
A REALISTIC, TWO-COURSE SEQUENCE 
IN LARGE SCALE SOFTWARE ENGINEERING 

Richard E. Bolz 

Lawrence G. Jones 

Department of Computer Science 
United States Air Force Academy 

ABSTRACT 

We discuss a two semester, senior level sequence of courses 
in large scale software development. The courses are keyed 
upon the element of realism by having an actual user supply 
an actual project. In the first course students develop a 
functional specification of user needs. In the second 
course students design a system from the specifications and 
implement at least a portion of the project. We discuss the 
significant benefits of having a real project and point to 
some drawbacks. We conclude by discussing possible 
applicability of our courses to other schools. 

i. INTRODUCTION 

For a number of years computer 
science educators have recognized the 
need for courses in large scale software 
engineering. Unfortunately, studies 
indicate that satisfaction of that need 
usually falls short [Wass78], [ThaySl]. 
Even where courses exist there are 
problems in conveying the concepts 
adequately. Many of the problems 
revolve around the central issue of 
realism of projects. 

The problem of realism is tied to 
constraints of the academic environment. 
We are usually forced into using "toy" 
problems to be able to fit them into a 
semester or quarter. When students try 
to apply large system tools to small 
scale projects, they usually feel they 
are killing a fly with a sledgehammer. 
Worse yet, intellectually manageable 
problems allow students to make poor use 
of the tools and still reach their 
project goals. Thus, they are not 
really prepared to use the tools when it 
counts. 

Another problem is that today's 
undergraduates are tomorrow's software! 
project managers. There is little or no 
university training in software 
engineering project management and "toy" 
problems contribute little toward 
project management experience [ThayS0]. 
The criticality of this problem is 
closer to home at the United States Air 
Force Academy where many of our 
graduates are charged with monitoring 
major software projects within a year of 
graduation. 

Against this background the Computer 
Science Department at the Academy 
conducted an intensive curriculum review 
leading to a new curriculum in computer 
science. The new curriculum includes a 
two course "capstone" sequence in large 
scale software engineering. In this 
paper we discuss those courses. First, 
we discuss the general approach to the 
courses and state the objectives. We 
then get to the heart of the courses, 
the realistic term projects. Finally, 
we point to some ways the Academy 
situation might be translated to other 
universities. 

2. THE SOFTWARE ENGINEERING COURSES 

2.1 Introduction 

The two semester software 
engineering courses are entitled Systems 
Analysis and Design I & II. The first 

21 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800038.801006&domain=pdf&date_stamp=1983-02-01


course concentrates on user requirements 
analysis. The second course 
concentrates on design and 
implementation. The sequence is 
restricted to senior computer science 
majors. By the time students start the 
first course, they have had courses in 
architecture, languages, algorithms and 
data structures. The background in 
small scale software concepts is 
essential for them to relate to the 
large scale software engineering 
concepts. 

2.2 Course Objectives 

The objectives of the courses 
for students to: 

i. 

are 

Understand the need for a 
total life-cycle approach to 
system development. 

2. Understand how to produce 
structured user requirements 
specifications. 

3. Understand how to produce a 
good quality design from the 
specifications. 

4. Explore implementation 
problems and how to deal with 
them. 

5. Be exposed to practical 
experiences from computer 
professionals. 

6. Gain practical, hands-on 
experience with a real-life, 
large application. 

7. Learn how to work together to. 
manage a team effort. 

The most significant aspect of the 
course that ties the objectives together 
is the term project. The project will 
be discussed in detail later. 

2.3 Course Mechanics 

In this section we hit the 
highlights of the courses. Both courses 
are organized in similar fashion. The 
first half of each course presents 
necessary tools. The last half of each 
consists of work on the project. 

Analysis and Design I begins with an 
overview of the system development life 
cycle and the tools to be used. Class 
is held in a seminar room and students 
lead the seminars on designated topics 
for the first 12 lessons using Yourdon's 
book as a text [Your79a]. The 
instructor then presents lessons 
covering the tools for requirements 

analysis using Gane and Sarsen [Gane77]. 
The seminar aspects involve the students 
in the material and allow the instructor 
and guest participants to interject 
real-life experiences that relate to the 
material. The rest of the semester is 
devoted to the term project with a few 
lectures scattered throughout. 

Analysis and Design II follows the 
same general seminar approach but 
concentrates on design tools for the 
first half of the semester and the 
continuation of the project in the last 
half. While we survey other design 
techniques, the principal methodology is 
Yourdon and Constantine s Structured 
Design [Your79b], as presented in the 
student text, Page-Jones [PagS0]. Thus, 
transaction analysis and transform 
analysis are the principal means of 
generating the structured design from 
the set of functional specifications. 

As mentioned, the term project is 
the heart of the course. It is the glue 
that ties the courses together and makes 
them work. 

2.4 The Term Project 

Our term project cannot be called a 
toy project. It is real. It has real 
users with real needs and they want real 
products. 

Since we have two semesters to work 
with, the project can be of significant 
scope and complexity. We take advantage 
of the natural break between 
requirements analysis and system design. 
The students produce a functional 
requirements specification as the major 
product for the first course. The 
second course takes the specification, 
produces a design and implements at 
least a portion of the project. The 
amount of implementation is determined 
strictly by the complexity of the 
project. 

This is the third year we have 
offered the courses and our projects 
have been: 

i. Automate the Academy library 
including circulation, acquisition and 
cataloging. 

2. Automate the summer program 
scheduling for the Commandant of Cadets. 
The Commandants staff must schedule all 
4400 cadets for one of several dozen 
activities (and one vacation period) in 
three summer periods. Each activity has 
special requirements. 

22 



3. Automate the Cadet Clinic. 
Functional areas include primary patient 
care, laboratory, physical exams and 
standards, and environmental health. 

The library project was obviously 
too large to complete. The summer 
scheduling project was also very large 
and only partially implemented. We are 
currently working on the clinic project. 
At this writing it appears that it is 
feasible to implement a substantial 
portion of the project. The shortcoming 
of not fully completing the project is 
addressed in the next section. 

We have been fortunate in finding 
users who are willing to interact with 
the students. This teaches the students 
how to converse with laymen. It also 
gives them experience with the real-life 
frustrations when the user leaves out 
some information or changes his mind! 
The users understand at the outset that 
the students will probably not totally 
complete the project, but that they will 
get a good start on it. 

A very important phenomenon takes 
place due to the realism. The students 
begin to assume a sense of ownership 
about the project. They seem to feel a 
greater sense of responsibility because 
if they don't do a complete job, they 
don't just let down an instructor. They 
would let down a user who really cares 
what kind of job they do. This allows 

the instructor to fade out of the 
picture and let the students manage the 
project. Evaluation of the effort is 
simplified because the instructor can 
see if theuser is satisfied. Thus far 
our users have been quite pleased with 
the results. 

Since the projects are large, 
teamwork is essential. We typically 
have 3 or 4 sections (15 students each) 
of the course and each section has its 
own functional area as a project. The 
students divide the workload by teams 
within a section and must conduct 
frequent walkthroughs to insure section 
continuity. They are also forced to 
interact with other sections to insure 
consistent interfaces with common areas. 
Thus they gain experience with teamwork, 
interpersonal relations and project 
management. 

Since students follow a project 
through most of the life cycle, they 
suffer for mistakes they make in earlier 
phases. Also we make no special 
provisions to maintain the same students 
in the same sections across semester. 
Therefore, this year, a student only has 
a .25 probability of deriving a design 
based on specifications he helped 
produce. Early in the second semester 

there are cries of, "Who wrote this 
lousy spec?!!" 

We are quite pleased with the way 
the project brings home the need for the 
development tools and provides real 
experience for the students. Feedback 
from our graduates indicates that the 
courses were very valuable to 
them,providing real-world experience 
which greatly eased their transition 
from student to computer professional. 

3. Problems and Shortcomings 

Now for the bad news. We are still 
constrained by limited time and cannot 
cover all aspects of the life cycle. 
Since the projects are picked by the 
instructor, the students don't get 
experience with performing a feasibility 
study. Since the students don't 
necessarily complete the implementation, 
they obviously don't get program 
maintenance and modification experience. 
Finally, again due to time constraints, 
they don't get much exposure to system 
sizing and cost/benefit studies. It 
might be possible to include these 
elements if the instructor were the 
user. He could have tighter control 
over the scope and direction of the 
project. However, we believe the 
benefits of the realistic project 
outweigh the possible benefits of the 
added topics. 

We realize that many serious design 
and specification errors don't manifest 
themselves until implementation. To help 
address this problem, we require 
implementation of at least a stubbed 
version of the project. This does hold 
them somewhat accountable for mistakes 
in design and allows us to have time to 
put emphasis on the more important 
earlier phases of the life cycle. 

Perhaps the biggest potential 
problem is in our dependence on an 
outside supply of users with real 
projects. Our situation is rather like 
that of a barnacle. If food (a project) 
doesn't happen to float by, we are in 
trouble. On the positive side of the 
analogy, the sea is rich with food and 
the Academy seems rich with projects. 
Since we have a support structure that 
runs like a small community, there are 
many people who would like computer 
help. If all else fails, we can fall 
back on an instructor generated problem 
and hope for better luck next year. 

4. Summary and Conclusions 

The key aspect that makes the course 
work so well is the realism. Project 
realism is possible due to the 
availability of real users and the two 

23 



semeste~ length. Realism of experience 
is brough% to the classroom via the 
instructor's contribution to the 
seminars. Realism of project management 
experience is brought about by the 
teamwork and accountability to the user. 
What remains to address is whether the 
Academy situation is transferable to 
other institutions. 

A problem noted by Thayer [ThayS0] 
is that many institutions feel they lack 
the necessary experience to run such a 
course. Since the Academy Computer 
Science faculty are all Air Force 
officers with operational experience, 
this is not as much of a problem for us. 
At other institutions it may be possible 
to fill the experience gap with 
sabbaticals to industry or have adjunct 
faculty from local industry help get the 
program on its feet. 

Another major obstacle may be the 
availability of real projects. While 
the Academy has a very rich environment 
for such projects, the more typical 
university may also have many 
possibilities. The library, student 
health center, and athletic department 
are possibilities. You just need to 
find someone who could use some help and 
doesn't mind interacting with students. 

While there may be obstacles to 
~etting up such a program, we recommend 
it as a valuable sequence for any 
zomputer science program. The students 
come away with a real sense of 
accomplishment and our graduates 
continue to report the value of the 
experience. 

REFERENCES 

[Gane77] 

[Paig80] 

[Thay80] 

Gane, C. and Sarson, T. Structured Systems 
Analysis: Tools and Techniques. Improved 
System Technologies, New York, 1977. 

Paige-Jones, M., The Practical Guide to 
Structured Systems Design. Yourdon Press, 
New York, 1980. 

Thayer, R., Pyster, A., and Wood, R. "The 
Challenge of Software Engineering Project 
Management," Computer 13, 8 (August 1980), 
pp 51-59. 

[Thay81] 

[Wass78] 

[Your79a] 

[Your79b] 

Thayer, R., Pyster, A., and Wood, R. 
"Major Issues in Software Engineering 
Project Management," IEEE Transactions 
on Software Engineering 7, 4 (July 1981), 
pp 333-342. 

Wasserman, A. and Freeman, P. Software 
Engineerig Education: Needs and Objectives. 
Springer-Verlag, New, 1976. 

Yourdon, E. Managing the Structured Techniques. 
Prentice Hall, Englewood Cliffs, NJ, 1979. 

Yourdon, E. and Constantine, L. Structured 
Design. Prentice Hall, Englewood Cliffs, NJ, 
1979. 

24 


