
Retraining: Is It The Answer
To The Computer Faculty Shortage?

Dr. William Mitchell
University of Evansville

Evansville, IN 47702

Abstract

This paper reports on the experiences
acquired in initiating a summer retraining
program to prepare college faculty to
teach undergraduate computing. The
distinction between formal and informal
retraining, the benefits of formal
retraining, and the justification for
credentializing such programs with a
masters degree are also discussed.

Introduction

During the mid-80's, and perhaps
longer, there will be a critical shortage
of academically trained faculty in the
computing sciences. The "minimum"
academic credential, a master's degree, is
already becoming scarce, and increasing
numbers of two year and small four year
colleges are employing bachelor-level
faculty "with experience." The production
of the Ph.D. programs in computing is
actually declining. But even if that
trend is reversed, the demand for people
with that credential is so great as to
price them out of the reach of smaller
colleges and regional universities. One
of several ways to respond to this faculty
shortage is retraining.

By retraining, we refer to the
process by which a faculty member, who is
credentialed in some discipline other than
computing, acquires the necessary
knowledge and skills to instruct courses
in the computing curriculum. This process
has been going on for some time, and it
appears now to be accelerating. Most of
the retraining is informal and ad hoc [7].

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 A C M 0 - 8 9 7 9 1 - 0 9 1 - 5 / 8 3 / 0 0 2 / 0 0 8 9 $ 0 0 . 7 5

In some small colleges a faculty member
who is pursuing a personal interest in
computing, be his area Mathematics,
Physics, or English, is given the
assignment of teaching computing courses
(indeed, of developing a computing
curriculum). In larger institutions where
computing offerings already exist, new
instructors are trained by auditing
courses taught by their colleagues. In
exceptional cases, these (generally
undergraduate) courses are taken for
credit. In only a very few cases, the
retraining consists of a formal
educational program leading to a graduate
degree.

We have been aware of the developing
competence of colleagues in other
departments with regard to programming
ability, and it therefore seems quite
reasonable to take advantage of this skill
and spread the burden of introductory
programming instruction which continues to
grow. It is therefore not surprising that
accounts of the systematic use of such
faculty in a variety of colleges should
have recently appeared in the computer
education literature [2,4]. But as this
practice spreads, indeed, as it is
recommended~ it poses some serious
questions a~out academic quality. This
paper will address these questions as it
focuses on the distinctions between formal
and informal procedures for retraining
faculty.

Before we proceed it is appropriate
to make mention of a second source of
computing faculty: the practitioner.
Several voices from the business schools
have recently bemoaned the tyranny of the
Ph.D. credential which "impedes the
university from making more systematic use
of job-trained professionals [1,5]. These
practitioners have frequently been
utilized as adjuncts, but now it is
suggested that they would make better than
adequate professors. Specific mention has
been made of both "loaners" from industry
and of retirees. As of yet there does not
seem to be near as many of these
professionals as we have retrainees, but
this may be merely because no real effort

89

http://crossmark.crossref.org/dialog/?doi=10.1145%2F952978.801022&domain=pdf&date_stamp=1983-02-01

has been made to recruit them.

Undoubtly there will be many adjuncts
who have already proved their competence
to function in the classroom. However, it
appears that evaluating an adjunct's
ability to perform as a full-time
instructor is much more difficult than
evaluating the potential of a retrained
faculty member. Adjuncts are seldom given
very difficult classes to teach, and they
are seldom evaluated very carefully. They
are chosen for their narrow expertise
rather than for their broad understanding
of the disciplines. Hiring a professional
who has neither academic background nor
adjunct teaching experience is indeed
risky, even assuming the best environment.
To expect that very many computing
professionals will have a teaching gift,
and will possess reflective and analytic
dispositions, is to understand little of
the environment out of which they come.
James Martin is an oft mentioned
exception, but the very fact that he alone
is repeatedly identified emphasizes that
few other practitioners can emulate him.

A Formal Retraining Program

The author began a masters program in
Computing Science Education in the summer
of 1982 after two years of experience with
a noncredit institute in data processing
offered to small college faculty [9]. Both
programs are a response to the need for
greater computing experience in the small
colleges, but the masters program is
motivated by the perceived inadequacy of
the informal retraining strategies
available in the small college. The
demand for computing curricula is just as
great in these institutions as it is in
the universities, but the small college
faculty member can neither afford a leave
of absence nor sit in on a colleague's
course. Therefore a summer graduate
program offers the only realistic way that
such a faculty member can hem retrained
(Codespoti and Bays [3] describe the first
program of this type known to the author,
but it did not automatically culminate in
a graduate degree).

The first class consisted of 18
faculty representing 12 different
colleges. The program required previous
programming experience, a masters degree
in some discipline, and access to a
college classroom during the academic year
between the two summers in residence. The
participants included seven
mathematicians, two chemists, a historian,
a home economist, a social worker, a
minister, a musician, a specialist in
education, a librarian, a physical
education teacher, and a data processing
manager who did not have a masters degree
or any teaching experience. All but two
had had formal coursework in programming,
and six had taught programming courses.

Four paid their own way to the program
while the rest were sponsored by their
respective colleges. College teaching
experience ranged from none to over 20
years, ages ranged from 23 to over 50, and
seven of the participants were women.

During the first summer all students
were enrolled in five courses, one running
the entire ten-week session, while the
remaining four were five weeks each and
taken two at a time. Therefore each
student was in three classes
simultaneously. During the first five
weeks these classes were Systems Analysis,
Computer Hardware, and Data Structures.
During the second five weeks the Data
Structures course continued and the new
courses were Systems Software and
Undergraduate Computing Curricula.
Lectures comprised four and one-half hours
each day, four days a week. Two of the
participants cut back their load by not
taking the last two courses. A
description of the program from a
participant's view may be found in the
Winter 1982-83 issue of INTERFACE, The
Computer Education Quarterly.

The specific curriculum objectives of
the first summer were to lay a broad
foundation for the topics of the
undergraduate computing curriculum, and to
indoctrinate the students in the mores of
the discipline and the current issues
being debated among computer educators.
Furthermore, each participant was required
to plan for the course to be offered in
the fall term at his home institution, and
to critique the curriculum already planned
or in place. Transcending these specific
objectives, we sought to build in the
participants a sense of belonging to the
computer profession and to instill a set
of values to be communicated to their
students. The latter was done by relating
the work being pursued in each class to
the possible undergraduate presentation of
this material. Many of the exercises used
during the summer were exercises from the
undergraduate courses which the graduate
faculty routinely taught. Thus we sought
not only to develop the mastery of
technical subject matter, but to convey
techniques of teaching this subject matter
and standards for its evaluation. We
tried to make the students conscious of
the intellectual difficulties inherent in
the topics and to give them opportunity to
share with each other the challenges of
learning new vocabulary, new modes of
organizing information, and new techniques
in problem solving.

The summer was completed with mixed
results and only after extraordinary
effort in the part of several participants
and faculty. Our first surprise was how
difficult it is to teach teachers. Our
second surprise was how little some of the
participants' previous formal course work
in computing was worth. The best equipped

90

to program were those few who had been
teaching programming. We expected and
observed great difficulty on the part of
the social science and humanities faculty
in reading the text material and
understanding the assignments (several had
very limited facility for mathematics).
Our solution was to provide a great deal
of tutoring. To a much lesser extent we
observed some difficulty on the part of
the mathematics faculty in relating to the
context of the systems analysis course.
Everyone displayed high ability in
verbalizing concepts and questions in the
courses which centered about readings and
discussion of paper and pencil exercises,
but there was a sharp division along
disciplinary lines when it came to turning
ideas into working programs.

Programming assignments were
implemented in PL/C and PL/I, a deliberate
choice because it was a language
unfamiliar to all participants, and an
appropriate one for the data structures
course. Eight programming exercises were
assigned in that course and one
programming exercise was part of the final
two weeks of the systems software course.
Of the nine exercises, the most completed
was seven and one-half, the least
completed was one. As a consequence,
these two courses were the only ones in
which any students received incompletes.
A brief description of the programming
assignments is included in the appendix.

Even though student performance in
some areas was not up to our desired
level, we were impressed by how much the
participants learned and by how hard they
worked. We recognized from the onset that
our standards could well be unrealistic,
and that our goal could be unachievable.
We constantly reminded ourselves that it
wasn't necessary that these faculty learn
everything their first summer, but that
they be adequately prepared to continue
learning as they presented their courses
in the academic year. We emphasized to
them that the habits of study that we
sought to forge in the summer would serve
them well during the academic year.

The participants returned to their
colleges, .~nd each is now engaged in
teaching computing. In the fall term half
taught either a literacy course or an
introduction to data processing course
which had very little programming. Four
taught a BASIC programming course as a
first course to both majors and nonmajors,
and thus had a seconday goal of literacy.
The faculty being retrained at UE, (the
librarian, the education specialist and
the musician) team-taught courses in
structured systems analysis, data
structures, and PL/C programming,
respectively, with the assistance of
senior faculty. Two other participants
taught FORTRAN and COBOL, courses which
they had taught before (a total of five of

the participants taught courses which they
had taught before). Without exception, all
faculty were comfortable with their
assignments and were considered to be
doing well by their supervisors. In six
cases these participants were the
principal computer experts on campus. All
reported that their summer work had
effectively prepared them for their
responsibilities.

While this measure of success is
gratifying to the participants, especially
for the eleven who had never taught a CS
course before, it is fair to emphasize
that most of the courses they taught were
not conceptually difficult, and the
students they instructed were not very
sophisticated or demanding. Yet even if a
course is mostly an elaboration on the
vocabulary being presented in the text,
and even if the faculty member sticks like
glue to the instrutor's guide, it remains
true that most of these faculty designed
and presented a course which they had
never seen before. It is also true that
each faculty member understands the
function of his course within his
curriculum, the objectives of the
assignments, and the standards to which he
holds his students. Each is able to
correlate his text with others (and makes
a practice of doing so), and each feels
competent to discriminate among the
differing perspectives offered by the
various text authors.

we will have another summer in which
to refine the perceptions and skills of
this class. We will look for a greatly
increased skill level when they return,
especially from those who were weak the
first summer (the weak students all
audited programming classes the Fall term,
and they will all teach introductory
programming in the Spring). In the second
summer we plan to examine in practical
depth the characteristics of programming
languages, how they are designed and how
they change. Students will also have a
chance to elect two computer courses which
suit their interests.

Reflections on the
Advantages of Formal Retraining

To form a preliminary assessment of
the accomplishments of this program the
author has reflected on several forms of
data, all informally collected. There
were the impressions built up over hours
of work with these students during the
summer, including counseling and advising
sessions. There were the discussions in
the curriculum course, the individual
course designs and the curriculum
critiques. There were the formal
evaluations at the end of the summer.
Finally, there were the visitations to
each college during the academic year at
which time the author observed the

91

participating faculty member in the
classroom and visited with his dean and
department chairman. These impressions,
together with the intimate involvment with
the four who taught in our department and
the experiences we shared in our new
instructor seminar, have formed the basis
for the following comments.

Could these same outcomes observed
above be achieved informally? The five
faculty who repeated the courses they had
offered previously did not change texts or
syllabi, but they found that they
understood the courses differently this
time through. Without a formal training
period, it is unlikely that this new
perspective would have been achieved as
quickly (if at all). For most of the
others, it would have been several years
before their own self-study efforts would
have brought them to their present level.

The participants mentioned most
frequently the unifying nature of the
curriculum course in solidifying their
summer work. The directed readings and
discussions of that class were well out of
their reach as individuals because the
information is dispersed and none of the
colleges had access to the computer
education literature. Yet the curriculum
course was rooted in the experience and
knowledge of the other four courses. We
could not have discussed the importance of
algorithms, of vocabulary, of notation, of
evaluation, of curriculum balance, of
professional goals, or of learning
problems if we had not experienced each of
these concepts through the summer.

The textbooks could have been read,
good and bad exercises could have been
done, and even insight could have come
through these activities when pursued in
isolation. But the concept of curriculum
is not easily grasped in this way.
Similarly, one might sit in several
undergraduate classes before one had seen
enough to begin to perceive the shape and
structure of the curriculum. Disregarding
the advantage in time which formal
training enjoys (offset by its expense),
we argue that the informal methods will
almost always be critically incomplete in
producing a "big picture." The
participants of the formal program have
acquired insight which directs their
growth and makes them aware of their
limits. They know what is important in
what they will teach and are not prone to
become fixated on details or trivialities.
They have gained control of their subject
matter, even if they do not yet have
mastery, and this gives them the
confidence to be the expert within their
limited spheres.

Both the formal and informal
retraining processes seek to create new
"computer people." The informal process,
if allowed its own way, would make that

selection by rewarding ability and
capturing the imagination of those with
the persistance and discipline to overcome
obstacles of vocabulary and the
inflexibility of computer systems. The
formal process may deal with those who
lack the ability to profit by informal
experiences. The formal process may be
much more effective in the short run, but
can either retraining process be said to
be truly effective in the long run? Can
one really become a competent instructor
of computing if one does not have much
talent for it, or if that inborn talent is
not cultivated in the normal graduate
regimen? And if so, will not the
retrained faculty member, if that training
is not of the caliber of the recommended
MS and Ph.D. in computer science, be at
best a temporary stopgap?

We make no pretense that the
coursework of our retrained faculty
members is comparable to that of an MS in
computer science, much less a Ph.D. The
required core of our program does compress
the majority of concepts treated in a
rigorous bachelors program into six
courses, and it requires the development
of a respectable level of skill in
applying this knowledge (for a discussion
of the feasiblity of this type of
compaction, see Sharma and Behforooz [7]).
But remember that we are not preparing
researchers or even scholars (although two
papers of publishable quality are required
in the program). The faculty who are
candidates for retraining are virtually
all devoted to teaching, and they are
seeking to be prepared to teach the
courses of the lower division of the
undergraduate curriculum. The goal of the
retraining program is met if the faculty
member is proficient in presenting and
demonstrating the computing concepts
appropriate to this level. In particular,
these faculty will be called upon to
convey the principles of software
development and to survey the context in
which this activity occurs. They will
also bear significant responsiblity for
providing opportunity for general computer
literacy on their campuses.

If retrained faculty progress to the
courses of the upper division, or to
graduate courses in computing, it will be
on the basis of continued personal
development after completing their formal
studies. We anticipate that those faculty
with research training will most likely
migrate toward more abstract topics in
computing, while those faculty with
teaching-oriented training will progress
to those topics only if they discover an
affinity for the concepts and methods of
computer science. Undergraduate computing
may be much like cooking, where almost
anyone can achieve comptetence in the
basic arts and learn to prepare credible
meals by recipe. Occassionally, an
amateur chef is discovered. But good

92

recipes and a foundation in the use of
cooking utensils and the elementary
techniques of food preparation are
sufficient background to begin to teach
those who have never boiled an egg.
Analogous to the memory systems of the
machines we use, computing education can
effectively utilize a multi-level
instructor system, so that the different
phases of instruction can utilize
diversely prepared faculty. At issue then
is the minimum faculty competencies we
should expect at any given level of the
computing curriculum.

In our opinion, the easiest course to
teach is a coding course in which a
student is presented the syntax of a
programming language. The prerequisite
qualif~ations for the instructor of such a
course is familiarity with the language in
question. This familiarity might well
have been acquired the term before when
the instructor audited the course (this is
more believable if this is not the first
language which the instructor has
acquired). The instructor has control over
the exercises, so he can usually keep the
students in the area of the language he
has mastered. With the help of the
language manual, he will be able to say
what should be written, to recognize
invalid logic, and to interpret error
messages. It would, of course, be better
if the instructor had a rich experience in
the language and was able to explain the
use and function of every facet--the why
as well as the what. The class would then
be more interesting, especially for the
gifted students. But in this level course
it is seldom necessary to stray far from
the textbook, so this degree of competence
is seldom appreciated.

On the other hand, a course in
programming is much more difficult to
teach because it seeks to integrate
problem solving and language use. The
instructor in such a course should not
only be familiar with the language but
familiar with appropriate problems and the
techniques which are emphasized in the
language. Now he must know not only
something about syntax but something about
functionality, elegance and style. Now he
must focus not only in the language and
its valid statements, but on problems and
their most effective solutions. Clearly
this will require an understanding of both
the practice and acquisition of problem
solving skills and software development
skills in addition to familiarity with
syntax. In the absense of such an
understanding the programming course
becomes a coding course, a common tragedy
of the past, and one which will be
repeated untold more times into the
future.

As we examine the other courses in
the computing curriculum we will recognize
here and there the necessity to have had

certain experiences, the need to have
grappled with some deep concepts, the need
for perspective and integration as a
prerequisite for an effective presentation
of concepts so as to neither overwhelm the
student nor preclude elaboration. We will
also find many topics which are straight
forward, relatively uncomplex, and which
are necessary to experience and accumulate
in order to base a leap to the next level
of understanding.

Within the limited time of a formal
program we can judiciously choose to
provide an array of experiences which will
give the retrained faculty member
significant intellectual momentum. We
believe that the most significant concepts
involved in pursuing computer applications
are accessible to most graduate-trained
faculty if they have the desire to acquire
them. (The reader may wish to investigate
the very similar core courses which have
been selected in the different retraining
programs to date. In addition to those
referenced in this paper, consider the
nascent programs at Memphis State
University and Clarkson College of
Technology.) We have struggled with
faculty who displayed little acumen, but
whose perserverance won at last a glimmer
of understanding and the promise of
proficiency. These faculty have matured
in the classroom, and we now have evidence
that such faculty can serve effectively in
assisting students to acquire a foundation
for computer studies. There is no reason
why such retrained faculty cannot continue
to grow in the understanding of their new
role and in the knowledge of their subject
matter, adjusting to new texts and to
inevitable curriculum revisions. Their
contributions are critically needed today
and the need will continue throughout the
foreseeable future of their colleges.
Given an informed perspective and a set of
values to communicate, these faculty will
continue to serve as planners and
interpreters even after more technically
proficient staff are acquired. These
faculty may be very limited in their range
of competence, but what is critical to
their usefulness is not their scope but
the perspective which is afforded to the
students in their classes. These faculty
must lead their students to develop
accurate understanding and asthetic
sensibilities about computing. While
these faculty may not themselves be
original, they must be educated to
recognize and reward originality in their
students Within the context of specific
courses, we believe that this can be
accomplished.

The easiest group of faculty to
retrain will be drawn from the cognate
disciplines of mathematics, the physical
sciences, economics and business since
these are the areas which already support
the majority of computer applications.
These faculty enjoy better conceptual

93

groundings for assimilating the available
literature. But the real strength of the
movement to retrain faculty is that it
will include faculty from the
nontraditional disciplines as well--and
these faculty will bring with them new
perspectives in teaching, learning, and
using computers. These faculty will
enrich the computing education field with
their insights, and will extend the
acessibility of computing more effectively
than has the scientifically-oriented ~
scholar. But because these faculty are
more difficult to retrain, we run the risk
of sacrificing their potential
contribution for the convenience of
working with faculty who will progress
faster and more smoothly.

The retrained faculty should have
earned their status within their
institutions in their original
disciplines. The acquisition of a second
credential cannot diminish that status,
but has every likelihood of enhancing it.
We therefore suggest that a retraining
credential is credible and, after the
faculty member has proved himself in his
original discipline, it is more
appropriate for faculty of certain
teaching institutions then a
non-teaching-oriented MS in computer
science. It is too common for the MS in
computer science to permit specialization
and to assume that computer skills ahd
intuitions are posessed which undergird
the specialized concepts. Even if due
consideration is given to the spotty
preparation of the retraining MS students,
the MS in computer science is not oriented
toward preparing teachers, but researchers
and practitioners. Programs which
capitalize on the background of the
faculty member and pursue his retraining
goals are going to be more effective in
equipping him for his chosen task.

There will continue to be debate over
whether retraining should be
credentialized, or whether that credential
should be a graduate certificate or a
graduate degree. We have argued for a
distinct degree from the MS in Computer
Science. The motivation for awarding a
degree is based on two practicalities.
The first is that the time, effort and
expense involved in formal retraining is
comparable to the traditional masters
degree, and therefore a degree is the most
adequate form of compensation, even if the
content differs from the MS in Computer
Science.

The second practicality is that the
masters level credential is the minimum
acceptable level for teaching in an
undergraduate major. The uniqueness of
retraining is that it is a second masters,
and as such is relieved of the necessity
of filtering out those students who lack
academic dispositions. It fulfills the
role of a graduate minor in a doctoral

program. There is little to inhibit a
Ph.D. from teaching in his minor area.

The choice between a certificate or
degree may not be important to those who
already have a Ph.D., even if it is not in
a traditional cognate area (today,
computing is cognate to every discipline),
but we predict that the bulk of those
seeking formal retraining will not have
Ph.D.s. The Ph.D. holder is more likely to
retrain informally. The formal retraining
programs will be subscribed by the small
colleges who still have barely half
Ph.D.-level faculty, and these Ph.D.s are
least likely to be expendable in their
native departments. The additional
structure and standards-monitoring which a
degree program is likely to enjoy over a
certificate program is an edge which we
cannot afford to ignore when we anticipate
retraining masters-level faculty.

Conclusion

The process of retraining faculty to
teach in the undergraduate computing
curriculum is already entrenched and is
growing. We have sought in this paper to
present an understanding and evaluation of
this phenomena. Society will certainly
strive to increase the numbers of
traditionally trained faculty, and in some
institutions there will be little desire
for the retrained variety. But especially
in the smaller colleges, there will be a
period in which there will be little other
then retrained instructors, followed by an
extended period in which both the
traditional and the retrained faculty will
have to share the burden of delivering
computing education. We have presented
the accomplishments of a new, formal
retraining effort for small college
faculty, and have stressed the desirable
characteristics which the informal process
of retraining, even at its best, is
unlikely to achieve. We have argued for
the integrity of the retraining degree,
and tried to clarify the goals to which it
should aspire in distinction to the
traditional MS in computing science.

References

i. Athey, Thomas,
Education Challenges of
INTERFACE 4,2, (Summer 1982).

"Computer
the 1980s,"

2. Chrisman, Carol, and Gerry
Chrisman, "Retraining Faculty from Other
Disciplines: An Alternate Source of
Teachers," INTERFACE 4,2 (Summer 1982).

3. Codespoti, D. J., and J. C. Bays~
"The University of South Carolina Computer
Science Institute," SIGCSE BULLETIN 12,1,
(February 1980).

94

4. Harrow, Keith, "A Faculty
Development Program," SIGCSE BULLETIN
14,1, (February 1982).

5. Kroenke, David, "A Place in the
Sun," INTERFACE 3,1 (Spring 1981).

6. Parker, Charles, "A Conversion
Kit for Migrators to Computer Information
Systems," INTERFACE 3,1 (Spring 1981).

7. Sharma, Onkar, and All Behforooz,
"An Accelerated Program in Computer
Science," SIGCSE BULLETIN 14,1 (February
1982).

8. Stegner, Richard, "Retraining:
At the Graduate Level," INTERFACE 4,4,
(Winter 1982-83).

9. Zientara, Marguerite, "University
Summer School Retraining College
Professors To Teach Computer Science,"
COMPUTERWORLD May 3, 1982.

Appendix

The following materials are
representative of the requirements of the
summer masters program at the University
of Evansville.

Graduate Curric~um

First Summer Quarter

CS 501 SYSTEMS ANALYSIS 3 hrs. Discusses
the com~lete role and functions of Systems
Analysis. Considers the ten major steps
in systems analysis from feasbility study
to implementation. Considers the tools of
the analyst in achieving a successful
systems development. (Summer I)

CS 502 COMPUTER HARDWARE, 3 hrs. Covers
the electronic and mechanical components
of a computer, including processing units,
memory units and input/output devices.
Studies typical system configurations for
various types of applications. Emphasis
will be placed on typical systems in an
educational environment. (Summer I)

CS 503 DATA STRUCTURES AND PROGRAMMING, 4
hrs. A modern introduction to programming
techniques emhasizing structured style in
PL/C and PL/I. Presents a broad exposure
to algorithm analysis and implementation.
Topics include stack and queue
manipulations, tree travesal, recursion,
search and sorting techniques, and basic
file organizations. (Summer I and Summer
II)

CS 504 SYSTEMS SOFTWARE, 3 hrs. Surveys
Systems programs such as loaders, linkage
editors, assemblers, compilers and
operating systems. Covers the major
components of each as well as design and
implementation considerations. Emphasis
will be placed on software available at

students' home institutions.
Prerequisite: CS 501, 502; Co-requisite
CS 503. (Summer II)

CS 505 UNDERGRADUATE COMPUTING CURRICULA,
3 hrs. Discusses the curriculum movements
and the model curricula in computer
education. Considers the relationship of
computing studies to liberal arts and
develops guidelines for institutionally
appropriate curricula. Prerequisitez CS
501 and 502; Co-requisite CS 503. (Summer
II)

Academic Year

CS 510, 511 PRACTICUM, 3 hrs each. A
supervised teaching experience in the
discipline which will give the student
opportunity to experience and analyze the
unique characteristics of teaching
computing. A course design and in-depth
evaluation is required for each of the two
registrations. Prerequisites CS 505

Second Summer Quarter

CS 571, 572 COMPARATIVE PROGRAMMING
LANGUAGES, 4 hrs. each. This two-quarter
course introduces the principles of
programming language design and
implementation. The problems of automatic
translation and the syntatic features of a
variety of modern programming languages
are examined. Emphasis is placed on
finding a unifying perspective on
programming languages which relates the
general and special purpose languages as
well as the high- and low-level languages.
Concepts of teaching languages will also
be presented. Prerequisitez CS 504 and
511. (Summer I and Summer II)

Second Summer Electives

CS 506 PROGRAMMING MICROCOMPUTERS, 4 hrs.
A second course in BASIC programming which
will concentrate on the graphics and data
handling facilities available on common
microcomputers.

CS 521 SOFTWARE ENGINEERING, 4 hrs.
Presents the techniques of large-scale
software development| project management
and scheduling, unit and system testing,
documentation and performance evaluation.
Prerequisite~ CS 501 and CS 503.

CS 551 INTRODUCTION TO MICROCOMPUTERS AND
LOGIC DESIGN, 4 hrs. This course
introduces the student to the major
concepts in logical design of digital
machines. Combinatorial logic is
reviewed. Sequential design of digital
machines (from counters and registers to
microcomputers) is covered in depth. This
course emphasizes the architecture system
including the CPU, memory, and I/O. Real
time software problems and sequential
logic design lab problems are assigned.
Prerequisite~ CS 502 or CS/EE 350 or
consent of instructor.

95

CS 599 INDEPENDENT STUDY, 1-4 hrs.
Independent study of a topic or problem in
Computer Science not otherwise covered in
the curriculum. Prerequisite~ permission
of the faculty sponsor.

Also available are courses from other
graduate departments, with permission of
the program director.

REPRESENTATIVE COURSE MATERIALS

COMPUTING SCIENCE 501

COURSE TITLE: Systems Analysis

CREDIT: 3 hours SECTION TI~/DAY ROOM
i 8:30-t0 MTWT ?

COURSE DESCRIPTION: Discusses =he complete role and functions of Systems
Analysis. Considers the ~en major steps in Syste~Analysis from feasibility
study tO implementation. Considers the Cools of the a~lyst in achieving a
Successful system development. Considers the pedagogics of the subject.

TEXT: Gane & Sarson: Structured Systems Analysis
Enid Squire: Introducing Systems Design

INSTRUCTOR: J. Westfall 479-2655

COURSE OBJECTZVES: Upon completion of this course the student should:

1.

2.

3.

4.

EVALUATION :

ASSIG~4~NTS:

June 14
15
16
17

June 21
22
23
24

June 28
29
30

July i

July 5
6
7
8

July 12
t3

t5

Understand the various roles of t h e Data Processing Professional.

Understand the need for structured analysis.

Be able to apply the tools of analysis.

Derive a physical system disign from a logical model.

Evaluation will eonsisn of two quizzes (50%), one final exam (25%)
and two out of class assignments.

Chapters i, 2 & 3 Squire
Chapters 4 & 8
Chapters 9 & i0
Chapters ii & 12

Chapters 13 & 14
Chapters 16, 17 & 18
Quiz #i
Chapters I & 2 Gane & Sarson (Seminar Chamber of Con.nerce)

Chapter 3
Chapter 4
Chapter 5
Chapter 5

Chapter 6
Chapter 6 (Homework @i due)
Quiz ~2
Chapter 7 Cane & Sarson

Chapter 8
Chapter 9 & [0 (Homework ~2 due)
Problems & lessons learned in ~eachin S subject
Final exam

Summer, 1982

CS 502
COMPUTER HARDWARE

Instxuctor: Bruce MeDia

Text: "Computer Organization," Hamacher, vranesic and Zaky,
MCGraw-Hlll, 1978

Course Structurez Lecture and discussion (hopefully}. Feel free tO ask
questions a~ut the material as we discuss it.

Grading~ 4 Quizzes (25 pea each) i00 points
Final i00

2 Projects (50 p t s each} i00
Assignments 50

TOTAL 350 points

Schedule¢ (Tentative)

Week Topic

1 Chapters I, 2, 3
Quiz 1

2 Appendix A and Chapters 4, 5
Quiz 2

3 Chapters 6, 7, 8 and Apppendix C
Quiz 3

4 Chapters 9, IO
Quiz 4

5 Chapter8 ii, 12
Final

CS 503 SL~dER 1982

INSTRUCTOR:

Dr. William Mitchell (ES270: 479-2649)
Office 4-5 daily

TIME/PLACE:

ESI64. 2:30-4:00 p.m. MTWTh (for now, will meet earlier second 5 weeks).

TEXT:

Tremblay & Sorenson, An Introduction to Data Structures with Applications

(McGraw Hill 1976)

Coverage: Week 1: Chapters 1 & 2 A reading g u i d e will be
2: Chapter 3 supplied alone with a set
3: 4 of study questions which

4 & 5: 5 will filter out the concepts
6 & 7: 6 of importance to the course.

8 - i0: 7

OBJECTIVE:

This course is intended to present the core concepts of progra~mlns as
viewed by Computer Science. It will simultaneously address the specifi-
cation and analysis of algorithms, the variety of conceptual data
organizations, their impact on algorithms and their storage representation
in computers, and the application of these data organizations in program-
ming, emphasizing e~ance in a rich and powerful programming language
(PL/Z). To achieve these goals we will write a lot (8-10) of programs
and reflect upon the choices we make in the process.

PROCEDURE:
Monday's session will be devoted to explaning PL/I. The sessions of
=he remaining 3 days will be divided into 3 portions: a) a lecture
expendln S or supplementing the assigned reading (maximum of 30 minutes);
h) discusslon of the study questions (not to extend past the first
hour of class; and c) discussion of the progra~ins problems. Great
care will he taken to assure that each portion receives a full 30
minutes if that is perceived as desirable.

GRADING:

The course grade will be based on 9 sets of home~rk, 9 progr~s and a
comprehensive final. Homework ~rill be due each Monday. Durlr~ the
sixth week of class a midterm grade will be established and discussed
in a scheduled individual ad vising session.

96

CS 503 QUESTION SET #i
CS 503 NOTES FOR CHAPTER S, pART I

i.) Write sn algorithm of =he proper form for converting a number (less than
4000) ~rom Roman to Arabic•

SECTION COtOfENTS

5-1.1 The author approaches trees through directed ~ . The
recurslve definiClon given on page 313 is the more co~on starting
point. Road ~ps are graphs, Pert harts are directed graphs.
The discussion here is aimed a t presenting vocabu la ry and illustrating
each term with a picture. Most of the graph ~erminology iS not
important to us, but you should make a l i s t of the italicized terms
end write a definition for each in your o~rn words°

The tree vocabulary is more important (beginning on page 310).
Ee clear about level and de~ree, gecome adept at interpreting any
of the tree representation schemes (Venn diagrams, outline,
parenthesis, p r e f i x code, and first son-brother).

5-L2 Learn each of the traversal sequences for ~n arbitrary binary
tree. Study the PL/~ figures. The algorithms use a stack. Study
figure 5-~.20 and nots the use of controlled storage to implement
~he stack. Stud 7 the trace for PREORDER given in table S-Z.1 where
~A represents ~he address of the node containing A, and P is a
pointer to some node on the ~ree. To visit P means ~o access Ehe
info stored at address P and output what you find.

Threading is introduced on page 326. IC uses the otherwise
empty links in a tree storage scheme to avoid having to use a
stack for ~raversal. You should trace the various traversals using
the threads (dotted line in the example) and then see how a threaded
t ree is built following the algorithms.

The material on representing forests (p. 328-332) can be passed
over. Study, however, the examples of sequentlal storage of ~rees.

5-2 The applications section is once again heavily oriented toward
compiler applications. Skip 5-2.1, 5-2.2 and 5-2.3. ~e will discuss
in class much of ~he material in 5-2.4. Note ~hat pages 351-335
merely define decision tables, while pages 355-361 discuss stracegles
for translating a given tableau (generating a ~ree representation).
~e will emphasize understandlnE the wei~hln~ assigned ~o the various
paths through the tree which directs the choice in the Verhelst
algorithm. The flow charts attemp~ to dramatize ~he different
possibilities, bu~ ~he examples on page 359 should he studied.
We w111 skip the rest of ~he section beginning with p. 362.

Program

I hav~ al~ead7 distributed a handout which describes the algorithm for ~torlng and
traverslr~ • network to determine the critical path. You assignment is to i~plement
this algorithm in teams, one person in each tsa~ creating the subroutines LOAD,
TRAFERSE, and CPATH, where LOAD reads the data stream and collects all the arcs
and stores them in linked successor and p~edecessor lists with ELst pointers in
the node table. TRAV~E accesses these lists and co~utes the E~I~ and LTIME
for each oods in the bable. CPATH then ' computes the slack for each node and prints
all the c~itical paths (zero slack). The imter£aces between these modules may
differ from team to team. However, PL/I will be used by everyone, the linked
lists will be 8AS~ variables, and the stack ~sed in TRAVerSE will be implemented
using a CONTROILED variable. ~ou should test Four products singl~ and as a ~a~age
before using ~ network: C3503P5

2.) On our IBM 4331 a word is 32 bits. Assume a location in memory has the
pattern 257360000008:

a,) If this is a CW~'S complement interger value, °hat is its decimal
equivalent?

b.) If it is a packed decimal i n t e g e r value, what iS its decimal equivalent?

e.) If it i s a floating point excess 64 notation (7 bit exponen t , l bit
sign, 24 bit fraction), what is its decimal e q u i v a l e n t ?

You see why a given location should'only be allowed to have a single type.

3.) Find out the rules which govern ~he precision of the result when two
flx~d variables with precision (pl,q~) and (pp,q~) (p[• Jq~respeatlvely)
are combined arithmerlcally (+, - , /~ in PL/I: "

4.) Answer e x e r c i s e 2-3.6.

5.) The KWZC FORM a l g o r i c ~ on page 145 has some e ~ b a r r a s s i n g e r r o r s -
e x p l a i n ~ h a t they a r e . The K~C OUT and K~C FORM a l g o r i t h m s a r e
inconsistent. ~'~y? The strateg~ used to for~ these K~C index is
Ine~flcient because you crea~e a lls~ of the unique key words and
the process the duplicates. Examine the advantages of crea~Ing a
llst of all occurrences of key words including duplicates.

6.) Do problem2-5.4.3 (Note it cannot be run in PL/C - Find out why.)

CS 503 PROGRAM 4

The cenc~al theme of this course is that we must become adept at modeling
probl~ in computers, not by cadln~ ~he problem into the limited data types
implemented in the machine (Integer and character in most, floatingpolnt in
some) or provided by the progr~ing language (arrays or structures and some-
t imes string facilities) but by utilizing the available data types and
organizations to build ~he data structures which conform to the problem's
requirements. It is fundamenta l thac we nor distort the problem when we
bring it to the computer, but tha~ we enhance the computer's ability through
our sol=ware.

This ~heme has been developnd by investigating a series of problems which
involve manipulating high precision numbers. Note first ~hat ~he IBM machine,
and COBOL, provide high precision (15 digits) automatically, so t h a t programmers
will not need to be skilled in using data structures. Thus, the need for high
p r e c i s i o n numbers i s no t the J u a t l f l c a t l o n f o r t h e s e i l l u s t r a t i o n s (however ,
m i n i and microcomputer u s e r s nee_~d t h e s e t e c h n i q u e s) . R a t h e r , the h i g h p r e c i s i o n • o >,.rl u ~
numbers happen co be s imple to p r e s e n t and u n d e r s t a n d , and thus p rov ide an ~ ~ uu o .~ ~ ~ ~
e a s i l y a c c e s s i b l e v e h i c l e for i l l u s t r a t i n g t he theme. ,~ ~ ~ ~ ~ ~ u ~ ~

~ r f i =s t ~ rog r~ l l l u , t d p~o,r,~im, ~he op ion o~ d i ~ l s i her ~ ~ ~ ~ ~ o ~ ~ ~
than ~slng the built in operation and simulating high precision by controlling ~ u ~ ~ ~ " o
tbe f f t h m p r i n t n d o u t p u t . Th ndp og l l . e d t h hmiqn. • . o

of "array numbers" co gain an internal represenratlon of nu=bers with high o ~ ~ e ~ : ?, ~
precis ion. ~ e h k ~or ~ develops ~h pt of ~Ipulatlng ~ ~ ~ ~ ~ ~ ~o • ~" o ~
~his representation. The relationship beEween the numeric and character forms • ~ ~ e ~ ~.~. ~ ~ ~ ,~
of ~heee numbers was developed as par~ of the problem of presenting these ~ ~ u ~ e ~ - ~ ~ ~

numbers on ou tpu t . ,-.1 ~ u ~ ~ ® ~ o ~ o ~ ~' " ~ e -,~

The fourth program exercises using simply linked lists and also illustrates ~ o • ~ ~ n ° ~ ~
a more flexible s t o r e s t r u c t u r e f o r m u l t i - l o c a t i o n numbers. There may be little ~ ~ ~ ~ ~ ,~, ~, ~ "~
practical need for li~ked ~ist representation since most "real" situations are ~ 0 ~ ~ ~ ~ ~ ~ ~ ~
~ore effici-e~ly handled with array numbers. But out goal is ~o become familiar ~ "~ ~ ~ ~ ~ o ,~ •
with the tool rather than optim~lly solve a particular problem. The linked llst ~ ~ ~ ~u ~ ~ ~?- ~ ~ ~
~equires greater concentration on the mechanics of supplying storage managemen~ ~ ~ m ~ u : ~ ~ O
facil'itles, as well as software implementation of the arithmetic operations. ~ eo ° e ~ ~ . u ~ ~ o
Therefore, the linked llst structures illustrate more clearly the programmer's ~ o ~ ~ ~ ~ u ~ . ~ e,
ability ~o construct =he envlro~ment which best relates ~O the problem, rather m o ~ ~ ~ ~ ~ ~e~ ~ • o e e ~ e
~han depending on the data structures available in ~he language. ~ ~ ~ ~ ~ o ~e~ m ~ e~

Problem 5 ~ ~ ~ ~ ~ ~ o ~ ~ o

~ o u oral list with headers (w~Ite an algorithm or a p~o~em). ~e~ " ~ ~ ~e ~ ~ ~ ~ ~
I. Reverse the links or~ a gen ~ ~ ~ ~ ~ ~ ~ ~ o o

2. Trace the to~01ogical sor~ algorltbm in Knuth (use his d~ta and ve~i~y h~s diaBTamS, ~Oo~ ~ e ~ ~u~.e~ee°~w ~ ~eu~ ~me° :~

.=o u~ u e ~
3. ~0 problem 1 on p. }'12. ~ u ~ ~ ~ ~ ~ "
h. Do question 1 for a sin61Y list list before you t~y it for the general list. ~ ~

.° o ~ ~ ~ o o ~

~o • o~

o ,..i o

~ e ~ e o e ~ o

o :

• o O o ~ , ~

97

CaSe3 Prngrm #7

The records of the input file DATAFL al~ as descrioed in the ~ando~b ~UILD.
In addition, a parameter card is read fr~ SYSIN containin~ (in free forma~,
ao quOteS) one Of the followi~ pairs: ~NDIV, ZIP (case 15

INDIV, SHARES (case 25
GROUp, lIP {case 35
GROUP, S~ARES (case h 5

where the comma may be omitted, and ZIP ant ~%RES represent numbers (zip cnde
segment cremate numbers). For each input pa~r a partlc~Lar set of undress labels
are extracted from the file~

case i: separate Label for each name in the ad~h-ess group ~aving matching characters
with ZIP beginning on the left end.

case 2: separase label for each name whose snare ~mount equals or exceeds S~aRES
case 3: single label containing as many names as the ~ahel will allow (in decreasing

order of shares held) for each address group mathhing ZIP
case IA: single l a b e l conlaini~ as ~any ~ames as the label will allow (in decreasing

order of shares ~.e~:i) where each name equals or exceeds SHAR~3

The g e a e r a t i o n of address ~ e l e r equ i r e s eurekA1 pos i t ion ing of the ~ i n t e r . ~ e g i n ~ g
at the top of pete assume 6 lines per ~a~el and one line for spacing break. Labels
may be generated in a column or three-~p (assume 40 characters o~ width with one column
separating). The file is kept LAST,F~ST so the name must be reordered (theoretically,
the first ur mind~e name might need to be truncated in ~rder tha~ the entire last name
fit on the l~bel, be t t~is iS quite unlikely given our name recoros).

The program in to be written in PL/I and will utilize the foilowln~ file processln~
f e a t u r e s : EOCAT~ mode of READ in o ~ e r to recognize the record type,

RECORD output to p r i n t e r {build an ed i ted L~ne image i n a s t ruc tu re and ~f
WR~ the s~ructcu~e to the ~nter)

CLOSE the input file DATAFL at the end of the run, then ~.oop back in a data-
driven loop tO read another input card and subsequent ly OP~ the f i l e
DATAFL fo r the gene ra t i on of a second l i s t of lA~ele .

Turn in a run usi~ the oat® in CSSeSP7

I encourage you to work in teams to implement a MAIN program wnlob calls the foiL~wln~

subroutines: M~TT LABEL(I~;ES,OK5 wninh appropriately fills a ~-eLement cnaractor array
or &is® ~rne the f~a~ to '~'B. (CASE,SHARES, ZIP global)

M~T~ROUP(OK) c a l l e d by ~EXT ~A~L to r e f r e sh from LATAFL the a~rays
holding the c u r r e n t adcress group.

The main program wou~d read the parameter card, determine the ~lue of CASE, ~nd print
the array L~ES il it is OK. A single prngrma will be s=bmitted by a team, and the
internal documentation will indicate ~e authors responsible for each segment.

CS5O5 1982 Syllabus

Text: CoLlection of Readings and C-~le~ Text

Requlre~ente: ~. Co~rse desert for one of the courses you will teach this acaaemic year.
create: syllabus (ic~rnin~ objectives, schedule)

final exam
~ue 8/~ bib~ingrap~y (incl~dlng potential or aot~l texts)

worked assignments (2-1~ as appropriate: pr~rams, problems, projects)
eva '~Aation instrument

II. Syllabus of second course
due 8/~i sketch. Of assig~en~

IIZ. Computer c~rlculum paper (evaluation of your school's ~esent and/or
due 8/18 projected computing curriculum)

IV. Class presentation ~discassion'of your course) (schedule to be am~ounced)
V. ~Adberm exam (8 /9) over read ings (d e t a i l s later)

Schedule: 7/19: Reflections on te~chlng computing.
2~: The UE comp~tln~ cu~rlouhAm
21: AC~ ann ~ Computer Science c~rrlculam mndels
22: DPMA and AC.~ i~formatlon systems currlcalu~ mndeL~
26: Small college c~rrlcul~ mc~els
27: The first course: general ed=cation
28: the service course
29: the major's course

8/2: d e f l n i n ~ a d i s c i p l i n e
3: conceptual hardspots
h: course oesign, CUlTiCU 'hu~ design
5: resources and evaluation

Presentations: (A small college curriculum for a computin~ major)
l O : the second prograz~ing course
ii: systems ana~ysls
12: data and file orEani~atlons
23: computer systems
2h: pro~ects and elec+~tves
25: implementation

2~: Evaluation of summer 1982, academic year pier, nine.

Grading: Each of the 5 a~ei6nments will be scored on a maximum of 30,Ig,20,1~,30 points,
respectlvely. A bonus will be earned for class participation. ~O pts. • A

8~ ~ B
?g = C

Of Lice Hrs. 1O-ll daily

0bJec t i ve : ~ne purpose of t h i s course i s to provide you the d i s c i p L t n a ~ con tex t out of
~hich the experienced computer educator ope ra t e s . ~ou w i l l be exposed to the
i s sues and me~ndolog ies t h a t c u r r e n t l y concern the co l l ege i n s t r~c to r~ and
some h i s t o r y on t h e i r d e v e l o ~ e n t o C o ~ p u t ~ has been t a ~ h t a t the u~dergraduate
l e v e l for ba r e ly 2g yea r s , and the r e a d i e s span tha t per iod . Each c l a s s period
i s devoted to a ~ r t i o u ~ r thread° I expect t h a t you w i l l f a m i l i a r i z e yourseL~
with the articles indicated for each day and come to class ready to q~estion
a~d interpret the issues raised with the ~oal Of ~ndersten¢in K the relevance of
that issue to both the cumputhr disciplines broaoLy an~ yourself specifically
as you be~in to practice computer education. I will try to resist ~ect~rir~ for
the first th--ee weeks other than to begin each class with a brieg statement as
to why I choose the articles I assig.~ed you to read.

m~

~o ® ~
o o ®

~ o ~ ~o~ ~ ~ o ~

~oo ~ ~ ~ g "
........ ~o ~ ~ o~

. iI! ~ ® ~ ~o~
® - ~ ~ o o ~ ®

O H °
~ o ~ o ~ . ~ o

m m ° o ~ o ~ o ~ ~o ~
...... ~ ~" ~° ~®~

• o o ~ o m o o ~ ~

m m-~

. ~ - ~ . . ~ - o ~ ~ . o ~ .~ " ~ ~

o ~ ~ o ~ ~ ~ ~ooo ~

98

