCAL, PL/1 , ALGOL)

s% A s u r v e y of Var ious Computer Science Disci-
p l ines & Topics (Data S t r u c t u r e s , A r c h i -
t ec tu re , S imulaton, System Ana lys i s ,
Numerical Ana lys i s , Data Process ing,
C . A . I . , In fo rmat ion Re t r i eva l , A r t i f i c i a l
In te l l i gence , Opera t i ng Systems, Compi ler
Cons t ruc t i on , M ic rocomputers , D iscre te
S t r u c t u r e s , So f tware Eng inee r ing)

10-% Social Impl icat ions of Computers

- P r i v a c y & S e c u r i t y
-Au tomat ion & Power
- F u t u r e

5% Program Design Methodologies (S u r v e y)

-F lowchar ts
- T o p - d o w n a lgo r i thmic deve lopment
-H ipo d iagrams

50,% Programming in a High Level A lgo r i t hm ic
L a n g u a g e (PASCAL)

- I n s t r u c t i o n Set
ass ignment s ta tement
IF -THEN- (ELSE) cont ro l
I /O statements (s imp le - f ree I /O)
A l o o p i n g cont ro l s t r u c t u r e

-Data S t r u c t u r e s
f i xed po in t scalars
f l oa t ing po in t scalars
cha rac te r scalars
a r r a y s

-P rogram Design

FIGURE 1 - CPTS 110 COURSE OUTLINE

245

th is , and a f t e rwa rds you wi l l be able to t h i n k
e f f ec t i ve l y ' "

Due to the ove rwhe lm ing acceptance of t o p - d o w n
des ign [16] us ing stepwise re f inement [20] , th is
techn ique was selected to p r o v i d e the basic
mechanism for prob lem so lv ing in CPTS 110.

Hav ing made th is choice, t h ree basic quest ions st i l l
remain :

1. What is the p a r t i c u l a r pseudo language
to be used?

2. HOW is a "step" def ined?
3. How can the choices in I . and 2. be

made workab le in CPTS 110?

What is the Pa r t i cu la r Pseudo- language to be Used?

Two major qua l i t ies seem most impo r tan t in the
choice of a pseudo - l anguage fo r CPTS 110. They
are 1) s imp l i c i t y and 2) con fo rm i t y w i th PASCAL.

The set of pseudo - l anguage i ns t ruc t i ons should be
simple in terms of fo rm, and the d i f f e r e n t pseudo-
i ns t ruc t i ons should be few in number . In th~
t e rm ino logy of Randal l Jensen [12] i t is fe l t t ha t
severa l "sequence" s ta tements , a "se lec t ion" s ta te -
ment and a " i t e r a t i o n " (r e p e t i t i o n) s ta tement would
be a p p r o p r i a t e . A s ing le repe t i t i on and a s ing le
select ion s ta tement , i f a p p r o p r i a t e l y chosen, are
c lea r l y su f f i c i en t con t ro l s t r u c t u r e s [2] . The set
of sequence statements selected inc lude a comment
s ta tement , an ass ignment s ta tement , an i npu t
s ta tement , and an o u t p u t s ta tement .

In order to promote ease of teach ing t o p - d o w n
des ign , i t was de te rm ined to use p s e u d o - i n s t r u c -
t ion s y n t a x t ha t was Eng l i sh - l i ke and c lea r l y
impl ied p s e u d o - i n s t r u c t i o n semant ics. A d d i t i o n a l l y ,
the choice of p s e u d o - i n s t r u c t i o n s y n t a x was in-
f luenced by the choice of PASCAL as p rog ramming
language. I t was fe l t t ha t us ing p s e u d o - i n s t r u c -
t ions wi th s y n t a x close to the s y n t a x of the cor -
respond ing PASCAL i ns t ruc t i ons would s imp l i f y the
process of t r a n s l a t i n g an a lgo r i thm in the pseudo-
language in to a PASCAL p rogram. The f ina l
s y n t a x of the six p s e u d o - i n s t r u c t i o n s to be used
in CPTS is shown below:

COMMENT s y n t a x :

~a} where "a" may be any sequence of
characters ;

ASSIGNMENT STATEMENT s y n t a x :

var ~ express ion

where "var is a variable and "expression"
is some expression that can be evaluated
to yield a value consistent in type with
"var" ;

INPUT STATEMENT s y n t a x :

READ (v a r l i s t)

where " v a r l i s t " is a l is t of va r i ab les
separated by commas;

OUTPUT STATEMENT s y n t a x :

WRITE (e x p l i s t)

where " e x p l i s t " is a l is t of express ions
separated by commas;

SELECTION STATEMENT s y n t a x :

IF cond i t ion THEN
then clause

or

IF cond i t ion THEN
then clause

ELSE
else clause

where " cond i t i on " is a logical exp ress ion
t ha t can be eva lua ted to t r u e or fa lse,
and " then c lause" and "else c lause" con-
sist of one or more p s e u d o - i n s t r u c t i o n s ;
each begins on a separa te l ine;

REPETITION STATEMENT s y n t a x :

WHILE cond i t ion DO
loopbody

where "cond i t ion" is a logical exp ress ion
t h a t can be eva lua ted to t r u e or fa lse,
and "loopbody" consists of one or more
pseudo-instructions; each begins on a
separate line

Speci f ic deta i ls are omi t ted f rom the desc r i p t i ons of
" exp ress i on " and " c o n d i t i o n " . Th is is done to
al low s tuden ts f l e x i b i l i t y w i t h o u t s y n t a x ove rhead .
Of course , a s y n t a x fo r these exp ress ions must be
imposerl when a p rog ramming language is t a u g h t .

This pseudo - l anguage also inco rpo ra tes i nden ta t i on
as an i n teg ra l f ea tu re of the s y n t a x of select ion
and repe t i t i on s ta tements . No compound s ta te-
ments, "ENDIF " , " F l " , o r "ENDLOOP" appear in
the pseudo - l anugage and none are necessary .
THEN clauses, ELSE clauses, and bod ies of WHILE
loops are speci f ied in th is pseUdo- language by
t h e i r i nden ta t i on f rom " I F " , ' !THEN", "ELSE" or
"WH I LE!".

How is a "S tep" Def ined?

Hav ing de te rm ined the method of p rob lem so lv ing
used in CPTS 110 to be t o p - d o w n des ign w i th
s tepwise re f i nement , i t s t i l l remains to spec i f y th is
process in more deta i l in o r d e r to use i t in the
c lassroom. The process of p roceed ing f rom one
step to the n e x t has t o be c la r i f i ed . A lso, a
de te rm ina t ion is r e q u i r e d of the con ten t of t he
in i t ia l s tep of the des ign .

"The f i r s t and most impo r tan t step in the des ign
process is the fo rmu la t i on o r de f i n i t i on of the
p rob l em. " [13] Conv inced of the t r u t h of the
above 'statement, t he spec i f i ca t ion of an in i t ia l s tep
prob lem is reduced to spec i f i ca t ion of the prob lem
de f i n i t i on . Research in the area of p rob lem d e f i n i -
t ion is devo ted l a r g e l y to I /O spec i f i ca t ions [18, 8,

246

10]. The d i f f i c u l t y w i th these approaches is t ha t
the t yp i ca l s t uden t enro l led in CPTS 110 does not
have adequate soph is t i ca t ion to deal w i th formal
I /O spec i f i ca t ions .

The prob lem de f in i t i on t echn ique f i n a l l y adopted
fo r use in CPTS was based on an example f rom
Henry Ledgard [15] (page 8, example 2 .36) . The
techn ique invo lves p resen t i ng a de f i n i t i on us ing
f i ve d i s t i nc t pa r t s : a genera l desc r i p t i on , i npu t
spec i f i ca t ions , o u t p u t spec i f i ca t ions , e r r o r or
unusual cond i t i ons , and an example. F igure 2 is
an example de f i n i t i on used in CPTS 110.

The genera l desc r ip t i on is expec ted to be a broad
s ta tement of the p rob lem. Detai ls of i npu t and
o u t p u t spec i f ica t ions need not be inc luded in th is
genera l desc r i p t i on . The genera l desc r ip t i on is
inc luded to se rve as an i n t r o d u c t o r y comment
u n i f y i n g the rema inder of the de f i n i t i on .

I n p u t and o u t p u t spec i f ica t ion par ts of the prob lem
de f i n i t i ons f o r CPTS 110 are in tended to descr ibe
the deta i ls of the form of "expec ted i npu t " and the
co r respond ing form of o u t p u t , l-n each of these
pa r t s , spec i f ica t ion is done v ia Engl ish desc r i p -
t i on .

The example pa r t of the CPTS 110 prob lem de f i n i -
t ion form consists of a p a r t i c u l a r i npu t set and the
p a r t i c u l a r o u t p u t t ha t should be p roduced . The
i npu t of the example should consis t on l y of " e x -
pected i n p u t " , bu t should also conta in as many
d i f f e r e n t va r i a t i ons in '~expected i npu t " as is
poss ib le.

The f ina l pa r t of CPTS 110 prob lem de f i n i t i on
chosen is the e r r o r or unusual cond i t ions . Th is
pa r t is inc luded to f i l l in gaps in the i n p u t and
o u t p u t spec i f ica tons. E r r o r o r unusual cond i t ions
are in tended to inc lude all cases of poss ib i l i t ies fo r
i npu t t ha t are not covered by "expec ted i n p u t " .
Just as in the case of i npu t and o u t p u t speci f ica-
t i ons , e r r o r s and unusual cond i t ions are descr ibed
in Engl ish .

Th is choice of prob lem de f in i t i on is not as formal
as many of those suggested in the l i t e r a t u r e .
However , i t was fe l t t ha t the lack of f o rma l i t y and
formal no ta t ion is the fac to r t ha t made th is
approach usefu l in an i n t r o d u c t o r y level course.

In the t o p - d o w n design techn ique used in CPTS
110, the prob lem de f i n i t i on serves as the in i t ia l
s tep. In o r d e r to express the prob lem de f in i t i on
in pseudo - l anguage , i t is t r ea ted as a s ing le
comment. T h e rema inder of the process of s tep-
wise re f inement is descr ibed to CPTS 110 s tuden ts
in the fo l low ing de f i n i t i on of t o p - d o w n des ign :

"Stepwise re f inement of a p rogram such
tha t each step is a complete and co r rec t
p rog ram resu l t i ng f rom re f i n i ng com-
men t (s) f rom the p rev ious step. The
f i r s t step is an adequate prob lem de f i n i -
t ion in the form of one large comment.
The f ina l step is a p rogram f ree of
comment p s e u d o - i n s t r u c t i o n s . "

The p a r t i c u l a r t echn ique of rep lac ing comments
w i th sequences of p s e u d o - i n s t r u c t i o n s is f u r t h e r

c la r i f i ed by the fo l low ing re f inement gu ide l i ne :

"To proceed from one step in a t o p - d o w n
des ign to the n e x t , re f ine all comments
in to sequences of p s e u d o - i n s t r u c t i o n s ,
b u t w i th in these sequences all THEN
clauses, ELSE clauses, and bodies of
WHILE loops should consis t of a s ingle
READ, WRITE, ass ignment , or comment
(to be re f ined at the nex t s t e p) . "

Write a rro4ra~, to .m:u: an ~r,i~Jal cnLck~ok Lalanee
then ~ccept wi£~r~,wJl~ at" dcpc~s amd ce!cu]ate the f~nal
mal;~::ce. ~itt,~r=,a!~, ~ ~UbLracte4 tro~, the Da!a~ce and
d,'posits are added t o Jr.

YNFU? ~PECIFICATIONS

The f~rst inDu~ line contains a single positive nun~er that
ls th~ ~nJtill ctl~ckbook balance, }v~r}]npul lint, after the
first contains a Lransaction. A transaction linu consists of
Z pa:~s:

~) the first column of the line contains a "W" for
withdrawal, a "D" for dcposlt, o~ an "E" ~o indicate
end of input.

2) th~ remainder of the line contains a singl~ positive
nun~oer (representing the Lmount to be withdrawn or
deposited - this nun%her is meaniDgless on the "E"
line).

There is only one "E" transaction and it is the last input line.

CVTPUT SPECIFICATIONS

The o~tput consists of 3 parts in the following order:
l) INITIAL BALANCE: b where "b" is the value of the

initial balance. This is followed by a blank line.
~) Each ~ransaction, excepting the last, causes a blank

line ~ollowed by the line below to be output:
/kMOUNT: a Nm9 BALANCE: n

where "t" is either WITHDRAWAL or DEPOSIT as appro-
priate, "a" is the amount of the transaction and
"n" is the value of the new balance as calculated
after the transaction.

3) Two blank lines are output followed by the line
below:

FINAL BALANCE: f
where "f" is the balance at the time of the "E"
transaction processing.

ERROR OR t~USUAL CONDITIONS

I) Any time the balance becomes negative ~i.e.
balance was previouslypositive and this trans-
action caused m negative balance) after the
normal transaction, the following additional
line of output is output produced:

WAm~NG - NEGATIVE BALANCE
There is a $5 charge imposed when the balance
becomes negative.

2) NO attempt is made by the program to verify
that the amount of a transaction is positive.

3) Any invalid input (a character other than "W'~
"D", or "B" in the first colu~ or any non-
numeric values ~hen numeric values are expected)
cause undefined results.

4) Any additional input (more than the appropriate
number of values per line or additional lines
after the "B" line) is ignored.

E~,MPLE
Input * 133.26

W IS0
W 23.16
D 1O
W 50.10
D 15
D ~00
B

Output ~ INITIAL BALANCE: 133.26
WITHDRAWAL AMOUNT: ig0 NEW BALANCE: 33.26
WITHDRAWAL AMOUNT: 23.16 NEW BALANCE: 1O.1
DEPOSIT ~OUNT: I0 NEW BALANCE: 20.1
~qlTHDRAWAL AMOUNT: 50.10 NEW BALANCE: -35
WARNING - NEGATIVE BALANCE
DEPOSIT AMOUNT: 15 NEW BALANCE: -20
DEPOSIT AMOUNT: 200 NEW BALANCE: 180
FINAL BALANCE: 180

FIGURE 2 EXAMPLE CPTS 110 DEFINITION

247

This comment speci f ies the process of p rog ress ing
from one step to the nex t . F igures 3, 4, 5 and 6
show an example top -down design used in CPTS
110.

It must be ment ioned t ha t wh i le the t op -down
des ign process used in CPTS 110 is de f ined to be
one of e l im inat ing comments, th is is not done to
d iscourage the use of comments. Great care is
taken to encourage s tuden ts to use comments in
f ina l a lgo r i thms, as well as p rograms in CPTS 110.
S tudents are r e q u i r e d to submi t des igns w i th
p rog ramming ass ignments and encouraged to in te -
g ra te comments f rom the va r i ous steps of the
des ign in to the f inal p rog ram.

H.o w Can Th is Top -Down Desicjn Techn ique Become
Workable in CPTS 110?

As ment ioned ea r l i e r , CPTS 110 is t a u g h t us ing
both 50-minute v i deo - t aped lec tures and 50-minute
t r ad i t i ona l classroom sessions. The s t r u c t u r i n g is
such tha t s tuden ts t y p i c a l l y a l t e rna te between the
v i deo - t aped lectures and t r ad i t i ona l classroom
meet ings. A d d i t i o n a l l y , the t r ad i t i ona l c lassroom
meet ings are t a u g h t by a v a r i e t y of i n s t r u c t o r s ,
a l t h r o u g h each s tuden t wi l l be exposed to only' one
of these i n s t r u c t o r s t h r o u g h o u t his o r her c lass-
room meet ings. I t was de te rm ined to p resen t as
much of the mechanics of the t o p - d o w n des ign
process in t h ree v i d e o - t a p e d lec tu res . T rad i t i ona l
c lassroom meet ings would necessar i l y haw. ~ to
manage the task of i n v o l v i n g s tuden ts in the
prob lem so lv ing process.

In the f i r s t v i deo - t aped lec tu re , s tuden ts are
exposed to the genera l not ion of prob lem so lv ing
as i t re la tes to p rog rams. Th is f i r s t l ec tu re
def ines the not ion of a p rogram and descr ibes an
a lgo r i t hm as, a p rog ram using p s e u d o - i n s t r u c t i o n s
(those i ns t ruc t i ons not spec i f i ca l l y be long ing to
any known p rogramming l anguage) . Wi thout de f i n -
ing the concept of t o p - d o w n des ign , th is f i r s t
lec tu re p resents two v e r y simple stepwise re f i ne -
ment examples us ing i ns t ruc t i ons f rom the pseudo-
language descr ibed ea r l i e r . F ina l l y , the lec tu re
p resen ts the s y n t a x of the six p s e u d o - i n s t r u c -
t ions . A d d i t i o n a l l y , th is lec tu re d iscusses the
concepts of va r i ab les , exp ress ions , cond i t i ons , and
f low of cont ro l (sequence, select ion and r e p e t i t i o n)
as t hey re la te to the p s e u d o - i n s t r u c t i o n s . The
t rad i t i ona l class immediate ly fo l low ing th is f i r s t
v i d e o - t a p e does not ye t deal w i th des ign . Ra the r ,
th is t rad i t i ona l class meet ing is used to ,cover
b i n a r y numbers .

The second v i d e o - t a p e on design deals e x c l u s i v e l y
w i th prob lem de f i n i t i on . The lec tu re begins by
po in t ing ou t tha t the f i r s t step in prob lem so lv ing
must be de f i n i t i on o f the prob lem. As an in i t ia l
a t tempt at de l inea t ing the prob lem de f i n i t i on p ro -
cess, th is second design v i d e o - t a p e presents a
ser ies of t h ree prob lem de f i n i t i ons . F igures 7, 8,
and 9 i l l u s t ra te th is deve lopment . F igure 7 shows
what is termed as an example "poo r prob lem de f i n i -
t i on " . Th is de f i n i t on is expanded s l i g h t l y to y ie ld
the " b e t t e r prob lem de f i n i t i on " seen in F igure 8.
F igure 9 shows the f inal ve rs ion of a de f i n i t i on fo r
th is prob lem. The lec tu re emphasizes the c o n t i n u -
um of qua l i t ies of prob lem de f i n i t i ons fo r a g i ven
prob lem.

STEP 1

GENERAL PROBLEM DESCRIPTION
I d e n t i f y the cha rac te r f rom any set of 3 i npu t
charac te rs tha t would appear f i r s t (l owes t)
a lphabe t i ca l l y .

INPUT SPECIFICATIONS
Inpu t consists of 3 charac te rs on a s ing le
l ine.

OUTPUT SPECIFICATIONS
Each of the 3 i n p u t charac te rs is o u t p u t one
per l ine in the o r d e r t hey were i npu t . Fol-
lowing th is echo of i npu t a b lank l ine is ou t -
pu t , fo l lowed by the l ine below:

THE LOWEST CHARACTER FROM ABOVE
IS c

Where "c" is the i npu t cha rac te r tha t would
appear f i r s t a l phabe t i ca l l y .

Example

i npu t - - - ~ X B T

o u t p u t --~ X
B
T
THE LOWEST CHARACTER
FROM ABOVE IS B

UNUSUAL OR ERROR CONDITIONS
1. I f t he re are too few cha rac te rs i n p u t

then unde f ined resu l ts occur .
2. I f any of the i n p u t cha rac te rs are not

u p p e r case a lphabet i c charac te rs then
the fo l low ing message is o u t p u t a f te r all
charac te rs are echoed:

INVALID CHARACTER ENCOUNTERED-
WARNING!

3. I f too many charac te rs are i npu t then
the f i r s t 3 are processed and the o the rs
i gno red .

4. I f 2 or all of the i n p u t cha rac te rs have
the same va lue and i t is the least va lue
a lphabe t i ca l l y then t ha t va lue is o u t p u t
as usual .

FIGURE 3-EXAMPLE TOP-DOWN DESIGN (STEP 1)

STEP 2

{ i n p u t and echo 3 charac te rs }

{ i d e n t i f y the i n p u t cha rac te r t ha t is a l phabe t i ca l l y
f i r s t and s tore i t in LOWCHAR}

WRITE (a b lank l ine)

WRITE ('THE LOWEST CHARACTER FROM ABOVE
IS' , LOWCHAR)

FIGURE 4-EXAMPLE TOP-DOWN DESIGN (STEP 2)

248

STEP 3

READ (F IRSTCHAR)
WRITE (F IRSTCHAR)
READ (SECONDCHAR)
WRITE (SECONDCHAR)
READ (THIRDCHAR)
WRITE (THIRDCHAR)
IF (FIRSTCHAR is not uppercase a lphabet ic) OR

(SECONDCHAR is not upper case a lphabet ic) OR
(THIRDCHAR is not uppercase a lphabet ic) THEN

WRITE (' INVAL ID CHARACTER
ENCOUNTERED')

IF FIRSTCHAR I SECONDCHAR THEN
[s to re smaller of FIRSTCHAR & THIRDCHAR in

LOWCHARJ
ELSE

~store smaller of SECONDCHAR & THIRDCHAR
in LOWCHA R.i

WRITE (a b lank line)
WRITE (fTHE LOWEST CHARACTER FROM ABOVE

IS ~, LOWCHAR)

FIGURE 5-EXAMPLE TOP-DOWN DESIGN (STEP 3)

STEP 4

READ (F IRSTCHAR)
WRITE (F IRSTCHAR)
READ (SECONDCHAR)
WRITE (SECONDCHAR)
READ (THIRDCHAR)
WRITE (THIRDCHAR)
IF (FIRSTCHAR is not uppercase a lphabet ic) OR

(SECONDCHAR is not upper case a lphabet ic) OR
(THIRDCHAR is not uppercase a lphabet ic) THEN
WRITE (' INVAL ID CHARACTER ENCOUNTERED')

IF FIRSTCHAR < SECONDCHAR THEN
IF FIRSTCHAR < THIRDCHAR THEN

LOWCHAR~- FIRSTCHAR
ELSE

LOWCHAR~e-THIRDCHAR
ELSE

IF SECONDCHAR < THIRDCHAR THEN
LOWCHAR~--SECONDCHAR

ELSE
LOWCHAR~--THI RDCHAR

WRITE (a b lank line)
WRITE ('THE LOWEST CHARACTER FROM ABOVE

IS'~ LOW CHAR)

FIGURE 6-EXAMPLE TOP-DOWN DESIGN (STEP 4)

POOR PROBLEM DEFINITION

Reorder input words so that the f i rs t is swapped
with the last, the second is swapped with the
second from the last, etc.

FIGURE 7 - EXAMPLE POOR PROBLEM DEFNITION

BETTER PROBLEM DEFINITION

Assuming that words are non-b lank sequences of
characters , reorder 5 input words so that the f i rs t
is exchanged with the last and the second is
exchanged with the four th . Input words will
appear one per line and ou tpu t words should all be
together on the same l ine.

FIGURE 8-EXAMPLE BETTER PROBLEM DEFINITION

ADEQUATE PROBLEM DEFINITION

GENERAL PROBLEM DEFINITION
Reorder 5 input words so that the f i rs t word
is exchanged with the last and ti~e second
word is exchanged with the four th

INPUT FORM SPECIFICATIONS
Input consists of 5 words non-b lank
sequences of characters) types on 5 consecu-
t i ve l ines.

OUTPUT FORM SPECIFICATIONS
The 5 input words will be ou tpu t with one
blank separat ing each pai r . The f i r s t word
ou tpu t will be the last one inpu t , the second
ou tpu t will be the four input , etc.

EXAMPLE

input ~ INK
GREEN
EATS
COMPUTER
BLUE

ou tpu t - -~ -BLUE COMPUTER EATS GREEN INK

UNUSUAL OR ERROR CONDITIONS
1. No attempt is made to ve r i f y that input

words are va l id English words.
2. If fewer than 5 words are input , the

fol lowing message is ou tpu t :
INSUFFICIENT INPUT!

3. If more than 5 words are input , the f i rs t
5 are processed and all others are
ignored.

FIGURE 9 - EXAMPLE ADEQUATE PROBLEM
DEFINITION

The adject ive "adequate" ra ther than "good" is
used for the course. The lecture then presents
and descr ibes the f ive par t def in i t ion form to be
used in the course and concludes by present ing
two more def in i t ions in the specif ied form. In
add i t ion , s tudents are suppl ied two addi t ional
examples as par t of the p r in ted course notes they
receive.

249

In the t r ad i t i ona l class meet ing fo l low ing the
second design v i d e o - t a p e , i n s t r uc to r s rev iew the
not ion of prob lem de f in i t i on and answer s tuden t
ques t ions . In add i t i on , i n s t r uc to r s deve lop wi th
class assistance add i t iona l p rob lem de f in i t i ons .
Th is class meet ing also conta ins the f i r s t des ign
a s s i g n m e n t - w r i t i n g an adequate de f i n i t i on for a
poo r l y s tated one.

The f inal v i d e o - t a p e on design formal izes the
not ion of t op -down design by p resen t i ng the
de f i n i t i on quoted ea r l i e r . This lec tu re also p re -
sents the " re f i nemen t gu ide l i ne " and ca re fu l l y
t races t h ree d i f f e r e n t t o p - d o w n designs t h r o u g h
the process f rom de f in i t i on to f inal a lgo r i t hm.
Care was taken to see tha t one of these des igns
dea l t w i th cha rac te r p rocess ing , one wi th p u r e l y
numer ic process ing and one wi th a business
o r i en ted prob lem. Also inc luded in the s tuden t ' s
course notes were t h ree more complete des igns fo r
s tuden ts to s t u d y .

While the v i deo - tapes fo l low ing the t h i r d des ign
lec tu re deal wi th o t h e r issues of compute r science
such as ope ra t i ng systems, h i s t o r y , e t c . , the nex t
f i ve t r ad i t i ona l classroom meet ings are used to
exerc ise t op -down des ign . In these meet ings,
s tuden ts are shown completed a lgo r i thms asked to
t race t h e i r execu t i on , shown example des igns f rom
poor prob lem de f in i t i on to completed a lgo r i t hm, and
encouraged to pa r t i c i pa te in these processes. The
p a r t i c u l a r amount of t ime spent on any p a r t i c u l a r
issue var ies from class to class. Dur ing the
per iod of t ime fo r these f i ve class meet ings, all
s tuden ts are asked to pe r fo rm one complete top -
down des ign as a homework prob lem.

S tuden t tes t ing o v e r the top ic of des ign in CPTS
110 is done in two pa r t s . As pa r t of a 40 ques-
t ion mu l t ip le choice exam, s tuden ts are asked
quest ions p e r t a i n i n g to prob lem de f i n i t i on ,
a lgo r i t hm execu t ion t r a c i n g , and t o p - d o w n des ign .
A d d i t i o n a l l y , s tuden ts take a 50-minu te des ign qu iz
r e q u i r i n g them to fo rmu la te an adequate prob lem
de f in i t i on fo r a poo r l y s tate p rob lem and also to
per fo rm a t o p - d o w n des ign g i ven an adequate
prob lem de f i n i t i on .

Conclus ions

There are a few genera l conclus ions t ha t can be
d rawn f rom the exper iences of teach ing th is
mater ia l fo r the f i r s t t ime. F i rs t , i t is e v i d e n t
that many s tuden ts en te r i ng col lege have prob lem
so lv ing sk i l ls tha t are woe fu l l y i nadequa te . Ex-
pand ing upon these sk i l ls can in some cases be
somewhat l ike teach ing the concept of a f rac t i on to
an i nd i v i dua l t ha t does not u n d e r s t a n d the concept
of an i n tege r . I t is also obv ious t ha t a satL, ra t ion
of examples is use fu l . S tuden ts d raw on past
examples to tack le new s i tua t ions . I t woulr l also
appear tha t the acqu is i t i on of prob lem so lv ing
sk i l ls fo r many s tuden ts comes on l y a f t e r cons ide r -
able repe t i t i on of i nvo l vemen t in the process.

Hav ing completed the i ns t r uc t i on of th is mater ia l
on ly a few weeks ago, i t is d i f f i c u l t to d raw con-
c re te conclus ions r e g a r d i n g the e f fec t i veness of
the methodo logy . I t is poss ib le, howeve r , to
compare CPTS 110 th is semester w i th is pre,deces-
sor . CPTS 110 p r i o r to th is semester used BASIC

as p rogramming language and f l o w c h a r t i n g as
design tool .

Speci f ic compar ison of exam resu l ts is of ques t i on -
able va lue due to the fact tha t i t is d i f f i c u l t to
suggest tha t quest ions us ing f l o w c h a r t i n g and
pseudo- language a lgor i thms are of s imi lar comp lex -
i t y . S t i l l , look ing at somewhat s imi lar quest ions
f rom p rev ious exams, the resu l ts of th is semester
would appear to demonst ra te l i t t le change in s tu -
den t per fo rmance . There is no ev idence to i nd i -
cate that s tuden ts are f i nd ing t o p - d o w n des ign
more d i f f i cu l t to g rasp than f l o w c h a r t i n g .

Seven i n s t r u c t o r s have t a u g h t in the t r ad i t i ona l
c lassroom se t t ing th is semester . T h e i r react ions to
the change in design p resen ta t i on f rom ea r l i e r
semesters have been v e r y s imi lar in na tu re . The
i n s t r u c t o r s do not f ind th is new approach more or
less d i f f i c u l t to teach. They also f ind l i t t l e d i f f e r -
ence in s t uden t per fo rmance excep t i ng a genera l
fee l ing t ha t s tuden ts who could not g rasp the
d iagramat ic na tu re of f l o w c h a r t i n g appear to have
a be t t e r fee l ing about the Eng l i sh - l i ke na tu re of
p s e u d o - i n s t r u c t i o n s .

The key issue is t ha t all i n s t r u c t o r s u n i f o r m l y
s u p p o r t th is techn ique of t o p - d o w n des ign . They
s u p p o r t i t because i t is " s t a t e - o f - t h e - a r t " so f tware
deve lopmen t , p resen t i ng s tuden ts wi th a more
accura te v iew of compute r so f tware deve lopmen t .
They also s u p p o r t i t because i t p rov i des s tuden ts
who wi l l subsequen t l y enro l l in o t h e r so f tware
courses the basic tools r e q u i r e d to manage the
mater ia l . Instead of fee l ing as t hough s tuden ts
have been t a u g h t ques t ionab le des ign techn iques
tha t may even have to be " u n t a u g h t " , i n s t r u c t o r s
be l ieve s tuden ts are be ing p r o v i d e d wi th e x a c t l y
the sk i l ls necessary to solve prob lems in the best
manner c u r r e n t l y known.

References

1. Bake r , F. T . , "Ch ie f Programmer Team
Management o f Produc t ion P rog ramming" ,
IBM Systems Jouna l , Vol. 11, No. 1,
J a n u a r y , 1972, pp. 56-73.

2. Bohm, C. and Jacopin i , G. r "F low Diagrams,
T u r i n g Machines and Languages wi th On ly
Two Format ion Rules" , Communicat ions of t he
ACM, Vol . 9, No. 5, May, 1966, pp. 366-371.

3. B r a i n e r d , W., "FORTRAN 77", Communica-
t ions of the ACM, Vol . 21, No. 10, Oc tober ,
1978, pp. 806-820.

4. Dahl , O. J . ; D i j k s t r a , E. W.; and Hoare, C.
A. R . , S t r u c t u r e d Programmincj , Academic
Press, London, Eng land, 1972.

5. D i j k s t r a , E. W. r "P rogramming Cons idered as
a Human A c t i v i t y " , Proceedings of the IFIP
Congress , 1965, pp. 213-217.

6. D i j k s t r a , E. W., "Notes on S t r u c t u r e d Pro-
g ramming " , S t r u c t u r e d Procjrammincj,
Academic Press, London, Eng land, 1972.

7. D i j k s t r a , E. W., A Disc ip l ine of Programmin 9,
P ren t i ce -Ha l l , Englewood C l i f f s , N . J . , 1976.

8. F loyd , R. W., "Ass ign ing Meanings to Pro-
g rams" , Proc. Amer ican Math Soc ie ty Sympo-
sium in App l ied Mathemat ics, Vol . 19, 1967,
pp . 19-31.

250

9. Graham, Neill, The Mind Tool, Second Edi-
tion, West, St. Paul, 1980.

10. Hoare, C. A. R. , "An Axiomatic Basis for
Computer " " Programming , Communications
of the ACM, Vol. 12, No. 10, 1969, pp.
576-583.

11. Jensen, Kathleen and Wirth, Niklaus, PASCAL
User Manual and Report, Spr inger -Ver lag ,
New York, 1976.

12. Jensen, R. W., "S t ruc tu red Programming",
Software Engineering, Prentice-Hall , Engle-
wood Cliffs, N . J . , 1979, pp. 221-328.

13. Jensen, R. ; Randall, W.; and Tonies, C. ,
Software Engineering, Prentice-Hall , Engle-
Wood Cliffs, N . J . , 1979.

14. Knoth, Donald E., "S t ruc tu red Programming
with GO TO Statements" , Computing Su rveys ,
Vol. 6, No. 4, December, 1974.

15. Ledgard, H. F. , Programming Proverbs ,
Hayden, Rochelle Park, N . J . , 1975.

16. Mills, H. D., "Top-Down Prgramming in Large
Systems", Debugging Techniques in Large
Systems, Prentice-Hall, Englewood Cl i f fs,
N.J . , 1971, pp. 41-55.

17. Mills, H. D., "On the Development of Large
Reliable Programs", Proc. 1973 IEEE Sympo-
sium on Computer Software Reliabi l i ty, IEEE,
New York, 1973, pp. 155-159.

18. Naur, P., "Proof of Algorithms by General
Snapshots", Bi_tt, Vol. 6, No. 4, 1966, pp.
310-316.

19. U.S. Department of Defense, Reference
Manual for the Ada Programming Language,
Proposed standard document, July, 1980.

20. Wirth, Niklaus, Systematic Programming,
Prentice-Hall, Englewood Cl i f fs, N.J . , 1973.

21. Zurcher, F. and Randell, B. , " ln terat ive
Mult i-Level Modelling A Methodology for
Computer System esign", Proc. IFIB Congress
1968, Booklet D, North-Holland, Amsterdam,
1968, pp. 138-142.

251

