Check for
Updates

TEACHING PROBLEM SOLVING IN AN INTRODUCTORY
COMPUTER SCIENCE CLASS

David D. Riley
Department of Computer Science
University of Wisconsin - La Crosse

Abstract lectures; and twice a week, students meet in
classes of 30 in a more traditional classroom pre-

This paper deals the difficuties of teaching prob- sentation.

lem solving in an introductory level computer

science course where the majority of students are Background

not computer science majors. An approach is

suggested using top-down design techniques. The As early as 1965, Edsger W. Dijkstra [5] advo-

specific pseudo language, problem definition form, cated the construction of programs in a structured

and design procedure taught in this course are manner. The phrase "structured programming"
described. was introduced and more carefully delineated by

Dijkstra [6] in 1972. The particular version of
Keywords program design known as "top-down programming"

is credited to Zurcher and Randell [21] and was
1/0 specifications, introductory computer science |ater refined by H. D. Mills [16, 17]. The tech-

course, problem definition, problem solving, niques of structured programming were first shown
pseudo-instruction, software engineering, stepwise to be of considerable value by Harlan Mills and F.
refinement, structured programming, top-down Terry Baker [1]. Datamation proclaimed struc-
design. tured programming as a "programming revolution"

in December 1973.
Introduction

Acceptance of the precepts of structured program-
Perhaps Donald Knuth said it best in 1974 [14], ming bave permeated the computer software indus-
"A revolution is taking place in the way we write try. New languages such as PASCAL [11], ADA
programs and teach programming, because we are [19], and FORTRAN [3] emphasize the use of
beginning to wunderstand the associated mental control structures suggested by structured pro-

processes more deeply. It is impossible to read gramming. Further justification for structured
the recent book Structured Programming [4] with- programming comes from similar languages used for
out having it change your life." However, Knuth systems development work. Languages such as

never elaborated on how the precepts of struc- SDL, PL/S and PASCAL underline the importance
tured programming should be taught to students in assigned to structured programming by Burroughs
an introductery tlevel computer science course. Corporation, IBM Corporation, Control Data Cor-

poration and Texas Instruments, Incorporated.
The essence of the problem facing the University

of Wisconsin-La Crosse Computer Science Depart- History and Content of the Course
ment in the spring of 1980 was how to teach the
appropriate programming concepts to 600 students The course for which all the previously mentioned
per semester. Of these 600 students, approximate~ work in software engineering became highty signi-
ly 90% are not computer science majors. Staffing ficant at the University of Wisconsin-La Crosse
problems require that the four semester hour (UW-L) was CPTS 110 - Introduction to Computer
course be taught in two distinct sections. Twice a Science. CPTS 110 is a four semester hour course
week, all students view 50 minute videotaped taught by members of the Computer Science De-

partment at UW-L and supporting an enroliment

Permission to copy without fee all or part of this
material is granted provided that the copies are
not made or distributed for direct commercial
advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice
is given that copying is by permission of the
Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or
specific permission.

© 1981 AcCM 0-89791-036-2/81/0200/0244 $00.75

244

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953049.800995&domain=pdf&date_stamp=1981-02-01

averaging more than 600 students per semester.
The composition of CPTS 110 is about 10% computer
science majors and 90% students satisfying univer-
sity basic studies requirements. Additionally, it
must be noted that 85% of the computer science
majors at UW-L enroli in CPTS 110 as their first
computer science course.

The most recent revision of CPTS 110 was initiated
in the fall of 1979. After an extensive course
review, the Computer Science Department voted to
adopt, as a course outline, Figure 1 in November,
1979. As an integral portion of the outline, a
percentage was assigned to each major topic to
indicate the approximate percentage of class time
devoted to the topic. The particular portion of
the outline in Figure 1 relevant to this paper is
the topic entitled "Programming in a High Level
Language."

The selection of PASCAL as the programming
language to be taught in CPTS 110 deserves a
brief ‘explanation. It is more common in a course
such as CPTS 110 to use BASIC as the vehicle to
teach programming. In fact, the textbook [9]

used currently in CPTS 110 contains only a brief
" reference to PASCAL, but the third of its three
parts is devoted soley to BASIC.

In the fall of 1979, BASIC was being taught in
CPTS 110. The choice of using PASCAL was made
largely for two reasons:

1. The notions of software engineering
suggest that a language with control
structures similar to PASCAL would be
amenable to currently accepted design
techniques.

The Computer Science Department - at
UW-L has a strong commitment to the use
of PASCAL as the programming language
to be used centrally in the curriculum.
As a result, it was felt that the com-
puter science majors in CPTS 110 would
benefit more from the exposure to
PASCAL than to BASIC.

This choice to use PASCAL also had an effect upon
the mechanism used to teach programming.

In November, 1979, it was also decided that, due
to various constraints, CPTS 110 must be taught
in a divided mode. For two fifty-minute periods
per week, students would view video-taped lec-
tures. These lectures would be interleaved with
two fifty-minute classroom sessions in groups of no
more than 30 students meeting with an instructor.

Problem Solving at UW-L

It is clear that the act of programming is a special
type of problem solving. It is relatively easy to
teach a student the syntax rules for a program-
ming language; but it is extremely difficult to
teach the same individual how to select from all the
sequences of characters representing syntactically
correct programs a sequence that performs the
desired task. Dijkstra [7] said, "It seems vain to
hope-to put it mildly-that a book could be written
that we could give to young people, saying 'Read

5% Computer Science History

10% Introductory Computer Architecture (including

machine language concepts)

10% A Survey of Computer Applications
-Medical
-Data Processing
~Scientific (simulations, 0.S., etc.)
-Word Processing
-Educationatl Applications
-Artificial Intelligence
-Personal Computing

5% A Survey of Various Languages, (COBOL,
FORTRAN, ADA, SNOBOL, LISP, APL,
BASIC, PASCAL, PL/1, ALGOL)

5% A survey of Various Computer Science Disci-
plines & Topics (Data Structures, Archi-
tecture, Simulaton, System Analysis,
Numerical Anaiysis, Data Processing,
C.A.l., Information Retrieval, Artificial
Intelligence, Operating Systems, Compiler
Construction, Microcomputers, Discrete
Structures, Software Engineering)

10% Social Implications of Computers
-Privacy & Security
-Automation & Power
-Future

5% Program Design Methodologies (Survey)
-Flowcharts
-Top-down algorithmic development
-Hipo diagrams

50% Programming in a High Level Algorithmic

245

‘Language (PASCAL)

~Instruction Set
assignment statement
IF-THEN-(ELSE) control
1/0 statements (simple-free 1/0)
A 'looping control structure
-Data Structures
fixed point scalars
floating point scalars
character scalars
arrays
-Program Design

FIGURE 1 - CPTS 110 COURSE OUTLINE

this, and afterwards be able to think

effectively'...."

you will

Due to the overwhelming acceptance of top-down
design [16] using stepwise refinement [20], this
technique was selected to provide the basic
mechanism for problem solving in CPTS 110.

Having made this choice, three basic questions still
remain:

1. What is the particular pseudo language
to be used?

2. How is a "step" defined?

3. How can the choices in 1.
made workable in CPTS 1107

and 2. be

What is the Particular Pseudo-language to be Used?

Two major qualities seem most important in the
choice of a pseudo-language for CPTS 110. They
are 1) simplicity and 2) conformity with PASCAL.

The set of pseudo-language instructions should be
simple in terms of form, and the different pseudo-
instructions shouid be few in number. in the
terminology of Randall Jensen [12] it is felt that
several "sequence'" statements, a '"“selection" state-
ment and a "iteration" (repetition) statement would
be appropriate. A single repetition and a single
selection statement, if appropriately chosen, are
clearly sufficient control structures [2]. The set
of sequence statements selected include a comment
statement, an assignment statement, an input
statement, and an output statement.

in order to promote ease of teaching top-down

design, it was determined to use pseudo-instruc-
tion syntax that was English-like and clearly
implied pseudo-instruction semantics. Additionally,

the choice of pseudo-instruction syntax was in-
fluenced by the choice of PASCAL as programming
language. It was felt that using pseudo-instruc-
tions with syntax close to the syntax of the cor-
responding PASCAL instructions would simplify the
process of translating an algorithm in the pseudo-
language into a PASCAL program. The final
syntax of the six pseudo-instructions to be used
in CPTS is shown below:

COMMENT syntax:

{a} where "a" may be any sequence of
characters;

ASSIGNMENT STATEMENT syntax:
var «— expression
where "var is a variable and "expression"
is some expression that can be evaluated
to yield a value consistent in type with
Ilvarll;

INPUT STATEMENT syntax:
READ (varlist)

where "varlist" is a list of variables
separated by commas;

OUTPUT STATEMENT syntax:
WRITE (explist)

where "explist" is a list of expressions
separated by commas;

SELECTION STATEMENT syntax:

IF condition THEN
then clause

or

|F condition THEN
then clause

ELSE
else clause

where "condition" is a logical expression
that can be evaluated to true or faise,
and "then clause" and "else clause" con-
sist of one or more pseudo-instructions;
each begins on a separate line;

REPETITION STATEMENT syntax:

WHILE condition DO
loopbody

where '"condition"is a logical expression
that can be evaluated to true or false,
and "loopbody" consists of one or more
pseudo=~instructions; each begins on a

separate line

Specific details are omitted from the descriptions of
"expression” and "condition". This is done to
allow students flexibility without syntax overhead.
Of course, a syntax for these expressions must be
imposed when a programming language is taught.

This pseudo-language also incorporates indentation
as an integral feature of the syntax of selection

and repetition statements. No compound state-
ments, "ENDIF", "Fi", or "ENDLOOP" appear in
the pseudo-lanugage and none are necessary.

THEN clauses, ELSE clauses, and ‘bodies of WHILE

loops are specified in this pseudo-language by
their indentation from "IF", "THEN", "ELSE" or
"WHILE". :

How is a "Step" Defined?

Having determined the method of problem solving
used in CPTS 110 to be top-down design with
stepwise refinement, it still remains to specify this
process in more detail in order to use it in the
classroom. The process of proceeding from one
step to the next has to be clarified. Also, a
determination is required of the content of the
initial step of the design.

"The first and most important step in the design
process is the formulation or definition of the
problem." [13] Convinced of the truth of the
above statement, the specification of an initial step
problem is reduced to specification of the problem
definition. Research in the area of problem defini-
tion is devoted largely to 1/0 specifications [18, 8,

246

10]. The difficulty with these approaches is that
the typical student enrolled in CPTS 110 does not
have adequate sophistication to deal with formal
1/0 specifications.

The problem definition technique finally adopted
for use in CPTS was based on an example from
Henry Ledgard [15] (page 8, example 2.36). The
technique involves presenting a definition using
five distinct parts: a general description, input
specifications, output specifications, error or
unusual conditions, and an example. Figure 2 is
an example definition used in CPTS 110.

The general description is expected to be a broad
statement of the problem. Details of input and
output specifications need not be included in this
general description. The general description is
included to serve as an introductory comment
unifying the remainder of the definition.

Input and output specification parts of the problem
definitions for CPTS 110 are intended to describe
the details of the form of "expected input" and the
corresponding form of output. In each of these
parts, specification is done via English descrip-
tion.

The example part of the CPTS 110 problem defini-
tion form consists of a particular input set and the
particular output that should be produced. The
input of the example should consist only of "ex-
pected input", but should also contain as many
different variations in ‘'expected input" as is
possible.

The final part of CPTS 110 problem definition
chosen is the error or unusual conditions. This
part is included to fill in gaps in the input and
output specificatons. Error or unusual conditions
are intended to include all cases of possibilities for
input that are not covered by '"expected input".
Just as in the case of input and output specifica-
tions, errors and unusual conditions are described
in English.

This choice of problem definition is not as formal
as many of those suggested in the literature.
However, it was felt that the lack of formality and
formal notation is the factor that made this
approach useful in an introductory level course.

In the top-down design technique used in CPTS
110, the problem definition serves as the initial
step. In order to express the problem definition
in pseudo-language, it is treated as a single
comment. The remainder of the process of step-
wise refinement is described to CPTS 110 students
in the following definition of top-down design:

"Stepwise refinement of a program such
that each step is a complete and correct
program resulting from refining com-
ment(s) from the previous step. The
first step is an adequate problem defini-
tion in the form of one large comment.
The final step is a program free of
comment pseudo-instructions."

The particular technique of replacing comments
with sequences of pseudo-instructions is further

247

clarified by the following refinement guideline:

"To proceed from one step in a top-down
design to the next, refine all comments
into sequences of pseudo-instructions,
but within these sequences all THEN
clauses, ELSE clauses, and bodies of
WHILE loops should consist of a single
READ, WRITE, assignment, or comment
(to be refined at the next step)."

t an initial ¢hockbook lalance
pegiis and calculate the final
tracted from thc pulance and

SPECIFICATIONS

The first input line contains a single positive number that
15 the 3nivial checkbook kalance., tvery input line atrer the
:‘L:SL ¢ontains a iransaction. A trarsaction line consists of
I pares:

1) the first column of the line contains a "W" for
withdrawal, a "D" for d¢posit, or an "E" to indicate
end of input.

2} thc remainder of the line contains a single positive
number {representing the imount to be withdrawn or
deposited ~ this number is meaningless on the "E*
line),

There is only one "E™ transaction and it is the last input line.

CUTFUT SPECIFICATIONS

The output consists of 3 parts in the following order:

1) INITIAL BALANCE: b where "b" is the value of the
initial balance. This is followed by a blank line.

2) Each transaction, excepting the last, causes a blank
line followed by the line below to be output:

t AMOUNT: a NEW BALANCE: n

where "t* is either WITHDRAWAL or DEPOSIT as appro~
priate, "a" is the amount of the transaction and
"n" is the value of the new balance as calculated
after the transaction,

3) Two blank lines are ocutput followed by the line
below:

FINAL BALANCE: f

where "f" is the balance at the time of the "E"
transaction processing,

ERROR OR UNUSUAL CONDITIONS

1) Any time the balance becomes negative (i.e.
balance was previously- positive and this trans=
action caused a negative balance} after the
normal transaction, the following additional
line of output is output produced:

WARNING - NEGATIVE BALANCE
There is a $5 charge imposed when the balance
becomes negative.

2) No attempt is made by the program to verify
that the amount of a transaction is positive,

3) Any invalid input {(a character other than "W",
"D*, or "E" in the first column or any non-
numeric values when numeric values are expected)
cause undefined results,

4) Any additional input (more than the appropriate
number of values per line or additional lines
after the “"E" line) is ignored.

EXAMPLE

Input - 133.26
w 1loo0
W 23.16
D 10
W 50.10
D 15
D 200
E 0O

Output -+ INITIAL BALANCE: 133,26
WITHDRAWAL AMOUNT: 100 NEW BALANCE: 33,26
WITHDRAWAL AMOUNT: 23.16 NEW BALANCE: 10.1
DEPOSIT AMOUNT: 10 NEW BALANCE: 20.1
WITHDRAWAL AMOUNT: 50.10 NEW BALANCE: -35
WARNING ~ NEGATIVE BALANCE
DEPOSIT AMOUNT: 15 NEW BALANCE: -20
DEPOSIT AMOUNT: 200 NEW BALANCE: 180

FINAL BALANCE: 180

FIGURE 2 - EXAMPLE CPTS 110 DEFINITION

This comment specifies the process of progressing
from one step to the next. Figures 3, 4, 5 and 6
show an example top-down design used in CPTS
110.

It must be mentioned that while the top-down
design process used in CPTS 110 is defined to be
one of eliminating comments, this is not done to
discourage the use of comments. Great care is
taken to encourage students to use comments in
final algorithms, as well as programs in CPTS 110.
Students are required to submit designs with
programming assignments and encouraged to inte-
grate comments from the various steps of the
design into the final program.

How Can This Top-Down Design Technique Become
Workable in CPTS 1107

As mentioned earlier, CPTS 110 is taught using
both 50-minute video-taped lectures and 50-minute
traditional classroom sessions. The structuring is
such that students typically alternate between the
video-taped lectures and traditional classroom
meetings. Additionally, the traditional classroom
meetings are taught by a variety of instructors,
althrough each student will be exposed to only one
of these instructors throughout his or her class-
room meetings. It was determined to present as
much of the mechanics of the top-down design

process in three video-taped lectures. Traditional
classroom meetings would necessarily have to
manage the task of involving students in the

problem solving process.

In the first video-taped
exposed to the general notion of problem solving
as it relates to programs. This first lecture
defines the notion of a program and describes an
algorithm as, a program using pseudo-instructions
(those instructions not specifically belonging to
any known programming language). Without defin-
ing the concept of top-down design, this first
lecture presents two very simple stepwise refine-
ment examples using instructions from the pseudo-
language described earlier. Finally, the lecture
presents the syntax of the six pseudo-instruc~
tions. Additionally, this lecture discusses the
concepts of variables, expressions, conditions, and
fiow of control (sequence, selection and repetition)
as they relate to the pseudo-instructions. The
traditional class immediately following this first
video-tape does not yet deal with design. Rather,
this traditional class meeting is used to cover
binary numbers.

lecture, students are

The second video-tape on design deals exclusively
with problem definition. The lecture begins by
pointing out that the first step in problem solving
must be definition of the problem. As an Initial
attempt at delineating the problem definition pro-
cess, this second design video-tape presents a
series of three problem definitions. Figures 7, 8,
and 9 illustrate this development. Figure 7 shows
what is termed as an example "poor problem defini-
tion". This definiton is expanded slightly to yield
the "better problem definition" seen in Figure 8.
Figure 9 shows the final version of a definition for
this problem. The lecture emphasizes the continu-
um of qualities of problem definitions for a given
problem.

248

STEP 1

GENERAL PROBLEM DESCRIPTION
Identify the character from any set of 3 input
characters that would appear first (lowest)
alphabetically.

INPUT SPECIFICATIONS
Input consists of 3 characters on a single
fine.

OUTPUT SPECIFICATIONS
Each of the 3 input characters is output one
per line in the order they were input. Fol-
lowing this echo of input a blank line is out-

put, followed by the line below:
THE LOWEST CHARACTER FROM ABOVE
IS ¢

Where '"c" is the input character that would

appear first alphabetically.

Example

input —a»XBT

output =» X
B
T
THE LOWEST CHARACTER
FROM ABOVE IS B

UNUSUAL OR ERROR CONDITIONS
1. If there are too few characters

then undefined results occur.
IT any of the input characters are not
upper case alphabetic characters then
the following message is output after all
characters are echoed:

INVALID CHARACTER ENCOUNTERED-

WARNING!
If too many characters are input then
the first 3 are processed and the others
ignored.
If 2 or all of the input characters have
the same value and it is the least value
alphabetically then that wvalue is output
as usual.

input

2.

FIGURE 3-EXAMPLE TOP-DOWN DESIGN (STEP 1)

STEP 2
§input and echo 3 charactersy

{identify the input character that is alphabetically
first and store it in LOWCHAR}

WRITE (a blank line)
WRITE (‘THE LOWEST CHARACTER FROM ABOVE
1S', LOWCHAR)

FIGURE 4-EXAMPLE TOP-DOWN DESIGN (STEP 2)

STEP 3

READ (FIRSTCHAR)

WRITE (FIRSTCHAR)

READ (SECONDCHAR)

WRITE (SECONDCHAR)

READ (THIRDCHAR)

WRITE (THIRDCHAR)

IF (FIRSTCHAR is not uppercase alphabetic) OR
(SECONDCHAR is not upper case alphabetic) OR
(THIRDCHAR is not uppercase alphabetic) THEN

WRITE ('INVALID CHARACTER
ENCOUNTERED')

IF FIRSTCHAR -7 SECONDCHAR THEN

{store smaller of FIRSTCHAR & THIRDCHAR in
LOWCHAR}

ELSE
istore smaller of SECONDCHAR & THIRDCHAR

in LOWCHAR3Z

WRITE (a blank line)

WRITE (‘THE LOWEST CHARACTER FROM ABOVE

I1S', LOWCHAR)

FIGURE 5-EXAMPLE TOP-DOWN DESIGN (STEP 3)

STEP 4

READ (FIRSTCHAR)

WRITE (FIRSTCHAR)

READ (SECONDCHAR)

WRITE (SECONDCHAR)

READ (THIRDCHAR)

WRITE (THIRDCHAR)

IF (FIRSTCHAR is not uppercase alphabetic) OR
(SECONDCHAR is not upper case alphabetic) OR
(THIRDCHAR is not uppercase alphabetic) THEN
WRITE ('INVALID CHARACTER ENCOUNTERED")

IF FIRSTCHAR < SECONDCHAR THEN

IF FIRSTCHAR < THIRDCHAR THEN
LOWCHAR< FIRSTCHAR
ELSE
LOWCHAR -« THIRDCHAR
ELSE
IF SECONDCHAR < THIRDCHAR THEN
LOWCHAR <« SECONDCHAR
ELSE
LOWCHAR -« THIRDCHAR
WRITE (a blank line)
WRITE ('THE LOWEST CHARACTER FROM ABOVE
IS', LOW CHAR)

FIGURE 6-EXAMPLE TOP-DOWN DESIGN (STEP 4)

249

POOR PROBLEM DEFINITION

Reorder input words so that the first is swapped
with the last, the second is swapped with the
second from the last, etc.

FIGURE 7 - EXAMPLE POOR PROBLEM DEFNITION

BETTER PROBLEM DEFINITION

Assuming that words are non-blank sequences of
characters, reorder 5 input words so thatl the first
is exchanged with the last and the second is
exchanged with the fourth. Input words will
appear one per line and output words should all be
together on the same line.

FIGURE 8-EXAMPLE BETTER PROBLEM DEFINITION

ADEQUATE PROBLEM DEFINITION

GENERAL PROBLEM DEFINITION
Reorder 5 input words so that the first word
is exchanged with the last and the second
word is exchanged with the fourth.

INPUT FORM SPECIFICATIONS
Input consists of 5 words (non-blank
sequences of characters) types on 5 consecu-
tive lines.

OUTPUT FORM SPECIFICATIONS
The 5 input words will be output with one
blank separating each pair. The first word
output will be the last one input, the second
output will be the four input, etc.

EXAMPLE
input —» INK
GREEN
EATS
COMPUTER
BLUE

output —» BLUE COMPUTER EATS GREEN iNK

UNUSUAL OR ERROR CONDITIONS
1. No attempt is made to verify that input
words are valid English words.

2. If fewer than 5 words are input, the
following message is output:
INSUFFICIENT INPUT!

3. if more than 5 words are input, the first
5 are processed and ail others are
ignored.

FIGURE 9 - EXAMPLE ADEQUATE PROBLEM
DEFINITION

The adjective '"adequate" rather than "good" is
used for the course. The lecture then presents
and describes the five part definition form to be

used in the course and concludes by presenting
two more definitions in the specified form. In
addition, students are supplied two additional

examples as part of the printed course notes they
receive.

in the traditional class meeting following the
second design video-tape, instructors review the
notion of problem definition and answer student
questions. In addition, instructors develop with
class assistance additionai problem definitions.
This class meeting also contains the first design
assignment-writing an adequate definition for a
poorly stated one.

The final
notion of

video-tape on
top-down

design formalizes the
design by presenting the

definition quoted eartier. This lecture also pre-
sents the "refinement guideline" and carefully
traces three different top-down designs through

the process from definition to final algorithm.
Care was taken to see that one of these designs
dealt with character processing, one with purely
numeric processing and one with a business
oriented problem. Also included in the student's
course notes were three more complete designs for
students to study.

While the video-tapes following the third design
lecture deal with other issues of computer science
such as operating systems, history, etc.; the next
five traditional classroom meetings are used to
exercise top-down design. In these meetings,
students are shown compileted algorithms asked to
trace their execution, shown example designs from
poor problem definition to completed algorithm, and
encouraged to participate in these processes. The
particular amount of time spent on any particular
issue varies from class to class. During the
period of time for these five class meetings, all
students are asked to perform one complete top-
down design as a homework problem.

Student testing over the topic of design in CPTS
110 is done in two parts. As part of a 40 ques-
tion multiple choice exam, students are asked
questions pertaining to problem definition,
algorithm execution tracing, and top-down design.
Additionally, students take a 50-minute design quiz
requiring them to formulate an adequate problem
definition for a poorly state problem and also to
perform a top-down desigh given an adequate
problem definition.

Conclusions

There are a few general conclusions that can be
drawn from the experiences of teaching this
material for the first time. First, it is evident
that many students entering college have problem
solving skills that are woefully inadequate. Ex-
panding upon these skills can in some cases be
somewhat like teaching the concept of a fraction to
an individual that does not understand the concept
of an integer. It is also obvious that a saturation
of examples is useful. Students draw on past
examples to tackle new situations. It would also
appear that the acquisition of problem solving
skills for many students comes only after consider-
able repetition of involvement in the process.

Having completed the instruction of this material
only a few weeks ago, it is difficult to draw con-
crete conclusions regarding the effectiveness of
the methodology. It is possible, however, to
compare CPTS 110 this semester with is predeces-
sor. CPTS 110 prior to this semester used BASIC

as programming and

design tool.

language flowcharting as

Specific comparison of exam results is of question-
able wvalue due to the fact that it is difficult to
suggest that questions using flowcharting and
pseudo-ltanguage algorithms are of similar complex-
ity. Still, looking at somewhat similar questions
from previous exams, the results of this semester
would appear to demonstrate little change in stu-
dent performance. There is no evidence to indi-
cate that students are finding top-down design
more difficult to grasp than flowcharting.

in the traditional
Their reactions to

Seven instructors have taught
classroom setting this semester.
the change in design presentation from earlier
semesters have been very similar in nature. The
instructors do not find this new approach more or
less difficutt to teach. They also find little differ-
ence in student performance excepting a general
feeling that students who could not grasp the
diagramatic nature of flowcharting appear to have
a better feeling about the English-like nature of
pseudo-instructions.

The key issue is that all instructors uniformiy
support this technique of top-down design. They
support it because it is "state-of-the-art" software
development, presenting students with a more
accurate view of computer software development.
They also support it because it provides students
who will subsequently enroll in other software
courses the basic tools required to manage the
material. Instead of feeling as though students
have been taught questionabie design techniques
that may even have to be "untaught", instructors
believe students are being provided with exactly
the skills necessary to solve problems in the best
manner currently known.

References

1. Baker, F. T., '"Chief Programmer Team
Management of Production Programming”,
IBM Systems Jounal, Vol. 11, No. 1,

January, 1972, pp. 56-73.

2. Bohm, C. and Jacopini, G., "Flow Diagrams,
Turing Machines and Languages with Only
Two Formation Rules", Communications of the
ACM, Vol. 9, No. 5, May, 1966, pp. 366-371.

3. Brainerd, W., "FORTRAN 77", Communica-
tions of the ACM, Vol. 21, No. 10, October,
1978, pp. 806-820.

4. Dahl, O. J.; Dijkstra, E. W.; and Hoare, C.
A. R., Structured Programming, Academic
Press, London, England, 1972.

5. Dijkstra, E. W., "Programming Considered as
a Human Activity", Proceedings of the IFIP
Congress, 1965, pp. 213-217.

6. Dijkstra, E. W., "Notes on Structured Pro-
gramming", Structured Programming,
Academic Press, London, England, 1972.

7. Dijkstra, E. W., A Discipline of Programming,
Prentice-Hall, Englewood Cliffs, N.J., 1976.

8. Floyd, R. W., "Assigning Meanings to Pro-
grams", Proc. American Math Society Sympo-
sium in Applied Mathematics, Val. 19, 1967,
pp. 19-31.

250

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

Graham, Neill, The Mind Tool, Second Edi-
tion, West, St. Paul, 1980.

Hoare, C. A. R., "An Axiomatic Basis for
Computer Programming", Communications
of the ACM, Vol. 12, No. 10, 1969, pp.
576-583.

Jensen, Kathleen and Wirth, Niklaus, PASCAL

User Manual and Report, Springer-Verlag,
New York, 1976.
Jensen, R. W., "Structured Programming",

Software Engineering, Prentice-Hall, Engle-
wood Cliffs, N.J., 1979, pp. 221-328.
Jensen, R.; Randall, W.; and Tonies, C.,

Software Engineering, Prentice-Hall, Engle-
wood Cliffs, N.J., 1979.
Knoth, Donald E., "Structured Programming

with GO TO Statements”, Computing Surveys,
Vol. 6, No. 4, December, 1974.

Ledgard, H. F., Programming Proverbs,
Hayden, Rochelle Park, N.J., 1975.

Mills, H. D., "Top-Down Prgramming in Large
Systems", Debugging Technigues in Large
Systems, Prentice-Hall, Engiewood Cliffs,
N.J., 1971, pp. 41-55.

Mills, H. D., "On the Development of Large
Reliable Programs", Proc. 1973 IEEE Sympo-
sium on Computer Software Reliability, |EEE,
New York, 1973, pp. 155-159.

Naur, P., "Proof of Algorithms by General
Snapshots", Bit, Vol. 6, No. 4, 1966, pp.
310-316.

U.S. Department of Defense, Reference
Manual for the Ada Programming Language,
Proposed standard document, July, 1980.
Wirth, Niklaus, Systematic Programming,
Prentice-Hall, Englewood Cliffs, N.J., 1973.
Zurcher, F. and Randeli, B., "Interative
Multi-Level Modelling - A Methodology for
Computer System esign", Proc. IFIB Congress
1968, Booklet D, North-Holland, Amsterdam,
1968, pp. 138-142.

251

