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A b s t r a c t  lec tu res ;  and tw ice a week ,  s tuden ts  meet in 
classes of 30 in a more t r ad i t i ona l  c lassroom p re -  

Th is  paper  deals the d i f f i cu t i es  of teach ing  p r o b -  sen ta t ion .  
leT so lv ing  in an i n t r o d u c t o r y  level compute r  
science course where  the ma jo r i t y  of s tuden ts  are  B a c k g r o u n d  
not  compute r  science majors.  An approach is 
suggested us ing t o p - d o w n  des ign techn iques .  The As ea r l y  as 1965, Edsger  W. D i j ks t ra  [5]  advo -  
speci f ic  pseudo language,  prob lem de f i n i t i on  fo rm,  cated the  cons t ruc t i on  of  p rograms in a s t r u c t u r e d  
and des ign p rocedu re  t a u g h t  in th is course are manner .  The phrase  " s t r u c t u r e d  p rog ramming "  
desc r ibed ,  was i n t r oduced  and more c a r e f u l l y  de l inea ted  by  

D i j ks t ra  [6]  in 1972. The p a r t i c u l a r  ve rs ion  of  
Keywords  p rog ram des ign known as " t o p - d o w n  p rog ramming "  

is c red i ted  to Z u r c h e r  and Randel l  [21] and was 
I /O spec i f i ca t ions ,  i n t r o d u c t o r y  compute r  science la te r  re f ined  b y  H. D. Mil ls [16, 17] .  The tech -  
course ,  prob lem de f i n i t i on ,  p rob lem so l v i ng ,  n iques of s t r u c t u r e d  p rog ramming  were f i r s t  shown 
p s e u d o - i n s t r u c t i o n ,  so f tware  e n g i n e e r i n g ,  s tepwise to be of  cons ide rab le  va lue  by  Har lan Mil ls and F. 
re f i nement ,  s t r u c t u r e d  p rog ramming ;  t o p - d o w n  T e r r y  Bake r  [ 1 ] .  Datamat ion proc la imed s t r uc -  
des ign ,  t u r e d  p rog ramming  as a "p rog ramming  r e v o l u t i o n "  

in December 1973. 
I n t r o d u c t i o n  

Acceptance of the  p recep ts  of  s t r u c t u r e d  p r o g r a m -  
Perhaps Donald Knuth  said i t  best  in 1974 [14 ] ,  ruing have permeated the  compute r  so f tware  i ndus -  
"A revo lu t i on  is t ak i ng  place in the  way we w r i t e  t r y .  New languages such as PASCAL [11 ] ,  ADA 
programs and teach p rog ramming ,  because we are [ 19 ] ,  and FORTRAN [3]  emphasize the  use of  
beg inn ing  to u n d e r s t a n d  the associated mental con t ro l  s t r u c t u r e s  sugges ted  by  s t r u c t u r e d  p ro -  
processes more deep l y .  I t  is impossible to read g ramming .  F u r t h e r  j us t i f i ca t i on  f o r  s t r u c t u r e d  
the  recent  book S t r u c t u r e d  Programming [4]  w i t h -  p rog ramming  comes f rom s imi lar  languages used fo r  
ou t  hav ing  i t  change y o u r  l i f e . "  However ,  Knu th  systems deve lopmen t  w o r k .  Languages such as 
neve r  e labora ted  on how the  p recepts  of  s t r uc -  SDL,  PL/S and PASCAL u n d e r l i n e  the  impor tance  
t u r e d  p rogramming  should be t a u g h t  to s tuden ts  in ass igned to s t r u c t u r e d  p rog ramming  by  B u r r o u g h s  
an i n t r o d u c t o r y  level compute r  science course.  C o r p o r a t i o n ,  IBM C o r p o r a t i o n ,  Cont ro l  Data Cor -  

po ra t ion  and Texas  I n st ruments ,  I n c o r p o r a t e d .  
The essence of the  prob lem fac ing the  U n i v e r s i t y  
of  Wisconsin-La Crosse Computer  Science Depar t -  H i s to r y  and Con ten t  of  the  Course 
Ten t  ~n the  sp r i ng  of  1980 was how to teach the  
a p p r o p r i a t e  p rog ramming  concepts to 600 s tuden ts  The course f o r  wh ich all t he  p r e v i o u s l y  ment ioned 
per  semester .  Of these 600 s tuden ts ,  a p p r o x i m a t e -  w o r k  in so f tware  eng inee r i ng  became h i g h l y  s ign i -  
ly  90~ are not  compute r  science majors .  S ta f f i ng  f i can t  at  the  U n i v e r s i t y  of  Wisconsin-La Crosse 
prob lems r e q u i r e  t ha t  the  f ou r  semester  hou r  (UW-I_) was CPTS 110 - I n t r o d u c t i o n  to Compute r  
course be t a u g h t  in two d i s t i nc t  sect ions.  Twice a Science. CPTS 110 is a f ou r  semester  hou r  course 
week ,  all s tuden ts  v iew 50 minute  v ideo taped  t a u g h t  by  members of  t he  Compute r  Science De- 

pa r tmen t  at  UW-L and s u p p o r t i n g  an en ro l lmen t  
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ave rag ing  more than 600 s tuden ts  per  semester.  
The composi t ion of CPTS 110 is about  10% computer  
science majors and 90,% s tudents  sa t i s f y i ng  u n i v e r -  
s i t y  basic s tud ies requ i remen ts .  A d d i t i o n a l l y ,  i t  
must be noted tha t  85,% of  the computer  science 
majors at UW-L enro l l  in CPTS 110 as t h e i r  f i r s t  
computer  science course.  

The most recent  rev is ion  of CPTS 110 was in i t i a ted  
in the fal l  of 1979. A f t e r  an ex tens i ve  course 
rev iew ,  the  Computer  Science Depar tment  vo ted  to 
adop t ,  as a course ou t l i ne ,  F igure  1 in November ,  
1979. As an in tegra l  po r t i on  of  the ou t l i ne ,  a 
pe rcen tage  was assigned to each major top ic  to 
ind ica te  the  app rox ima te  percen tage  of class t ime 
devo ted  to the top ic .  The p a r t i c u l a r  po r t i on  of  
the  ou t l i ne  in F igure  1 r e l evan t  to th is  paper  is 
the  top ic  en t i t l ed  "Programming  in a High Level 
Language . "  

The select ion of PASCAL as the  p rogramming  
l a n g u a g e  to be t a u g h t  in CPTS 110 deserves  a 
b r i e f  e x p l a n a t i o n .  I t  is more common in a course 
such as CPTS 110 to use BASIC as the veh ic le  to 
teach p rog ramming .  In fac t ,  the t e x t b o o k  [9]  
used c u r r e n t l y  in CPTS 110 conta ins on l y  a b r i e f  
re fe rence  to PASCAL, bu t  the t h i r d  of  i ts t h ree  
par ts  is devo ted  soley to BASIC.  

In the  fal l  of  1979, BASIC was be ing t a u g h t  in 
CPTS 110. The choice of  us ing PASCAL was made 
l a rge l y  fo r  two reasons:  

1. The not ions of  so f tware  eng inee r i ng  
suggest  t ha t  a language wi th  cont ro l  
s t r u c t u r e s  s imi lar  to PASCAL would be 
amenable to c u r r e n t l y  accepted des ign 
techn iques .  

2. The C o m p u t e r  Science Depar tment  at 
UW-L has a s t rong  commitment to the  use 
of  PASCAL as the p rogramming  language 
to be used c e n t r a l l y  in the  c u r r i c u l u m .  
As a resu l t ,  i t  was fe l t  t ha t  the com- 
p u t e r  science majors in CPTS 110 would 
bene f i t  more f rom the  exposu re  to 
PASCAL than to BASIC.  

Th is  choice to use PASCAL also had an e f fec t  upon 
the  mechanism used to teach p rog ramming .  

In November ,  1979, i t  was also dec ided t h a t ,  due 
to va r i ous  cons t ra in t s ,  CPTS 110 must be t a u g h t  
in a d i v i ded  mode. For two f i f t y - m i n u t e  per iods  
per  week,  s tuden ts  would v iew v i deo - t aped  lec- 
t u res .  These lec tures would be i n te r l eaved  wi th  
two f i f t y - m i n u t e  classroom sessions in g roups  of  no 
more than 30 s tuden ts  meet ing wi th  an i n s t r u c t o r .  

Problem So lv ing  at UW-L 

I t  is c lear  t ha t  the  act  of p rogramming  is a special 
t y p e  of prob lem so l v ing .  I t  is r e l a t i v e l y  easy to 
teach a s tuden t  the  s y n t a x  ru les fo r  a p rog ram-  
ming language;  bu t  i t  is e x t r e m e l y  d i f f i c u l t  to 
teach the  same i nd i v i dua l  how to select f rom all the 
sequences of  charac te rs  r ep resen t i ng  syn tac t i ca l l y  
co r rec t  p rograms a sequence t ha t  per forms the  
des i red  task .  D i j ks t ra  [7]  said,  " I t  seems va in  to 
hope- to  pu t  i t  m i l d l y - t h a t  a book could be w r i t t e n  
t ha t  we could g ive  to young  people,  say ing  'Read 

5,% Computer  Science H i s to r y  

10% I n t r o d u c t o r y  Compute r  A r c h i t e c t u r e  ( i nc l ud ing  
machine language concepts )  

10% A S u r v e y  of Computer  App l i ca t ions  

-Medical 
-Data Processing 
. -Sc ient i f i c  (s imu la t ions ,  O . S . ,  e t c . )  
-Word Processing 
-Educat iona l  App l i ca t ions  
-A r t i f i c i a l  In te l l i gence  
-Personal  Comput ing  

5% A S u r v e y  of Var ious Languages,  (COBOL,  
FORTRAN, ADA,  SNOBOL, LISP, APL, 
BASIC,  PASCAL, PL/1 ,  ALGOL)  

s% A s u r v e y  of  Var ious Computer  Science Disci-  
p l ines & Topics (Data S t r u c t u r e s ,  A r c h i -  
t ec tu re ,  S imulaton,  System Ana lys i s ,  
Numerical  Ana lys i s ,  Data Process ing,  
C . A . I . ,  In fo rmat ion  Re t r i eva l ,  A r t i f i c i a l  
In te l l i gence ,  Opera t i ng  Systems,  Compi ler  
Cons t ruc t i on ,  M ic rocomputers ,  D iscre te  
S t r u c t u r e s ,  So f tware  Eng inee r ing )  

10-% Social Impl icat ions of  Computers  

- P r i v a c y  & S e c u r i t y  
-Au tomat ion  & Power 
- F u t u r e  

5% Program Design Methodologies ( S u r v e y )  

-F lowchar ts  
- T o p - d o w n  a lgo r i thmic  deve lopment  
-H ipo  d iagrams 

50,% Programming in a High Level  A lgo r i t hm ic  
L a n g u a g e  (PASCAL)  

- I n s t r u c t i o n  Set 
ass ignment  s ta tement  
IF -THEN- (ELSE)  cont ro l  
I /O statements ( s imp le - f ree  I /O)  
A l o o p i n g  cont ro l  s t r u c t u r e  

-Data S t r u c t u r e s  
f i xed  po in t  scalars 
f l oa t ing  po in t  scalars 
cha rac te r  scalars 
a r r a y s  

-P rogram Design 

FIGURE 1 - CPTS 110 COURSE OUTLINE 
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th is ,  and a f t e rwa rds  you wi l l  be able to t h i n k  
e f f ec t i ve l y '  . . . .  " 

Due to the ove rwhe lm ing  acceptance of  t o p - d o w n  
des ign [16] us ing stepwise re f inement  [20 ] ,  th is  
techn ique  was selected to p r o v i d e  the basic 
mechanism for  prob lem so lv ing  in CPTS 110. 

Hav ing made th is choice,  t h ree  basic quest ions  st i l l  
remain : 

1. What is the p a r t i c u l a r  pseudo language 
to be used? 

2. HOW is a "step" def ined? 
3. How can the  choices in I .  and 2. be 

made workab le  in CPTS 110? 

What is the Pa r t i cu la r  Pseudo- language  to be Used? 

Two major qua l i t ies  seem most impo r tan t  in the 
choice of  a pseudo - l anguage  fo r  CPTS 110. They  
are 1) s imp l i c i t y  and 2) con fo rm i t y  w i th  PASCAL. 

The set of  pseudo - l anguage  i ns t ruc t i ons  should be 
simple in terms of fo rm,  and the d i f f e r e n t  pseudo- 
i ns t ruc t i ons  should be few in number .  In th~ 
t e rm ino logy  of  Randal l  Jensen [12] i t  is fe l t  t ha t  
severa l  "sequence"  s ta tements ,  a "se lec t ion"  s ta te -  
ment and a " i t e r a t i o n "  ( r e p e t i t i o n )  s ta tement  would 
be a p p r o p r i a t e .  A s ing le repe t i t i on  and a s ing le 
select ion s ta tement ,  i f  a p p r o p r i a t e l y  chosen,  are 
c lea r l y  su f f i c i en t  con t ro l  s t r u c t u r e s  [ 2 ] .  The set 
of sequence statements selected inc lude a comment 
s ta tement ,  an ass ignment  s ta tement ,  an i npu t  
s ta tement ,  and an o u t p u t  s ta tement .  

In order to promote ease of teach ing  t o p - d o w n  
des ign ,  i t  was de te rm ined  to use p s e u d o - i n s t r u c -  
t ion s y n t a x  t ha t  was Eng l i sh - l i ke  and c lea r l y  
impl ied p s e u d o - i n s t r u c t i o n  semant ics.  A d d i t i o n a l l y ,  
the  choice of  p s e u d o - i n s t r u c t i o n  s y n t a x  was in-  
f luenced by  the  choice of  PASCAL as p rog ramming  
language.  I t  was fe l t  t ha t  us ing p s e u d o - i n s t r u c -  
t ions wi th  s y n t a x  close to the  s y n t a x  of  the  cor -  
respond ing  PASCAL i ns t ruc t i ons  would s imp l i f y  the  
process of  t r a n s l a t i n g  an a lgo r i thm in the pseudo-  
language in to a PASCAL p rogram.  The f ina l  
s y n t a x  of  the  six p s e u d o - i n s t r u c t i o n s  to be used 
in CPTS is shown below:  

COMMENT s y n t a x :  

~a} where  "a" may be any  sequence of 
characters ; 

ASSIGNMENT STATEMENT s y n t a x :  

var ~ express ion  

where "var is a variable and "expression" 
is some expression that can be evaluated 
to yield a value consistent in type with 
"var" ; 

INPUT STATEMENT s y n t a x :  

READ ( v a r l i s t )  

where  " v a r l i s t "  is a l is t  of va r i ab les  
separated by  commas; 

OUTPUT STATEMENT s y n t a x :  

WRITE ( e x p l i s t )  

where  " e x p l i s t "  is a l is t  of  express ions  
separated by  commas; 

SELECTION STATEMENT s y n t a x :  

IF cond i t ion  THEN 
then clause 

or  

IF cond i t ion  THEN 
then clause 

ELSE 
else clause 

where  " cond i t i on "  is a logical exp ress ion  
t ha t  can be eva lua ted  to t r u e  or  fa lse,  
and " then  c lause" and "else c lause" con-  
sist  of one or  more p s e u d o - i n s t r u c t i o n s ;  
each begins on a separa te  l ine;  

REPETITION STATEMENT s y n t a x :  

WHILE cond i t ion  DO 
loopbody  

where  "cond i t ion"  is a logical exp ress ion  
t h a t  can be eva lua ted  to t r u e  or  fa lse,  
and "loopbody" consists of one or more 
pseudo-instructions; each begins on a 
separate line 

Speci f ic  deta i ls  are  omi t ted f rom the  desc r i p t i ons  of  
" exp ress i on "  and " c o n d i t i o n " .  Th is  is done to 
al low s tuden ts  f l e x i b i l i t y  w i t h o u t  s y n t a x  ove rhead .  
Of course ,  a s y n t a x  fo r  these exp ress ions  must  be 
imposerl when a p rog ramming  language is t a u g h t .  

This  pseudo - l anguage  also inco rpo ra tes  i nden ta t i on  
as an i n teg ra l  f ea tu re  of  the  s y n t a x  of select ion 
and repe t i t i on  s ta tements .  No compound s ta te-  
ments,  "ENDIF " ,  " F l " ,  o r  "ENDLOOP" appear  in 
the  pseudo - l anugage  and none are necessary .  
THEN clauses, ELSE clauses,  and bod ies  of WHILE 
loops are speci f ied in th is  pseUdo- language  by  
t h e i r  i nden ta t i on  f rom " I F " ,  ' !THEN",  "ELSE" or  
"WH I LE!". 

How is a "S tep"  Def ined? 

Hav ing  de te rm ined  the  method of  p rob lem so lv ing  
used in CPTS 110 to be t o p - d o w n  des ign w i th  
s tepwise re f i nement ,  i t  s t i l l  remains to spec i f y  th is  
process in more deta i l  in o r d e r  to use i t  in the  
c lassroom. The process of  p roceed ing  f rom one 
step to the  n e x t  has t o  be c la r i f i ed .  A lso,  a 
de te rm ina t ion  is r e q u i r e d  of  the  con ten t  of  t he  
in i t ia l  s tep of  the  des ign .  

"The  f i r s t  and most impo r tan t  step in the  des ign 
process is the  fo rmu la t i on  o r  de f i n i t i on  of  the  
p rob l em. "  [13] Conv inced  of  the  t r u t h  of  the  
above 'statement, t he  spec i f i ca t ion  of an in i t ia l  s tep 
prob lem is reduced to spec i f i ca t ion  of  the  prob lem 
de f i n i t i on .  Research in the  area of  p rob lem d e f i n i -  
t ion  is devo ted  l a r g e l y  to I /O spec i f i ca t ions  [18, 8, 
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10].  The d i f f i c u l t y  w i th  these approaches is t ha t  
the  t yp i ca l  s t uden t  enro l led  in CPTS 110 does not  
have adequate  soph is t i ca t ion  to deal w i th  formal 
I /O spec i f i ca t ions .  

The prob lem de f in i t i on  t echn ique  f i n a l l y  adopted 
fo r  use in CPTS was based on an example f rom 
Henry  Ledgard  [15] (page 8, example 2 .36) .  The 
techn ique  invo lves  p resen t i ng  a de f i n i t i on  us ing 
f i ve  d i s t i nc t  pa r t s :  a genera l  desc r i p t i on ,  i npu t  
spec i f i ca t ions ,  o u t p u t  spec i f i ca t ions ,  e r r o r  or  
unusual  cond i t i ons ,  and an example.  F igure  2 is 
an example de f i n i t i on  used in CPTS 110. 

The genera l  desc r ip t i on  is expec ted  to be a broad 
s ta tement  of  the  p rob lem.  Detai ls of  i npu t  and 
o u t p u t  spec i f ica t ions need not  be inc luded in th is  
genera l  desc r i p t i on .  The genera l  desc r ip t i on  is 
inc luded to se rve  as an i n t r o d u c t o r y  comment 
u n i f y i n g  the  rema inder  of the de f i n i t i on .  

I n p u t  and o u t p u t  spec i f ica t ion par ts  of  the prob lem 
de f i n i t i ons  f o r  CPTS 110 are in tended  to descr ibe  
the  deta i ls  of  the form of  "expec ted  i npu t "  and the  
co r respond ing  form of  o u t p u t ,  l-n each of these 
pa r t s ,  spec i f ica t ion is done v ia  Engl ish desc r i p -  
t i on .  

The example pa r t  of  the  CPTS 110 prob lem de f i n i -  
t ion  form consists of a p a r t i c u l a r  i npu t  set and the  
p a r t i c u l a r  o u t p u t  t ha t  should be p roduced .  The 
i npu t  of  the  example should consis t  on l y  of  " e x -  
pected i n p u t " ,  bu t  should also conta in  as many 
d i f f e r e n t  va r i a t i ons  in '~expected i npu t "  as is 
poss ib le.  

The f ina l  pa r t  of  CPTS 110 prob lem de f i n i t i on  
chosen is the e r r o r  or  unusual  cond i t ions .  Th is  
pa r t  is inc luded to f i l l  in gaps in the  i n p u t  and 
o u t p u t  spec i f ica tons.  E r r o r  o r  unusual  cond i t ions  
are in tended  to inc lude all cases of  poss ib i l i t ies  fo r  
i npu t  t ha t  are not  covered  by  "expec ted  i n p u t " .  
Just  as in the  case of i npu t  and o u t p u t  speci f ica-  
t i ons ,  e r r o r s  and unusual  cond i t ions  are descr ibed  
in Engl ish .  

Th is  choice of  prob lem de f in i t i on  is not  as formal  
as many of  those suggested in the  l i t e r a t u r e .  
However ,  i t  was fe l t  t ha t  the  lack of  f o rma l i t y  and 
formal  no ta t ion  is the  fac to r  t ha t  made th is  
approach usefu l  in an i n t r o d u c t o r y  level  course.  

In the  t o p - d o w n  design techn ique  used in CPTS 
110, the  prob lem de f i n i t i on  serves  as the  in i t ia l  
s tep.  In o r d e r  to express  the  prob lem de f in i t i on  
in pseudo - l anguage ,  i t  is t r ea ted  as a s ing le  
comment. T h e  rema inder  of  the process of  s tep-  
wise re f inement  is descr ibed  to CPTS 110 s tuden ts  
in the  fo l low ing  de f i n i t i on  of  t o p - d o w n  des ign :  

"Stepwise re f inement  of  a p rogram such 
tha t  each step is a complete and co r rec t  
p rog ram resu l t i ng  f rom re f i n i ng  com- 
men t (s )  f rom the  p rev ious  step.  The 
f i r s t  step is an adequate  prob lem de f i n i -  
t ion in the  form of  one large comment. 
The f ina l  step is a p rogram f ree  of  
comment p s e u d o - i n s t r u c t i o n s . "  

The p a r t i c u l a r  t echn ique  of  rep lac ing  comments 
w i th  sequences of  p s e u d o - i n s t r u c t i o n s  is f u r t h e r  

c la r i f i ed  by  the fo l low ing  re f inement  gu ide l i ne :  

"To proceed from one step in a t o p - d o w n  
des ign to the n e x t ,  re f ine  all comments 
in to sequences of p s e u d o - i n s t r u c t i o n s ,  
b u t  w i th in  these sequences all THEN 
clauses,  ELSE clauses, and bodies of 
WHILE loops should consis t  of  a s ingle 
READ, WRITE, ass ignment ,  or  comment 
( to  be re f ined  at the nex t  s t e p ) . "  

Write a rro4ra~, to .m:u: an ~r,i~Jal cnLck~ok Lalanee 
then ~ccept wi£~r~,wJl~ at" dcpc~s amd ce!cu]ate the f~nal 
mal;~::ce. ~itt,~r=,a!~, ~ ~UbLracte4 tro~, the Da!a~ce and 
d,'posits are added t o  Jr. 

YNFU? ~PECIFICATIONS 

The f~rst inDu~ line contains a single positive nun~er that 
ls th~ ~nJtill ctl~ckbook balance, }v~r} ]npul lint, after the 
first contains a Lransaction. A transaction linu consists of 
Z pa:~s: 

~) the first column of the line contains a "W" for 
withdrawal, a "D" for dcposlt, o~ an "E" ~o indicate 
end of input. 

2) th~ remainder of the line contains a singl~ positive 
nun~oer (representing the Lmount to be withdrawn or 
deposited - this nun%her is meaniDgless on the "E" 
line). 

There is only one "E" transaction and it is the last input line. 

CVTPUT SPECIFICATIONS 

The o~tput consists of 3 parts in the following order: 
l) INITIAL BALANCE: b where "b" is the value of the 

initial balance. This is followed by a blank line. 
~) Each ~ransaction, excepting the last, causes a blank 

line ~ollowed by the line below to be output: 
/kMOUNT: a Nm9 BALANCE: n 

where "t" is either WITHDRAWAL or DEPOSIT as appro- 
priate, "a" is the amount of the transaction and 
"n" is the value of the new balance as calculated 
after the transaction. 

3) Two blank lines are output followed by the line 
below: 

FINAL BALANCE: f 
where "f" is the balance at the time of the "E" 
transaction processing. 

ERROR OR t~USUAL CONDITIONS 

I) Any time the balance becomes negative ~i.e. 
balance was previouslypositive and this trans- 
action caused m negative balance) after the 
normal transaction, the following additional 
line of output is output produced: 

WAm~NG - NEGATIVE BALANCE 
There is a $5 charge imposed when the balance 
becomes negative. 

2) NO attempt is made by the program to verify 
that the amount of a transaction is positive. 

3) Any invalid input (a character other than "W'~ 
"D", or "B" in the first colu~ or any non- 
numeric values ~hen numeric values are expected) 
cause undefined results. 

4) Any additional input (more than the appropriate 
number of values per line or additional lines 
after the "B" line) is ignored. 

E~,MPLE 
Input * 133.26 

W IS0 
W 23.16 
D 1O 
W 50.10 
D 15 
D ~00 
B 

Output ~ INITIAL BALANCE: 133.26 
WITHDRAWAL AMOUNT: ig0 NEW BALANCE: 33.26 
WITHDRAWAL AMOUNT: 23.16 NEW BALANCE: 1O.1 
DEPOSIT ~OUNT: I0 NEW BALANCE: 20.1 
~qlTHDRAWAL AMOUNT: 50.10 NEW BALANCE: -35 
WARNING - NEGATIVE BALANCE 
DEPOSIT AMOUNT: 15 NEW BALANCE: -20 
DEPOSIT AMOUNT: 200 NEW BALANCE: 180 
FINAL BALANCE: 180 

FIGURE 2 EXAMPLE CPTS 110 DEFINITION 
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This comment speci f ies the process of  p rog ress ing  
from one step to the nex t .  F igures  3, 4, 5 and 6 
show an example top -down  design used in CPTS 
110. 

It must be ment ioned t ha t  wh i le  the t op -down  
des ign process used in CPTS 110 is de f ined  to be 
one of  e l im inat ing  comments, th is  is not  done to 
d iscourage the  use of  comments. Great  care is 
taken to encourage s tuden ts  to use comments in 
f ina l  a lgo r i thms,  as well as p rograms in CPTS 110. 
S tudents  are r e q u i r e d  to submi t  des igns w i th  
p rog ramming  ass ignments and encouraged to in te -  
g ra te  comments f rom the va r i ous  steps of the 
des ign in to the  f inal  p rog ram.  

H.o w Can Th is  Top -Down Desicjn Techn ique  Become 
Workable in CPTS 110? 

As ment ioned ea r l i e r ,  CPTS 110 is t a u g h t  us ing 
both 50-minute  v i deo - t aped  lec tures and 50-minute  
t r ad i t i ona l  classroom sessions. The s t r u c t u r i n g  is 
such tha t  s tuden ts  t y p i c a l l y  a l t e rna te  between the 
v i deo - t aped  lectures and t r ad i t i ona l  classroom 
meet ings.  A d d i t i o n a l l y ,  the t r ad i t i ona l  c lassroom 
meet ings are t a u g h t  by  a v a r i e t y  of i n s t r u c t o r s ,  
a l t h r o u g h  each s tuden t  wi l l  be exposed to only' one 
of  these i n s t r u c t o r s  t h r o u g h o u t  his o r  her  c lass- 
room meet ings.  I t  was de te rm ined  to p resen t  as 
much of  the mechanics of the t o p - d o w n  des ign 
process in t h ree  v i d e o - t a p e d  lec tu res .  T rad i t i ona l  
c lassroom meet ings would necessar i l y  haw.  ~ to 
manage the task  of i n v o l v i n g  s tuden ts  in the 
prob lem so lv ing  process.  

In the f i r s t  v i deo - t aped  lec tu re ,  s tuden ts  are  
exposed to the genera l  not ion of prob lem so lv ing  
as i t  re la tes to p rog rams.  Th is  f i r s t  l ec tu re  
def ines the not ion of a p rogram and descr ibes an 
a lgo r i t hm as, a p rog ram using p s e u d o - i n s t r u c t i o n s  
( those  i ns t ruc t i ons  not  spec i f i ca l l y  be long ing  to 
any  known p rogramming  l anguage) .  Wi thout  de f i n -  
ing the concept  of t o p - d o w n  des ign ,  th is  f i r s t  
lec tu re  p resents  two v e r y  simple stepwise re f i ne -  
ment examples us ing i ns t ruc t i ons  f rom the  pseudo-  
language descr ibed  ea r l i e r .  F ina l l y ,  the  lec tu re  
p resen ts  the s y n t a x  of  the  six p s e u d o - i n s t r u c -  
t ions .  A d d i t i o n a l l y ,  th is  lec tu re  d iscusses the  
concepts of va r i ab les ,  exp ress ions ,  cond i t i ons ,  and 
f low of cont ro l  (sequence,  select ion and r e p e t i t i o n )  
as t hey  re la te  to the  p s e u d o - i n s t r u c t i o n s .  The 
t rad i t i ona l  class immediate ly  fo l low ing  th is  f i r s t  
v i d e o - t a p e  does not  ye t  deal w i th  des ign .  Ra the r ,  
th is  t rad i t i ona l  class meet ing is used to ,cover 
b i n a r y  numbers .  

The second v i d e o - t a p e  on design deals e x c l u s i v e l y  
w i th  prob lem de f i n i t i on .  The lec tu re  begins by  
po in t ing  ou t  tha t  the f i r s t  step in prob lem so lv ing  
must be de f i n i t i on  o f  the  prob lem.  As an in i t ia l  
a t tempt  at de l inea t ing  the  prob lem de f i n i t i on  p ro -  
cess, th is  second design v i d e o - t a p e  presents  a 
ser ies of  t h ree  prob lem de f i n i t i ons .  F igures  7, 8, 
and 9 i l l u s t ra te  th is  deve lopment .  F igure  7 shows 
what  is termed as an example "poo r  prob lem de f i n i -  
t i on " .  Th is  de f i n i t on  is expanded  s l i g h t l y  to y ie ld  
the " b e t t e r  prob lem de f i n i t i on "  seen in F igure  8. 
F igure  9 shows the f inal  ve rs ion  of a de f i n i t i on  fo r  
th is  prob lem.  The lec tu re  emphasizes the c o n t i n u -  
um of  qua l i t ies  of prob lem de f i n i t i ons  fo r  a g i ven  
prob lem.  

STEP 1 

GENERAL PROBLEM DESCRIPTION 
I d e n t i f y  the cha rac te r  f rom any  set of 3 i npu t  
charac te rs  tha t  would appear  f i r s t  ( l owes t )  
a lphabe t i ca l l y .  

INPUT SPECIFICATIONS 
Inpu t  consists of 3 charac te rs  on a s ing le  
l ine.  

OUTPUT SPECIFICATIONS 
Each of  the 3 i n p u t  charac te rs  is o u t p u t  one 
per  l ine in the o r d e r  t hey  were i npu t .  Fol- 
lowing th is  echo of  i npu t  a b lank  l ine is ou t -  
pu t ,  fo l lowed by  the l ine below:  

THE LOWEST CHARACTER FROM ABOVE 
IS c 

Where "c" is the i npu t  cha rac te r  tha t  would 
appear  f i r s t  a l phabe t i ca l l y .  

Example 

i npu t  - - - ~ X B T  

o u t p u t  --~ X 
B 
T 
THE LOWEST CHARACTER 
FROM ABOVE IS B 

UNUSUAL OR ERROR CONDITIONS 
1. I f  t he re  are  too few cha rac te rs  i n p u t  

then  unde f ined  resu l ts  occur .  
2. I f  any  of  the  i n p u t  cha rac te rs  are not  

u p p e r  case a lphabet i c  charac te rs  then  
the  fo l low ing  message is o u t p u t  a f te r  all 
charac te rs  are echoed: 

INVALID CHARACTER ENCOUNTERED- 
WARNING! 

3. I f  too many charac te rs  are i npu t  then  
the  f i r s t  3 are processed and the o the rs  
i gno red .  

4. I f  2 or  all of  the i n p u t  cha rac te rs  have 
the  same va lue  and i t  is the  least va lue  
a lphabe t i ca l l y  then  t ha t  va lue  is o u t p u t  
as usual .  

FIGURE 3-EXAMPLE TOP-DOWN DESIGN (STEP 1) 

STEP 2 

{ i n p u t  and echo 3 charac te rs }  

{ i d e n t i f y  the  i n p u t  cha rac te r  t ha t  is a l phabe t i ca l l y  
f i r s t  and s tore  i t  in LOWCHAR} 

WRITE ( a b lank  l ine ) 

WRITE ( 'THE LOWEST CHARACTER FROM ABOVE 
IS' ,  LOWCHAR) 

FIGURE 4-EXAMPLE TOP-DOWN DESIGN (STEP 2) 

248 



STEP 3 

READ (F IRSTCHAR)  
WRITE (F IRSTCHAR)  
READ (SECONDCHAR) 
WRITE (SECONDCHAR) 
READ (THIRDCHAR)  
WRITE (THIRDCHAR)  
IF (FIRSTCHAR is not uppercase a lphabet ic )  OR 

(SECONDCHAR is not upper  case a lphabet ic)  OR 
(THIRDCHAR is not uppercase a lphabet ic)  THEN 

WRITE ( ' INVAL ID  CHARACTER 
ENCOUNTERED') 

IF FIRSTCHAR I SECONDCHAR THEN 
[s to re  smaller of FIRSTCHAR & THIRDCHAR in 

LOWCHARJ 
ELSE 

~store smaller of SECONDCHAR & THIRDCHAR 
in LOWCHA R.i 

WRITE ( a b lank line ) 
WRITE (fTHE LOWEST CHARACTER FROM ABOVE 

IS ~, LOWCHAR) 

FIGURE 5-EXAMPLE TOP-DOWN DESIGN (STEP 3) 

STEP 4 

READ (F IRSTCHAR)  
WRITE (F IRSTCHAR)  
READ (SECONDCHAR) 
WRITE (SECONDCHAR) 
READ (THIRDCHAR)  
WRITE (THIRDCHAR)  
IF (FIRSTCHAR is not uppercase a lphabet ic )  OR 

(SECONDCHAR is not upper  case a lphabet ic )  OR 
(THIRDCHAR is not uppercase a lphabet ic )  THEN 
WRITE ( ' INVAL ID  CHARACTER ENCOUNTERED') 

IF FIRSTCHAR < SECONDCHAR THEN 
IF FIRSTCHAR < THIRDCHAR THEN 

LOWCHAR~- FIRSTCHAR 
ELSE 

LOWCHAR~e-THIRDCHAR 
ELSE 

IF SECONDCHAR < THIRDCHAR THEN 
LOWCHAR~--SECONDCHAR 

ELSE 
LOWCHAR~--THI RDCHAR 

WRITE ( a b lank line ) 
WRITE ( 'THE LOWEST CHARACTER FROM ABOVE 

IS'~ LOW CHAR) 

FIGURE 6-EXAMPLE TOP-DOWN DESIGN (STEP 4) 

POOR PROBLEM DEFINITION 

Reorder input  words so that  the f i rs t  is swapped 
with the last, the second is swapped with the 
second from the last, etc. 

FIGURE 7 - EXAMPLE POOR PROBLEM DEFNITION 

BETTER PROBLEM DEFINITION 

Assuming that words are non-b lank  sequences of 
characters ,  reorder  5 input  words so that  the f i rs t  
is exchanged with the last and the second is 
exchanged with the four th .  Input  words will 
appear one per line and ou tpu t  words should all be 
together  on the same l ine. 

FIGURE 8-EXAMPLE BETTER PROBLEM DEFINITION 

ADEQUATE PROBLEM DEFINITION 

GENERAL PROBLEM DEFINITION 
Reorder 5 input  words so that the f i rs t  word 
is exchanged with the last and ti~e second 
word is exchanged with the four th 

INPUT FORM SPECIFICATIONS 
Input  consists of 5 words non-b lank  
sequences of characters)  types on 5 consecu- 
t i ve  l ines. 

OUTPUT FORM SPECIFICATIONS 
The 5 input  words will be ou tpu t  with one 
blank separat ing each pai r .  The f i r s t  word 
ou tpu t  will be the last one inpu t ,  the second 
ou tpu t  will be the four input ,  etc. 

EXAMPLE 

input  ~ INK 
GREEN 
EATS 
COMPUTER 
BLUE 

ou tpu t - -~ -BLUE COMPUTER EATS GREEN INK 

UNUSUAL OR ERROR CONDITIONS 
1. No attempt is made to ve r i f y  that  input  

words are va l id  English words.  
2. If fewer than 5 words are input ,  the 

fol lowing message is ou tpu t :  
INSUFFICIENT INPUT! 

3. If more than 5 words are input ,  the f i rs t  
5 are processed and all others are 
ignored.  

FIGURE 9 - EXAMPLE ADEQUATE PROBLEM 
DEFINITION 

The adject ive "adequate"  ra ther  than "good" is 
used for  the course. The lecture then presents 
and descr ibes the f ive par t  def in i t ion form to be 
used in the course and concludes by present ing 
two more def in i t ions in the specif ied form. In 
add i t ion ,  s tudents are suppl ied two addi t ional  
examples as par t  of the p r in ted  course notes they 
receive.  
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In the t r ad i t i ona l  class meet ing fo l low ing  the 
second design v i d e o - t a p e ,  i n s t r uc to r s  rev iew the 
not ion of prob lem de f in i t i on  and answer  s tuden t  
ques t ions .  In add i t i on ,  i n s t r uc to r s  deve lop  wi th  
class assistance add i t iona l  p rob lem de f in i t i ons .  
Th is  class meet ing also conta ins the f i r s t  des ign 
a s s i g n m e n t - w r i t i n g  an adequate  de f i n i t i on  for a 
poo r l y  s tated one. 

The f inal  v i d e o - t a p e  on design formal izes the 
not ion  of t op -down  design by  p resen t i ng  the 
de f i n i t i on  quoted ea r l i e r .  This  lec tu re  also p re -  
sents the " re f i nemen t  gu ide l i ne "  and ca re fu l l y  
t races t h ree  d i f f e r e n t  t o p - d o w n  designs t h r o u g h  
the  process f rom de f in i t i on  to f inal  a lgo r i t hm.  
Care was taken to see tha t  one of these des igns 
dea l t  w i th  cha rac te r  p rocess ing ,  one wi th  p u r e l y  
numer ic  process ing and one wi th  a business 
o r i en ted  prob lem.  Also inc luded in the s tuden t ' s  
course notes were t h ree  more complete des igns fo r  
s tuden ts  to s t u d y .  

While the v i deo - tapes  fo l low ing  the t h i r d  des ign 
lec tu re  deal wi th  o t h e r  issues of compute r  science 
such as ope ra t i ng  systems,  h i s t o r y ,  e t c . ,  the  nex t  
f i ve  t r ad i t i ona l  classroom meet ings are  used to 
exerc ise  t op -down  des ign .  In these meet ings,  
s tuden ts  are shown completed a lgo r i thms asked to 
t race t h e i r  execu t i on ,  shown example des igns f rom 
poor  prob lem de f in i t i on  to completed a lgo r i t hm,  and 
encouraged to pa r t i c i pa te  in these processes.  The 
p a r t i c u l a r  amount  of t ime spent  on any  p a r t i c u l a r  
issue var ies  from class to class. Dur ing  the 
per iod  of t ime fo r  these f i ve  class meet ings,  all 
s tuden ts  are asked to pe r fo rm one complete top -  
down des ign as a homework  prob lem.  

S tuden t  tes t ing  o v e r  the top ic  of  des ign in CPTS 
110 is done in two pa r t s .  As pa r t  of a 40 ques-  
t ion mu l t ip le  choice exam, s tuden ts  are asked 
quest ions  p e r t a i n i n g  to prob lem de f i n i t i on ,  
a lgo r i t hm execu t ion  t r a c i n g ,  and t o p - d o w n  des ign .  
A d d i t i o n a l l y ,  s tuden ts  take  a 50-minu te  des ign qu iz  
r e q u i r i n g  them to fo rmu la te  an adequate  prob lem 
de f in i t i on  fo r  a poo r l y  s tate p rob lem and also to 
per fo rm a t o p - d o w n  des ign g i ven  an adequate  
prob lem de f i n i t i on .  

Conclus ions 

There  are a few genera l  conclus ions t ha t  can be 
d rawn  f rom the  exper iences  of teach ing  th is  
mater ia l  fo r  the  f i r s t  t ime. F i rs t ,  i t  is e v i d e n t  
that  many s tuden ts  en te r i ng  col lege have prob lem 
so lv ing  sk i l ls  tha t  are woe fu l l y  i nadequa te .  Ex-  
pand ing  upon these sk i l ls  can in some cases be 
somewhat l ike teach ing  the  concept  of a f rac t i on  to 
an i nd i v i dua l  t ha t  does not  u n d e r s t a n d  the  concept  
of an i n tege r .  I t  is also obv ious  t ha t  a satL, ra t ion  
of examples is use fu l .  S tuden ts  d raw on past  
examples to tack le  new s i tua t ions .  I t  woulr l  also 
appear  tha t  the acqu is i t i on  of prob lem so lv ing  
sk i l ls  fo r  many s tuden ts  comes on l y  a f t e r  cons ide r -  
able repe t i t i on  of i nvo l vemen t  in the process.  

Hav ing completed the i ns t r uc t i on  of  th is  mater ia l  
on ly  a few weeks ago,  i t  is d i f f i c u l t  to d raw con-  
c re te  conclus ions r e g a r d i n g  the e f fec t i veness  of  
the methodo logy .  I t  is poss ib le,  howeve r ,  to 
compare CPTS 110 th is  semester w i th  is pre,deces- 
sor .  CPTS 110 p r i o r  to th is  semester used BASIC 

as p rogramming  language and f l o w c h a r t i n g  as 
design tool .  

Speci f ic  compar ison of exam resu l ts  is of  ques t i on -  
able va lue  due to the fact  tha t  i t  is d i f f i c u l t  to 
suggest  tha t  quest ions us ing f l o w c h a r t i n g  and 
pseudo- language  a lgor i thms are of s imi lar  comp lex -  
i t y .  S t i l l ,  look ing at somewhat s imi lar  quest ions  
f rom p rev ious  exams, the resu l ts  of th is semester 
would appear  to demonst ra te  l i t t le  change in s tu -  
den t  per fo rmance .  There  is no ev idence  to i nd i -  
cate that  s tuden ts  are f i nd ing  t o p - d o w n  des ign 
more d i f f i cu l t  to g rasp  than f l o w c h a r t i n g .  

Seven i n s t r u c t o r s  have t a u g h t  in the  t r ad i t i ona l  
c lassroom se t t ing  th is  semester .  T h e i r  react ions to 
the change in design p resen ta t i on  f rom ea r l i e r  
semesters have been v e r y  s imi lar  in na tu re .  The 
i n s t r u c t o r s  do not  f ind  th is  new approach more or  
less d i f f i c u l t  to teach.  They  also f ind  l i t t l e  d i f f e r -  
ence in s t uden t  per fo rmance  excep t i ng  a genera l  
fee l ing  t ha t  s tuden ts  who could not  g rasp  the 
d iagramat ic  na tu re  of f l o w c h a r t i n g  appear  to have 
a be t t e r  fee l ing about  the Eng l i sh - l i ke  na tu re  of 
p s e u d o - i n s t r u c t i o n s .  

The key  issue is t ha t  all i n s t r u c t o r s  u n i f o r m l y  
s u p p o r t  th is  techn ique  of t o p - d o w n  des ign .  They  
s u p p o r t  i t  because i t  is " s t a t e - o f - t h e - a r t "  so f tware  
deve lopmen t ,  p resen t i ng  s tuden ts  wi th  a more 
accura te  v iew of compute r  so f tware  deve lopmen t .  
They  also s u p p o r t  i t  because i t  p rov i des  s tuden ts  
who wi l l  subsequen t l y  enro l l  in o t h e r  so f tware  
courses the  basic tools r e q u i r e d  to manage the  
mater ia l .  Instead of  fee l ing as t hough  s tuden ts  
have been t a u g h t  ques t ionab le  des ign techn iques  
tha t  may even have to be " u n t a u g h t " ,  i n s t r u c t o r s  
be l ieve s tuden ts  are be ing p r o v i d e d  wi th  e x a c t l y  
the sk i l ls  necessary  to solve prob lems in the  best  
manner  c u r r e n t l y  known.  
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